

Summer Meeting, 11–14 July 2016, New technology in nutrition research and practice

Habitual Calcium and Vitamin D Intakes in Pregnant Irish Women; Preliminary Data from the DMAT Randomised Controlled Trial

K. O' Callaghan^{1,2}, Á. Hennessy^{1,2}, L.C. Kenny² and M. Kiely^{1,2}

¹Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, UCC, Cork, Ireland and ²The Irish Centre for Fetal and Neonatal Translational Research (INFANT), UCC, Cork, Ireland

During pregnancy, calcium and vitamin D are transported from the mother to the fetus, contributing to the mineralisation of the fetal skeleton and neonatal vitamin D status. The dietary requirements for calcium and vitamin D in non-pregnant adults have been extended to pregnancy, on the basis of insufficient evidence to support pregnancy-specific values⁽¹⁾. However, calcium and vitamin D intakes are low in Irish women⁽²⁾ and there is currently no recommendation for supplementation of these nutrients during pregnancy in Ireland. The aim of this study was to describe the habitual calcium and vitamin D intakes among pregnant women in Ireland using data collected from women participating in the DMAT randomised controlled trial (RCT) [Nutritional Requirements for Vitamin D in Pregnant Women (DMAT), NCT02506439].

Participants (n = 100) were healthy Caucasian women who were having a low-risk pregnancy and receiving antenatal care at the Cork University Maternity Hospital. Dietary vitamin D and calcium intakes were assessed at baseline (≤18 weeks gestation) using a quantitative food frequency questionnaire $^{(3)}$. Mean \pm SD total calcium intake was 1227 ± 491 mg/d, and 26% of women consumed calcium in supplemental form (dose range = 22-500 mg/d). Mean \pm SD total vitamin D intake was $10.8 \pm 5.3 \text{ µg/d}$. Sixty-eight percent of women reported taking a vitamin D-containing supplement (dose range = $2 \cdot 1 - 10 \,\mu\text{g/d}$).

Table 1. Sources of vitamin D and their contribution to total vitamin D intake

	Mean Intake (μg/d)		% Contribution to Total Vitamin D Intake	
	Users	Non-users	Users	Non-users
Meat	0.9	1.1	7.1	25.3
Eggs	0.9	1.0	6.7	23.6
Fish	0.8	1.0	5.6	19.3
Breakfast cereals	0.5	0.5	3.6	11.5
Milk	0.9	0.9	5.7	10.5
Supplements	9.0	0	68	0

The prevalence of antenatal multivitamin use was high in this sample and was the major contributor to overall vitamin D intake. Among women not consuming a vitamin D-containing supplement, mean daily intakes were approximately half the current EAR (4.9 ± 3.4 µg/d). These findings highlight the current importance of nutritional supplements to meeting dietary requirements for vitamin D in pregnancy. These data will contribute to analysis of the dose response of 25(OH)D to total vitamin D intake in the DMAT RCT, which aims to inform vitamin D requirements during pregnancy and the neonatal period, and will report in full during winter 2016.

- 1. Institute of Medicine (2011) Dietary reference intakes for calcium and vitamin D
- 2. Irish University Nutrition Alliance (2011) National Adult Nutrition Survey
- 3. Kiely M, Collins A, Lucey AJ et al. (2016) J Hum Nutr Diet