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1. Introduction

Let G be a lattice-ordered group (/-group) and H a subgroup of G. H is
said to be an l-subgroup of G if it is a sublattice of G. H is said to be convex if
hu h2e H and h± ^ g ^ h2 imply g e H. The normal convex /-subgroups
(/-ideals) of an /-group play the same role in the study of lattice-ordered groups
as do normal subgroups in the investigation of groups. For this reason, an
/-group is said to be l-simple if it has no non-trivial /-ideals. As in group theory,
a central task in the examination of lattice-ordered groups is to characterise
those /-groups which are /-simple.

Let <S, g > be a totally ordered set. Aut « S , g » is an /-group under the
ordering: / ^ g if and only if f(s) ^ g(s) for all s e S. Also

(gvh)(s) = max {g(s\ h(s)} and (gAh)(s) = min {g(s), h(s)}.

Theorem (Holland (3) Theorem I). If G is an l-group, there exists a totally
ordered set <5, ^ > such that G can be l-embedded (a group embedding which
preserves the lattice operation) in Aut « 5 , ^

This theorem is the analogue of the theorem of Cayley for groups and, in
this case, we will say that G is represented on <5, ^ > .

For the rest of this paper <5', ^ > will denote a totally ordered set and
Aut « 5 , ^ » will be the /-group described above.

Let G be an /-subgroup of Aut « 5 , ^ » . G is said to be transitive on S if,
for any s, t e S, there exists g e G such that g(s) = t.

Theorem ((3), Corollary 2). Every l-simple l-group can be represented
transitively on some set (S, ^ >.

An equivalence relation S on <5, :g> is called a convex G-congruence on
(.S, ^ > if each equivalence class of $ is convex and, for all s, tsS, g(s)Sg(t)
for all g e G whenever sSt. If there are no non-trivial convex G-congruences
on <5, ^ > , then G is said to be o-primitive on <£, ^ > .

In attempting to classify the /-simple /-groups, the first step is to characterise
those that have a transitive o-primitive representation.

Let G be an /-subgroup of Aut « 5 , ^ » . G is o-2 transitive on <S, ;g > if,
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for all s, t,u,ve S such that s<t and u < v, there exists g e G such that g(s) = u
and g(t) = v. Let <S, ^ > be the Dedekind closure of <S', ^ >. If there exists a
positive / 0 e Aut « S , ^ » such that f0 generates the centraliser of G in

Aut « S , 52 » and {/S(s0): n e Z} is unbounded (above and below) in <S, g>
for some .y0 e S, then G is said to be periodic and / 0 is called the period of G.

Theorem (Holland (4) and McCleary (7)). Let G be a transitive o-primitive
l-subgroup o/Aut «S , ^ » . Then either:

(i) G iy a subgroup of the real numbers «R, ^ » /« its regular representation;

or 07) G iy periodic;

or (Hi) G is o-2 transitive on <£, ^>.

If G falls into either of the first two categories, it is /-simple (see (7)). Let
g eG. The support of g is the set of points of S moved by g; i.e.

supp (g) = {seS: g(s) # s}.
If there exist x, y e S such that supp {g)^\x, y], then g is said to have bounded
support. If G is o-2 transitive on <S, g > and has no element of bounded support
other than the identity, G is called pathological.

If G is o-2 transitive on <S, jS >, then the set of elements of G of bounded
support is an /-ideal of G. Consequently,

Theorem (Holland (5)). If G is o-2 transitive on <S, ^ >, then G is l-simple
if all its elements are of bounded support. If, in addition, G contains an element—
other than the identity—of bounded support, the converse is true.

We must now examine pathological o-2 transitive /-groups. Examples of
such groups are sparse in the literature; essentially, the only ones known can
be found in (4) and (8) and they are /-simple. This led to the conjecture that
every pathological o-2 transitive /-group is /-simple (see (6) and (8)). Were it
true, it would yield a complete classification of those /-simple /-groups which
have a transitive o-primitive representation. Actually, it is false. To prove this,
we will provide new pathological o-2 transitive /-groups and, in particular, will
prove a theorem concerning free /-groups (free in the category of /-groups) on
an infinite set of generators.

For a further discussion of ordered permutation groups, (6) is an excellent
expository article.

2. Ultraproducts of pathological o-l transitive /-groups

Suppose that for each i e /, Gt is a pathological o-2 transitive /-subgroup of
Aut «5' i , ^ j». Let D be an ultrafilter on /. Then G = nDG; is a pathological
o-2 transitive /-subgroup of Aut « 5 , ^ » where S = TlDSi and sD ^ tD if and
only if {i e / : s(i) ^ t t(i)} e D (see (1) and (2) for further background on ultra-
products). This fact is easily verified.
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Let / = co, the first infinite ordinal and let D be any non-principal ultra-
filter on /. For each i e /, let Gt = H = {he Aut «R, ^ » : h/S = f£h for
some positive integer «} where f0 e Aut «R, ^ » is defined by: /0(r) = r+l
for all r e R. Then H is an /-simple pathological o-transitive /-group (4).
Observe thatfo+1 rg h-1foh for any he Hand any positive integer n (for if n
is a positive integer and heH are such that / J + 1 <; h-1fSh, then for all

reR, /S^flTV)) ^ fc-VoWV)) = T
i.e.

There exists a positive integer m such that /J / i = hfg. Replacing r by 0, n,
In, ..., mn in (*) we obtain

Aut «IIDR, ^ » which is not /-simple since the /-ideal generated by
a contradiction). Then G = ILjG,- is a pathological o-2 transitive /-subgroup of

{kD: k(i) = k(j) for all i,jel}
is proper (cf. the result for groups, see (2)). It can also be shown that G is not
" periodic " in any sense even though each Ht is (this is a more general notion
of periodic than that given in the introduction). This example indicates that
the conjectures of (8) are false. Moreover, " /-simple " cannot be expressed
in first-order logic (for if a first order sentence is true in 2If for each i e I, then
it is true in HD'Hi for any ultrafilter D on I).

3. Free /-groups

Let K be an infinite cardinal. FK will denote the free /-group generated by
{xa: O.<K] where xx ^ xp if a, / ?<K and a # /?. Let Z be the set of integers
and <Q, ^> the set of rationals under the usual ordering.

Lemma. Fa is l-isomorphic to an l-subgroup of Aut « Q , ^ » which has no
element {other than the identity) of bounded support.

Proof. Let {/„: n e Z} be any set of bounded non-empty open intervals in
<Q ^> such that if m, n e Z and m<n, then Im<In (if qelm and r e /„, then
q<r) and if q e Q, there exists p e Z such that p>0 and I_p<q<Ip. Since the
first order theory of dense total ordering without endpoints is co-categorical,
see (1), </„, ^ > is isomorphic to <Q, ^ > for each neZ. The proof of Theorem 2
of (3) shows that Fa can be /-embedded in Aut«Q, g » and so in

Aut« / n , ^ »

for each n e Z. Let xm< „ be the image of xm in Aut «/„, ^ » for m, neZ and
m ^ 0. Define fm e Aut « Q , ^ » as follows: Let q e Q; if q e In for some
« e Z, let /„,(«?) = jcm> „(?) and if ? e (Jtf,: » e Z], let /Bfo) = q. Let JP be the
subgroup of Aut « Q , ^ » generated by {/m: me a}. The map <j>: Fa-*W
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denned by cj>(xm) = fm is an /-isomorphism of Fm on to W. Indeed, by con-
struction, the only element of W of bounded support is the identity so the lemma
is proved.

Theorem. Fa is l-isomorphic to a pathological o-2 transitive l-subgroup of
Aut«Q, £ » .

Proof. Let A = {(q, r): q,reQ and q<r} and B = AxA. The cardinality
of B is co and so there exists a one-to-one function ip of co onto B. Denote
\j/(m) by (am, bm, cm, dm). Define a sequence of bounded open intervals Xm

in <Q, ^ > such that Xo <= Xt s . . . sX m £. . . and [am, fem], [cm, </m] £ Xm for each
meco. For each meco, (Xm, gj> is isomorphic to <Q, ^> and so there exists
km e Aut «A-m, g » such that kjaj = cm and kjbj = rfm. Let {/„: ne Z}
be as in the the proof of the lemma subject to the extra condition that

for each me co. Let 3cm „ be defined as in the proof of the lemma and define
fm e Aut « Q , ^ » for m e co as follows: let q e Q; if g e Xm, let fm(q) = fcm(g);
if q £ /p for some / i eZ such that | p \ > m, let fm(q) = xm> „(?); if q t Xm\j{Ip:
| p \>m}, let fm(q) = q. Let W be the /-subgroup of Aut «Q, g » generated
by {/m: w e co}. By the coding of B, W is an o-2 transitive /-subgroup of
Aut «Q, g » which is pathological by the construction. The map <j>: Fa-*W
defined by (t>(xm) = fm is an /-isomorphism of Fa on to W.

Corollary 1. There exist pathological 0-2 transitive l-groups which are
neither l-simple nor periodic in any sense.

Note that the proof of the lemma would apply to any free /-group on a finite
number of generators in place ofFa. If K is an infinite cardinal such that when-
ever there exists an order-isomorphism between two subsets of .S of cardinality
less than K, the order-isomorphism can be extended to some element of G, then G
is said to be O-K transitive on (S, ^>. Any /-group which is o-2 transitive on
<5, g> is o-co transitive on (S, g>. However, the ideas of the proof of the
theorem could have been used to show directly that Fa is /-isomorphic to a
pathological o-co transitive /-subgroup of Aut «Q, g » .

Let a be an ordinal. <5, ^> is said to be an a-set if and only if S has
cardinality Ka and whenever X, Y^S are such that | XuY |<Ka and X< Y,
there exists se S such that Z < { 4 < Y. <Q, ^> is a O-set. For any a, there
exists at most one a-set (to within isomorphism). Moreover, the existence of
a-sets for all a such that Ka is regular is equivalent to the generalised continuum
hypothesis (G.C.H.). It was essentially shown in (9) that if <5, ^ > is an a-set,
it is o-Xa transitive; alternatively, (S, < > is saturated and so homogeneous—
that is, 0-K3 transitive—(see (1)). Therefore the proof of the theorem yields:

Corollary 2 (G.C.H.). For any ordinal a, FWix is l-isomorphic to a pathological
o-Ka transitive l-subgroup of Aut «Sa, ^ » where <Sa, ^> is an a-set.
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The following result can be found in (5):
Let G be a transitive /-subgroup of Aut « S , ^ » and e<g e G (e is the iden-

tity function), g has bounded support if and only if the sentence

e) (1)

holds in G. If G has no positive element (other than the identity) of bounded
support, then G has no element (other than the identity) of bounded support.
Consequently, the o-2 transitive /-group G is pathological if and only if the
sentence

Vg(g > evV/i3/c(/c ^ e&g Akrlhrxghk # e)) (2)

holds in G. This is a Ti.% sentence and so is preserved under 1-sandwiches
(see (1)). It is not preserved under /-homomorphic images since it is satisfied in
all free /-groups (by the Lemma and Corollary 2), every /-group is an /-homo-
morphic image of a free /-group and there exist non-pathological o-2 transitive
/-groups. Hence (2) is not equivalent to a positive sentence (see (1)).

In (3, Theorem 3) it was shown that an /-group G is /-isomorphic to a transi-
tive /-subgroup of some Aut « £ , ^ » if and only if there exists a prime convex
/-subgroup C of G such that C contains no /-ideal of G other than {e}. (C is
prime if/, g e G and / A # = e imply fe C or g e C.) Such a subgroup C is
called a representing subgroup of G. G is /-isomorphic to an o-2 transitive
/-subgroup of some Aut « S , ^ » if and only if there exists a representing
subgroup C of G such that if e g ft e G\C (i = 1, 2), there exists g e C such that
Cf\9 = Cf2. Such a representing subgroup will be called a strong representing
subgroup. Thus:

Corollary 3. Let F be a free l-subgroup and K an l-ideal of F. F/K is l-iso-
morphic to a pathological o-2 transitive l-subgroup of some Aut ({S, ^ » if and
only if there exists a strong representing subgroup C of F such that C^K, C
contains no l-ideal of F which properly contains K and the sentence (2) holds in
FjK.

This yields an algebraic method of determining, inside free /-groups, which
quotients have pathological o-2 transitive /-isomorphic images. Unfortunately,
this result is very limited since it leaves unanswered many natural questions;
e.g. do there exist pathological o-2 transitive /-groups all of whose elements
(other than the identity) have a finite (bounded) set of fixed points ? However,
a thorough examination of pathological o-2 transitive /-groups seems necessary
so as to make possible a characterisation of the /-simple /-groups which have an
o-primitive transitive representation.
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