I-SIMPLE LATTICE-ORDERED GROUPS

by A. M. W. GLASS† (Received 9th May 1973)

1. Introduction

Let G be a lattice-ordered group (*l*-group) and H a subgroup of G. H is said to be an *l*-subgroup of G if it is a sublattice of G. H is said to be convex if $h_1, h_2 \in H$ and $h_1 \leq g \leq h_2$ imply $g \in H$. The normal convex *l*-subgroups (*l*-ideals) of an *l*-group play the same role in the study of lattice-ordered groups as do normal subgroups in the investigation of groups. For this reason, an *l*-group is said to be *l*-simple if it has no non-trivial *l*-ideals. As in group theory, a central task in the examination of lattice-ordered groups is to characterise those *l*-groups which are *l*-simple.

Let $\langle S, \leq \rangle$ be a totally ordered set. Aut $(\langle S, \leq \rangle)$ is an *l*-group under the ordering: $f \leq g$ if and only if $f(s) \leq g(s)$ for all $s \in S$. Also

 $(g \lor h)(s) = \max \{g(s), h(s)\} \text{ and } (g \land h)(s) = \min \{g(s), h(s)\}.$

Theorem (Holland (3) Theorem 2). If G is an l-group, there exists a totally ordered set $\langle S, \leq \rangle$ such that G can be l-embedded (a group embedding which preserves the lattice operation) in Aut ($\langle S, \leq \rangle$).

This theorem is the analogue of the theorem of Cayley for groups and, in this case, we will say that G is represented on $\langle S, \leq \rangle$.

For the rest of this paper $\langle S, \leq \rangle$ will denote a totally ordered set and Aut $(\langle S, \leq \rangle)$ will be the *l*-group described above.

Let G be an *l*-subgroup of Aut $(\langle S, \leq \rangle)$. G is said to be *transitive on* S if, for any s, $t \in S$, there exists $g \in G$ such that g(s) = t.

Theorem ((3), Corollary 2). Every *l*-simple *l*-group can be represented transitively on some set $\langle S, \leq \rangle$.

An equivalence relation \mathscr{E} on $\langle S, \leq \rangle$ is called a *convex G-congruence on* $\langle S, \leq \rangle$ if each equivalence class of \mathscr{E} is convex and, for all $s, t \in S, g(s) \mathscr{E}g(t)$ for all $g \in G$ whenever $s\mathscr{E}t$. If there are no non-trivial convex G-congruences on $\langle S, \leq \rangle$, then G is said to be *o-primitive* on $\langle S, \leq \rangle$.

In attempting to classify the *l*-simple *l*-groups, the first step is to characterise those that have a transitive *o*-primitive representation.

Let G be an l-subgroup of Aut ($\langle S, \leq \rangle$). G is o-2 transitive on $\langle S, \leq \rangle$ if,

[†] This research was supported by a grant from the Bowling Green State University Faculty Research Committee. The author is also grateful to W. Charles Holland for some helpful discussions.

for all s, t, u, $v \in S$ such that s < t and u < v, there exists $g \in G$ such that g(s) = uand g(t) = v. Let $\langle \overline{S}, \leq \rangle$ be the Dedekind closure of $\langle S, \leq \rangle$. If there exists a positive $f_0 \in Aut(\langle \overline{S}, \leq \rangle)$ such that f_0 generates the centraliser of G in

Aut $(\langle \bar{S}, \leq \rangle)$ and $\{f_0^n(s_0): n \in \mathbb{Z}\}$ is unbounded (above and below) in $\langle \bar{S}, \leq \rangle$ for some $s_0 \in S$, then G is said to be *periodic* and f_0 is called the *period of G*.

Theorem (Holland (4) and McCleary (7)). Let G be a transitive o-primitive *l*-subgroup of Aut ($\langle S, \leq \rangle$). Then either:

(i) G is a subgroup of the real numbers ($\langle \mathbf{R}, \leq \rangle$) in its regular representation;

or (ii) G is periodic;

or (iii) G is o-2 transitive on $\langle S, \leq \rangle$.

If G falls into either of the first two categories, it is *l*-simple (see (7)). Let $g \in G$. The support of g is the set of points of S moved by g; i.e.

$$\operatorname{supp}(g) = \{s \in S \colon g(s) \neq s\}.$$

If there exist x, $y \in S$ such that supp $(g) \subseteq [x, y]$, then g is said to have bounded support. If G is o-2 transitive on $\langle S, \leq \rangle$ and has no element of bounded support other than the identity, G is called *pathological*.

If G is o-2 transitive on (S, \leq) , then the set of elements of G of bounded support is an l-ideal of G. Consequently,

Theorem (Holland (5)). If G is o-2 transitive on $\langle S, \leq \rangle$, then G is l-simple if all its elements are of bounded support. If, in addition, G contains an element—other than the identity—of bounded support, the converse is true.

We must now examine pathological o-2 transitive *l*-groups. Examples of such groups are sparse in the literature; essentially, the only ones known can be found in (4) and (8) and they are *l*-simple. This led to the conjecture that every pathological o-2 transitive *l*-group is *l*-simple (see (6) and (8)). Were it true, it would yield a complete classification of those *l*-simple *l*-groups which have a transitive *o*-primitive representation. Actually, it is false. To prove this, we will provide new pathological o-2 transitive *l*-groups and, in particular, will prove a theorem concerning free *l*-groups (free in the category of *l*-groups) on an infinite set of generators.

For a further discussion of ordered permutation groups, (6) is an excellent expository article.

2. Ultraproducts of pathological o-2 transitive l-groups

Suppose that for each $i \in I$, G_i is a pathological o-2 transitive *l*-subgroup of Aut $(\langle S_i, \leq i \rangle)$. Let *D* be an ultrafilter on *I*. Then $G = \prod_D G_i$ is a pathological o-2 transitive *l*-subgroup of Aut $(\langle S, \leq \rangle)$ where $S = \prod_D S_i$ and $s_D \leq t_D$ if and only if $\{i \in I: s(i) \leq i t(i)\} \in D$ (see (1) and (2) for further background on ultraproducts). This fact is easily verified.

Let $I = \omega$, the first infinite ordinal and let D be any non-principal ultrafilter on I. For each $i \in I$, let $G_i = H = \{h \in \operatorname{Aut}(\langle \mathbf{R}, \leq \rangle): hf_0^n = f_0^n h$ for some positive integer $n\}$ where $f_0 \in \operatorname{Aut}(\langle \mathbf{R}, \leq \rangle)$ is defined by: $f_0(r) = r+1$ for all $r \in \mathbf{R}$. Then H is an *l*-simple pathological *o*-transitive *l*-group (4). Observe that $f_0^{n+1} \leq h^{-1} f_0^n h$ for any $h \in H$ and any positive integer n (for if nis a positive integer and $h \in H$ are such that $f_0^{n+1} \leq h^{-1} f_0^n h$, then for all

$$r \in \mathbf{R}, \qquad f_0^{n+1}(h^{-1}(r)) \le h^{-1} f_0^n h(h^{-1}(r)) = h^{-1}(r+n);$$

i.e.
$$h^{-1}(r) + n + 1 \le h^{-1}(r+n). \qquad (*)$$

There exists a positive integer m such that $f_0^m h = h f_0^m$. Replacing r by 0, n, 2n, ..., mn in (*) we obtain

$$h^{-1}(0) + m(n+1) \leq h^{-1}(mn) = h^{-1}(0+mn) = h^{-1}(0) + mn,$$

Aut $(\langle \Pi_D \mathbf{R}, \leq \rangle)$ which is not *l*-simple since the *l*-ideal generated by a contradiction). Then $G = \Pi_D G_i$ is a pathological *o*-2 transitive *l*-subgroup of

$$\{k_p: k(i) = k(j) \text{ for all } i, j \in I\}$$

is proper (cf. the result for groups, see (2)). It can also be shown that G is not "periodic" in any sense even though each H_i is (this is a more general notion of periodic than that given in the introduction). This example indicates that the conjectures of (8) are false. Moreover, "*l*-simple" cannot be expressed in first-order logic (for if a first order sentence is true in \mathfrak{A}_i for each $i \in I$, then it is true in $\Pi_D \mathfrak{A}_i$ for any ultrafilter D on I).

3. Free *l*-groups

Let κ be an infinite cardinal. F_{κ} will denote the free *l*-group generated by $\{x_{\alpha}: \alpha < \kappa\}$ where $x_{\alpha} \neq x_{\beta}$ if α , $\beta < \kappa$ and $\alpha \neq \beta$. Let **Z** be the set of integers and $\langle \mathbf{Q}, \leq \rangle$ the set of rationals under the usual ordering.

Lemma. F_{ω} is l-isomorphic to an l-subgroup of Aut ($\langle \mathbf{Q}, \leq \rangle$) which has no element (other than the identity) of bounded support.

Proof. Let $\{I_n: n \in \mathbb{Z}\}$ be any set of bounded non-empty open intervals in $\langle \mathbb{Q} \leq \rangle$ such that if $m, n \in \mathbb{Z}$ and m < n, then $I_m < I_n$ (if $q \in I_m$ and $r \in I_n$, then q < r) and if $q \in \mathbb{Q}$, there exists $p \in \mathbb{Z}$ such that p > 0 and $I_{-p} < q < I_p$. Since the first order theory of dense total ordering without endpoints is ω -categorical, see (1), $\langle I_n, \leq \rangle$ is isomorphic to $\langle \mathbb{Q}, \leq \rangle$ for each $n \in \mathbb{Z}$. The proof of Theorem 2 of (3) shows that F_{ω} can be *l*-embedded in Aut($\langle \mathbb{Q}, \leq \rangle$) and so in

Aut
$$(\langle I_n, \leq \rangle)$$

for each $n \in \mathbb{Z}$. Let $\bar{x}_{m,n}$ be the image of x_m in Aut $(\langle I_n, \leq \rangle)$ for $m, n \in \mathbb{Z}$ and $m \geq 0$. Define $f_m \in Aut (\langle \mathbb{Q}, \leq \rangle)$ as follows: Let $q \in \mathbb{Q}$; if $q \in I_n$ for some $n \in \mathbb{Z}$, let $f_m(q) = \bar{x}_{m,n}(q)$ and if $q \in \bigcup \{I_n: n \in \mathbb{Z}\}$, let $f_m(q) = q$. Let W be the subgroup of Aut $(\langle \mathbb{Q}, \leq \rangle)$ generated by $\{f_m: m \in \omega\}$. The map $\phi: F_{\omega} \to W$

defined by $\phi(x_m) = f_m$ is an *l*-isomorphism of F_{ω} on to W. Indeed, by construction, the only element of W of bounded support is the identity so the lemma is proved.

Theorem. F_{ω} is *l*-isomorphic to a pathological o-2 transitive *l*-subgroup of Aut ($\langle \mathbf{Q}, \leq \rangle$).

Proof. Let $A = \{(q, r): q, r \in \mathbf{Q} \text{ and } q < r\}$ and $B = A \times A$. The cardinality of B is ω and so there exists a one-to-one function ψ of ω onto B. Denote $\psi(m)$ by (a_m, b_m, c_m, d_m) . Define a sequence of bounded open intervals X_m in $\langle \mathbf{Q}, \leq \rangle$ such that $X_0 \subseteq X_1 \subseteq \ldots \subseteq X_m \subseteq \ldots$ and $[a_m, b_m], [c_m, d_m] \subseteq X_m$ for each $m \in \omega$. For each $m \in \omega, \langle X_m, \leq \rangle$ is isomorphic to $\langle \mathbf{Q}, \leq \rangle$ and so there exists $k_m \in \text{Aut}(\langle X_m, \leq \rangle)$ such that $k_m(a_m) = c_m$ and $k_m(b_m) = d_m$. Let $\{I_n: n \in \mathbf{Z}\}$ be as in the the proof of the lemma subject to the extra condition that

$$I_{-(m+1)} < X_m < I_{m+1}$$

for each $m \in \omega$. Let \bar{x}_m , be defined as in the proof of the lemma and define $f_m \in \operatorname{Aut}(\langle \mathbf{Q}, \leq \rangle)$ for $m \in \omega$ as follows: let $q \in \mathbf{Q}$; if $q \in X_m$, let $f_m(q) = k_m(q)$; if $q \notin I_p$ for some $p \in \mathbf{Z}$ such that |p| > m, let $f_m(q) = \bar{x}_m$, n(q); if $q \notin X_m \bigcup \{I_p: |p| > m\}$, let $f_m(q) = q$. Let W be the *l*-subgroup of Aut ($\langle \mathbf{Q}, \leq \rangle$) generated by $\{f_m: m \in \omega\}$. By the coding of B, W is an o-2 transitive *l*-subgroup of Aut ($\langle \mathbf{Q}, \leq \rangle$) which is pathological by the construction. The map $\phi: F_{\omega} \to W$ defined by $\phi(x_m) = f_m$ is an *l*-isomorphism of F_{ω} on to W.

Corollary 1. There exist pathological o-2 transitive l-groups which are neither l-simple nor periodic in any sense.

Note that the proof of the lemma would apply to any free *l*-group on a finite number of generators in place of F_{ω} . If κ is an infinite cardinal such that whenever there exists an order-isomorphism between two subsets of S of cardinality less than κ , the order-isomorphism can be extended to some element of G, then G is said to be $o -\kappa$ transitive on $\langle S, \leq \rangle$. Any *l*-group which is o-2 transitive on $\langle S, \leq \rangle$. However, the ideas of the proof of the theorem could have been used to show directly that F_{ω} is *l*-isomorphic to a pathological $o -\omega$ transitive *l*-subgroup of Aut ($\langle \mathbf{Q}, \leq \rangle$).

Let α be an ordinal. $\langle S, \leq \rangle$ is said to be an α -set if and only if S has cardinality \aleph_{α} and whenever X, $Y \subseteq S$ are such that $|X \cup Y| < \aleph_{\alpha}$ and X < Y, there exists $s \in S$ such that $X < \{s\} < Y$. $\langle \mathbf{Q}, \leq \rangle$ is a 0-set. For any α , there exists at most one α -set (to within isomorphism). Moreover, the existence of α -sets for all α such that \aleph_{α} is regular is equivalent to the generalised continuum hypothesis (G.C.H.). It was essentially shown in (9) that if $\langle S, \leq \rangle$ is an α -set, it is $o -\aleph_{\alpha}$ transitive; alternatively, $\langle S, \leq \rangle$ is saturated and so homogeneous that is, $o -\aleph_{\alpha}$ transitive—(see (1)). Therefore the proof of the theorem yields:

Corollary 2 (G.C.H.). For any ordinal α , $F_{\omega_{\alpha}}$ is l-isomorphic to a pathological $o-\aleph_{\alpha}$ transitive l-subgroup of Aut $(\langle S_{\alpha}, \leq \rangle)$ where $\langle S_{\alpha}, \leq \rangle$ is an α -set.

136

I-SIMPLE LATTICE-ORDERED GROUPS

The following result can be found in (5):

Let G be a transitive *l*-subgroup of Aut ((S, \leq)) and $e < g \in G$ (e is the identity function). g has bounded support if and only if the sentence

$$\exists h \forall k (k \ge e \Rightarrow g \land k^{-1} h^{-1} g h k = e) \tag{1}$$

holds in G. If G has no positive element (other than the identity) of bounded support, then G has no element (other than the identity) of bounded support. Consequently, the o-2 transitive *l*-group G is pathological if and only if the sentence

$$\forall g(g \geqslant e \lor \forall h \exists k(k \ge e \& g \land k^{-1}h^{-1}ghk \neq e)) \tag{2}$$

holds in G. This is a Π_2^0 sentence and so is preserved under 1-sandwiches (see (1)). It is not preserved under *l*-homomorphic images since it is satisfied in all free *l*-groups (by the Lemma and Corollary 2), every *l*-group is an *l*-homomorphic image of a free *l*-group and there exist non-pathological o-2 transitive *l*-groups. Hence (2) is not equivalent to a positive sentence (see (1)).

In (3, Theorem 3) it was shown that an *l*-group G is *l*-isomorphic to a transitive *l*-subgroup of some Aut ($\langle S, \leq \rangle$) if and only if there exists a prime convex *l*-subgroup C of G such that C contains no *l*-ideal of G other than $\{e\}$. (C is prime if f, $g \in G$ and $f \land g = e$ imply $f \in C$ or $g \in C$.) Such a subgroup C is called a representing subgroup of G. G is *l*-isomorphic to an o-2 transitive *l*-subgroup of some Aut ($\langle S, \leq \rangle$) if and only if there exists a representing subgroup C of G such that if $e \leq f_i \in G \setminus C$ (i = 1, 2), there exists $g \in C$ such that $Cf_1g = Cf_2$. Such a representing subgroup will be called a strong representing subgroup. Thus:

Corollary 3. Let F be a free l-subgroup and K an l-ideal of F. F/K is l-isomorphic to a pathological o-2 transitive l-subgroup of some Aut $(\langle S, \leq \rangle)$ if and only if there exists a strong representing subgroup C of F such that $C \supseteq K$, C contains no l-ideal of F which properly contains K and the sentence (2) holds in F/K.

This yields an algebraic method of determining, inside free *l*-groups, which quotients have pathological o-2 transitive *l*-isomorphic images. Unfortunately, this result is very limited since it leaves unanswered many natural questions; e.g. do there exist pathological o-2 transitive *l*-groups all of whose elements (other than the identity) have a finite (bounded) set of fixed points? However, a thorough examination of pathological o-2 transitive *l*-groups seems necessary so as to make possible a characterisation of the *l*-simple *l*-groups which have an o-primitive transitive representation.

REFERENCES

(1) C. C. CHANG and H. J. KEISLER, Model Theory (North Holland, 1973).

(2) T. E. FRAYNE, A. C. MOREL and D. S. SCOTT, Reduced direct products, *Fund. Math.* 51 (1962), 195-228.

E.M.S.—19/2-K

(3) W. C. HOLLAND, The lattice-ordered groups of automorphisms of an ordered set, *Michigan Math. J.* 10 (1963), 399-408.

(4) W. C. HOLLAND, Transitive lattice-ordered permutation groups, *Math. Z.* 87 (1965), 420-433.

(5) W. C. Holland, A class of simple lattice-ordered groups, Proc. Amer. Math. Soc. 16 (1965), 326-329.

(6) W. C. HOLLAND, Ordered permutation groups, *Permutations* (actes du colloque Paris, juillet 1972), (Gauthier-Villars, 1974).

(7) S. H. MCCLEARY, o-primitive ordered permutation groups, Pacific J. Math. 40 (1972), 349-372.

(8) S. H. MCCLEARY, o-2 transitive ordered permutation groups, *Pacific J. Math.* 49 (1973), 425-430.

(9) S. H. McCLEARY, The lattice-ordered group of automorphisms of an α -set *Pacific J. Math.* **49** (1973), 417-424.

BOWLING GREEN STATE UNIVERSITY BOWLING GREEN, OHIO 43403 U.S.A.