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We propose a family of weighted statistics based on the CUSUM process of the
WLS residuals for the online detection of changepoints in a Random Coefficient
Autoregressive model, using both the standard CUSUM and the Page-CUSUM
process. We derive the asymptotics under the null of no changepoint for all possible
weighing schemes, including the case of the standardized CUSUM, for which we
derive a Darling–Erdös-type limit theorem; our results guarantee the procedure-wise
size control under both an open-ended and a closed-ended monitoring. In addition to
considering the standard RCA model with no covariates, we also extend our results to
the case of exogenous regressors. Our results can be applied irrespective of (and with
no prior knowledge required as to) whether the observations are stationary or not,
and irrespective of whether they change into a stationary or nonstationary regime.
Hence, our methodology is particularly suited to detect the onset, or the collapse,
of a bubble or an epidemic. Our simulations show that our procedures, especially
when standardising the CUSUM process, can ensure very good size control and
short detection delays. We complement our theory by studying the online detection
of breaks in epidemiological and housing prices series.

1. INTRODUCTION

Economic history is full of events where stationary observations suddenly become
explosively increasing, or—vice versa—where explosive trends crash. A classical
example are financial bubbles, where periods of “tame” fluctuations are followed
by exuberant growth, in turn then followed by a collapse which is typically
modeled as a stationary regime (see e.g., Harvey, Leybourne, and Sollis, 2017
and Phillips and Shi, 2018). Historical examples include the “Tulipmania” in
the Netherlands in the 1630s and the “South Sea” bubble of 1720. More recent
instances include the Japan’s real estate and stock market bubble of the 1980s,
which after the collapse turned into a negative period, the so called “Lost Decade”;
and, in the US, the “Dotcom” bubble of the 1990s and the housing bubble between
1996 and 2006. Similar phenomena, with observations undergoing a change in
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persistence or even more radical changes in their nature (from stationary to
explosive and vice versa), are also encountered in applied sciences. For example,
in epidemiology, the onset of a pandemic is characterized by a sudden, explosive
growth in the number of cases, followed by a return to a stationary regime when
the pandemic subsides. Hence the importance of developing tools allowing to test
for changes in persistence, or a switch between regimes.

In particular, a research area where this issue has been paid particular attention is
financial econometrics, where several methodologies have been developed to test
(ex-ante or ex-post) for the onset or collapse of a financial bubble. In the interest of
a concise discussion, we refer the reader to the seminal articles on ex-post detection
by Phillips, Wu, and Yu (2011), and Phillips, Shi, and Yu (2015a), and also to
Skrobotov (2023) for a review. In addition, several contributions deal with the
real-time detection of bubble episodes see, inter alia, Homm and Breitung (2012),
Phillips, Shi, and Yu (2015b), and a recent contribution by Whitehouse, Harvey,
and Leybourne (2023); also, we refer to a recent and comprehensive review on
the issue of online changepoint detection by Aue and Kirch (2024). A common
trait to this literature is that it relies on an AutoRegressive (AR) framework as
the workhorse model. Using an AR specification has several advantages: it is a
parsimonious and well-studied set-up, and it naturally lends itself to modeling
both stationary and nonstationary regimes. Phillips and Yu (2011) show that an
AR model with explosiveness is an adequate representation for bubble behavior
under very general assumptions. Moreover, an AR specification lends itself to
constructing tests for bubble behavior using the Dickey–Fuller test and its variants-
e.g., the Augmented DF test (ADF; see Diba and Grossman, 1988), the sup-ADF
test (Phillips et al., 2011; Phillips and Yu, 2011), and the generalized sup-ADF
test (Phillips et al., 2015a; Phillips et al., 2015b). From a technical viewpoint,
however, using an AR model is fraught with difficulties when monitoring for
changes from an explosive to a stationary regime, although several promising
solutions have been proposed such as the reverse regression approach by Phillips
and Shi (2018). In addition to the ability of detecting changes, ensuring a timely
detection is important. To the best of our knowledge, no optimality results exist;
indeed, typical procedures are based on unweighted CUSUM (or related) statistics,
which are not designed to ensure optimal detection timings (see e.g., Aue and
Horváth, 2004). A recent contribution by Otto and Breitung (2023) considers a
(backward) CUSUM-type test, which is similar, in spirit, to the so-called “Page-
CUSUM” approach (see also below for a further description of this approach),
showing that this methodology has excellent power as far as ex-post detection is
concerned; however, even this contribution is not designed for possibly nonsta-
tionary data, and its performance in terms of timely online detection is yet to be
explored.

Main contributions of this article
We address the general issue of online, real-time detection of changes in

persistence and also between regimes (i.e., from stationarity to nonstationarity and

https://doi.org/10.1017/S0266466625000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625000052


MONITORING RCA MODELS 3

vice versa) by using a Random Coefficient Autoregressive (RCA) model, viz.

yi = (
βi + εi,1

)
yi−1 + εi,2, (1.1)

where y0 denotes an initial value. The RCA model was firstly studied by Anděl
(1976) and Nicholls and Quinn (2012). It is nonlinear in nature, due to the fact that
the “marginal effect” of yi−1 onto yi is allowed to change over time, and also due to
the well-documented fact that “linear techniques”, such as e.g., first-differencing
to obtain stationarity, in general cannot work (Leybourne, McCabe, and Tremayne,
1996); hence, it is one of the possible specifications belonging in the wider class
of nonlinear models for time series (see Fan and Yao, 2008), which have been
proposed “as a reaction against the supremacy of linear ones,a situation inherited
from strong, though often implicit, Gaussian assumptions” (Akharif and Hallin,
2003). The RCA model is particularly well-suited to modeling time series with
potentially explosive behavior; for example, in the seminal paper by Diba and
Grossman (1988), a rational bubble is modeled as having RCA dynamics (see
their equation (17)). Model (1.1) also nests, as a special case corresponding to
having βi = 1, the so-called Stochastic Unit Root model (STUR; see Granger
and Swanson, 1997), and it also allows for the possibility of (conditional) het-
eroskedasticity in yi; Tsay (1987) shows that the widely popular ARCH model
by Engle (1982) can be cast into the RCA setup, which therefore can be viewed
as a second-order equivalent; and Ling (2004) studies the conditions under which
the RCA model is equivalent in distribution to the Double AutoRegressive (DAR)
model1. Two major advantages of the RCA model are that: (a) it is possible to
test whether a nonlinear specification like the one in (1.1) is adequate as opposed
to a linear, AutoRegressive specification (e.g., using the test by Akharif and
Hallin, 2003, or Horváth and Trapani, 2019); and, (b) it is possible to construct
estimators of β0 that are always asymptotically normal, irrespective of whether yi

is stationary or nonstationary (Aue and Horváth, 2011). Although the literature has
developed several contributions on ex-post changepoint detection using an RCA
model (e.g. Horváth and Trapani, 2023a), to the best of our knowledge there are
still significant limitations in the context of online detection,e.g., Na, Lee, and
Lee (2010), Li, Tian, and Qi (2015) and Li et al. (2015) all consider sequential
changepoint detection using unweighted CUSUM-based statistics, but only under
the maintained assumption of stationarity, which precludes the ability to detect
changes from stationary to exponential behavior, and vice versa.

In this article, we fill the gaps discussed above, by proposing a family of statistics
based on the Weighted Least Squares (WLS) estimator, and in particular on the
weighted CUSUM process of the WLS residuals, designed to ensure a faster detec-
tion than unweighted statistics. We study the standard CUSUM process, and the
so-called “Page-CUSUM” ( Fremdt, 2015); and both “open-ended” and “closed-
ended” procedures, where sequential monitoring goes on indefinitely, or stops at
a pre-specified point in time, respectively. We make at least five contributions

1See also our discussion in Section 7 below for a more detailed comparison between the two models.
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to the current literature on online changepoint detection. First, we derive the
limiting distribution of our statistics under the closed-ended case; typically, in the
literature, the critical values obtained under the open-ended case are employed
even for the closed-ended case, as a (conservative) choice, ultimately leading to
loss of power. Second, we study the case of a closed-ended procedure with a
“very short” monitoring horizon, adapting the boundary function for this case, and
deriving the corresponding limiting distribution; this case has not been considered
in the literature before, but it is of practical relevance because the researcher
may prefer to carry out monitoring for a short time, and then—in the absence of
changepoints—restart the procedure afresh. Third, in the case of the standardized
CUSUM,2 we propose an approximation to compute critical values which offers
a superior alternative to asymptotic critical values, whose accuracy is marred by
the notoriously weak convergence to the Extreme Value Distribution; simulations
show that our approximation works extremely well even in small samples, and for
all cases considered, offering size control and short detection delays. Fourth, we
derive the limiting distribution of the weighted Page-CUSUM statistics, showing
also that such a limit is a well-defined random variable. Fifth, as well as studying
the basic RCA model, we also develop the full-blown theory (irrespective of
whether yi is stationary or not) for the case where there are covariates in (1.1);
to the best of our knowledge, this is the first contribution to deal with this case.
As a final remark, we would like to add that a major advantage of the RCA set-
up is that our statistics can be employed under both stationarity and explosiveness
with no modifications required; indeed, no prior knowledge on the stationarity
of the observations is required. Hence, our methodology can be applied to detect
changes in the persistence of a stationary series, or changes from stationarity to a
non-stationary regime, or vice versa from a non-stationary regime to a stationary
one. This has important practical consequences, allowing for e.g., faster responses
from public health authorities in the presence of a pandemic, or from policy makers
in the presence of inflationary shocks, or a more accurate date stamping of bubble
onsets and collapses. In conclusion, we point out that our article is part of a wider
research program by the authors on inference in the context of the RCA model, and
we would like to comment on its relation to previous contributions. In particular,
this contribution is naturally related to the papers by Horváth and Trapani (2023a),
Horváth and Trapani (2023b) and Horváth, Trapani, and VanderDoes (2024),
where ex-post tests (based on the maximally selected CUSUM process, the Lp-
norms of the CUSUM process, and the maximally selected Likelihood Ratio test,
respectively) are proposed; in turn, these are bound to be helpful when verifying the
so-called “non-contamination assumption”, which stipulates that no changepoint
occurs during the training period. Horváth and Trapani (2019) propose a test for
the null hypothesis that, in (1.1), Var

(
εi,1

) = 0, i.e. for the null that an RCA
specification is not appropriate, and an AR model is preferable; in turn, the theory

2We define “standardized CUSUM” the CUSUM process weighted using weights proportional to its standard
deviation, as opposed to the “weighted CUSUM” which uses lighter weights, see also below for a formal definition.
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developed in this article requires Var
(
εi,1

)
> 0, at least in the nonstationary case,

or the asymptotic theory developed hereafter is no longer valid. Hence, the test
by Horváth and Trapani (2019) should be implemented at the outset, in order
to verify that an RCA model is indeed adequate for the data. Finally, we would
like to bring the reader’s attention to Horváth and Trapani (2016), where several
(anti)concentration inequalities, which are the building block of our asymptotics,
are derived.

The remainder of the article is organized as follows. We introduce our main
model, and the test statistics, in Section 2. The asymptotics under the null and
the alternative is reported in Section 3. We consider the extension of the RCA
model to the case of exogenous regressors in Section 4. Monte Carlo evidence
is in Section 5; Section 6 contains two empirical applications, to Covid-19
hospitalization data and house prices. Section 7 concludes. In the Supplementary
Material, we report further Monte Carlo evidence (to complement Section 5),
further empirical evidence (to complement Section 6), the extension of our theory
to the case of deterministics, and all technical lemmas and proofs.

NOTATION. Henceforth, we use: ‘→’ for the ordinary limit; ‘
P→’ for conver-

gence in probability; ‘a.s.’ for ‘almost surely’; ‘
a.s.→’ for almost sure convergence;

and ‘‖·‖’ for the Euclidean norm of vectors and matrices. Finally, {W (t),0 ≤ t ≤ 1}
denotes a standard Wiener process. Other notation is introduced later on in the
article.

2. SEQUENTIAL MONITORING OF RCA MODELS

Recall the RCA model

yi = (
βi + εi,1

)
yi−1 + εi,2, (2.1)

and recall that y0 denotes an initial value. We begin by laying out our first
assumption on the behavior of the innovations εi,1 and εi,2, which is required
throughout the article in all cases considered.

Assumption 2.1. (i){(εi,1,εi,2
)
, −∞ < i < ∞} are independent and identically

distributed random variables with (a) Eεi,1 = Eεi,2 = 0; (b) 0 < Eε2
i,1 = σ 2

1 < ∞
and 0 < Eε2

i,2 = σ 2
2 < ∞; (c) Eεi,1εi,2 = 0; (d) E|εi,1|κ < ∞ and E|εi,2|κ < ∞ for

some κ > 4; (ii) y0 is independent of {(εi,1,εi,2
)
, − ∞ < i < ∞} and such that

E |y0|κ < ∞ for some κ > 0.

Part (i) of the assumption is standard, and we refer to Horváth and Trapani
(2023a), inter alia, as an example. Indeed, the condition Eεi,1εi,2 = 0 could also be
lifted (see e.g. Conlisk, 1974, Hill and Peng, 2014, and Regis, Serra, and van den
Heuvel (2022, Sect. 4.2)), although this is not the classical RCA model of Nicholls
and Quinn (2012) which we study here; in our case, a technical difficulty would be
how to derive the exact rate of divergence of |yi| (following and merely adapting the
proof of Lemma A.4 in Horváth and Trapani (2016) would not be straightforward).
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Further, as is typical in this literature, Assumption 2.1 states that the innovations
εi,1 and εi,2 are independent across i. We use this assumption throughout the article,
in order not to overshadow the main arguments; however, we note that it is possible
to relax the independence assumption of part (ii). Indeed, Horváth and Trapani
(2023a) extend the RCA model to the case of dependent innovations, assuming
that both εi,1 and εi,2 are weakly dependent.3 In such a case, it can be shown that all
our results still hold, and the only impact of weak dependence is on the asymptotic
variance s2 defined in (2.6); Horváth and Trapani (2023a) derive an estimator of
the asymptotic variance s2 valid under weak dependence.4

It is well-known (Aue, Horváth, and Steinebach, 2006) that, in (2.1), the
stationarity or lack thereof of yi is determined by the value of E log

∣∣β0 + ε0,1

∣∣:
- if −∞ ≤ E log

∣∣β0 + ε0,1

∣∣ < 0, then yi converges exponentially fast to a strictly
stationary solution

{
yi, −∞ < i < ∞}

for all initial values y0;

- if E log
∣∣β0 + ε0,1

∣∣ > 0, then yi is nonstationary with |yi| a.s.→ ∞ exponentially fast
(Berkes, Horváth, and Ling, 2009);

- if E log
∣∣β0 + ε0,1

∣∣ = 0, then |yi| P→ ∞, but at a rate slower than exponential (see
Horváth and Trapani (2016, Lem. A.4)).

We further assume that the autoregressive parameter βi is constant over the
training segment {yi,1 ≤ i ≤ m} .

Assumption 2.2. βi = β0 for 1 ≤ i ≤ m.

The requirement in Assumption 2.2 is known as the non-contamination assump-
tion (see Chu, Stinchcombe, and White, 1996). The assumption is testable by using
an ex-post changepoint test; for example, one could use the test by Horváth and
Trapani (2023a) which: is designed specifically for the RCA set-up; can be applied
irrespective of whether yi is stationary or not; and—similarly to our proposed
sequential tests—is based on the CUSUM process of the WLS residuals.

We subsequently test for the null hypothesis that, as new data come in after m,
βi remains constant, viz.

H0 : β0 = βm+1 = βm+2 = ... (2.2)

Several techniques are available to estimate (2.1). Berkes et al. (2009) and Aue
and Horváth (2011) study Quasi Maximum Likelihood (QML) estimation under
both stationarity and nonstationarity, see also Hill, Li, and Peng (2016), who study
an Empirical Likelihood estimator, and Horváth et al. (2024), for an application of
QML to ex-post changepoint detection. Koul and Schick (1996) (see also Schick,
1996) show that WLS, which is computationally simpler, is first-order equivalent
to QML. Hereafter, we use the following WLS estimator, computed using the

3With also the “weak exogeneity” requirements that E
(
εi,1y2

i−1/
(
1+ y2

i−1

)) = 0 and E
(
εi,2yi−1/

(
1+ y2

i−1

)) = 0.
4Indeed, in an unreported robustness check for our empirical applications in Section 6, we also carry out our tests
using the estimator of s2 derived under dependence; results are unchanged, which can be taken as a heuristic indication
that the i.i.d. assumption provides a good approximation at least as far as our datasets are concerned.
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observations on the training segment {yi,1 ≤ i ≤ m} is the solution to

β̂m = argmin
β

m∑
i=2

(yi −βyi−1)
2

1+ y2
i−1

,

corresponding to

β̂m =
(

m∑
i=2

y2
i−1

1+ y2
i−1

)−1 (
m∑

i=2

yiyi−1

1+ y2
i−1

)
. (2.3)

We note that the choice of the weights
(
1+ y2

i−1

)−1
is not unique; the rationale for

our choice in (2.3) is based on considering the “error term” εi,1yi−1 + εi,2, whose
(conditional) variance is Var

(
ε0,1

)
y2

i−1 +Var
(
ε0,2

)
, whence the weights containing

the y2
i−1 term. The use of

(
1+ y2

i−1

)−1
is proposed in Schick (1996), where it is also

shown that efficiency is attained when using Var
(
ε0,1

)
and Var

(
ε0,2

)
, or consistent

estimators thereof. However, in our context we also allow for nonstationarity,
and in this case Var

(
ε0,2

)
cannot be estimated consistently (see e.g., Horváth and

Trapani (2019, Lem. A10)).

2.1. Standard Weighted CUSUM-based Detectors

The building block of our statistics are the weighted WLS residuals defined as(
yi − β̂myi−1

)
yi−1

1+ y2
i−1

, for i = m+1,...

The weighted WLS residuals have been employed, for the purpose of ex-post
changepoint detection, in Horváth and Trapani (2023a), and have one main
advantage: their (suitably normed) partial sums converge to a Gaussian process
irrespective of whether the observations yi are stationary or not. Intuitively, this
is due to the fact that, under nonstationarity, the yis are “big”, but the presence of
the similarly “big” weight 1 + y2

i−1 at the denominator balances the whole ratio,
ensuring that the residuals are bounded, this fact is also known as “variance-
induced stationarity”, and it has been exploited also in other, similar contexts such
as DAR models (Cavaliere and Rahbek, 2021).

Consider now the absolute value of the CUSUM process of the weighted WLS
residuals, customarily known as the detector:

Zm (k) =
∣∣∣∣∣

m+k∑
i=m+1

(
yi − β̂myi−1

)
yi−1

1+ y2
i−1

∣∣∣∣∣, k ≥ 1. (2.4)

Heuristically, under the null of no change, the residuals have zero mean; hence, the
partial sum process inside the absolute value in the definition of Zm (k) should also
fluctuate around zero with increasing variance. Conversely, in the presence of a
break (at, say, k∗), β̂m is a biased estimator for the “new” autoregressive parameter
βm+k∗+1; thus, Zm (k) should have a drift term. Hence, a break is flagged if Zm (k)
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exceeds a threshold. We call such a threshold the boundary function, and propose
the following family

gm,ψ (k) = cα,ψsm1/2

(
1+ k

m

)(
k

m+ k

)ψ

. (2.5)

In (2.5), 0 ≤ ψ ≤ 1/2, and s is defined as

s2 =
{

a1σ
2
1 +a2σ

2
2 , if −∞ ≤ E log

∣∣β0 + ε0,1

∣∣ < 0,
σ 2

1 , if E log
∣∣β0 + ε0,1

∣∣ ≥ 0,
(2.6)

with σ 2
1 and σ 2

2 defined in Assumption 2.1, and

a1 = E

(
y2

0

1+ y2
0

)2

, and a2 = E

(
y0

1+ y2
0

)2

,

where
{
yi, −∞ < i < ∞}

is the stationary solution of (2.1). At this point, some
clarification about the vocabulary employed hereafter—and, in particular, about
the notions of “weights” and “weighted CUSUM”—is in order. In (2.5), the term(

k
m+k

)ψ
is a weight which is designed to reduce the detection delay and, as Aue and

Horváth (2004) and Aue et al. (2008), inter alia, show, reduces such delay more
and more as ψ increases from 0 to 1/2. Hereafter, we will always refer to the ratio
Zm (k)/gm,ψ (k) as the weighted CUSUM, and to

(
k

m+k

)ψ
as the weight function or

weighting scheme, which is understood to be a function of ψ .
On account of (2.4) and (2.5), a changepoint is found at a stopping time τm,ψ

defined as

τm,ψ =
{

inf{k ≥ 1 : Zm (k) ≥ gm,ψ (k)},
∞, if Zm (k) < gm,ψ (k) for all 1 ≤ k < ∞.

(2.7)

The constant cα,ψ in (2.5) is chosen so as to ensure that: (a) under the null,
the procedure-wise probability of Type I Error does not exceed a user-chosen
value α, viz. limm→∞ P

{
τm,ψ = ∞|H0} = α; and (b) under the alternative,

limm→∞ P
{
τm,ψ < ∞|HA

} = 1.
In (2.7), the monitoring goes on indefinitely (“open-ended”). On the other

hand, in some applications it may be desirable to stop the sequential monitoring
procedure after m∗ period (“closed-ended”), e.g., in order to extend or update the
training period. In this case, we use the same detector Zm (k) defined in (2.4), but
we modify (2.7) as

τ ∗
m,ψ =

{
inf{1 ≤ k ≤ m∗ : Zm (k) ≥ g∗

m,ψ (k)},
m∗, if Zm (k) < g∗

m,ψ (k) for all 1 ≤ k ≤ m∗,
(2.8)

with boundary function

g∗
m,ψ (k) = c∗

α,ψsm1/2 (1+ k/m) (k/(m+ k))ψ . (2.9)
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The boundary function g∗
m,ψ (k) is suitable for the case where the monitoring

horizon m∗ is “long”, i.e., when it goes on for a period which is at least proportional
(or more than proportional) to the size of the training sample m. If a shorter
monitoring horizon is considered, where m∗ = o(m), then we use the same detector
as above, Zm (k), but the boundary function needs to be modified as

gm,ψ (k) = cα,ψs
(
m∗)1/2−ψ

kψ . (2.10)

In this case, the stopping rule is defined as

τm,ψ =
{

inf{1 ≤ k ≤ m∗ : Zm (k) ≥ gm,ψ (k)},
m∗, if Zm (k) < gm,ψ (k) for all 1 ≤ k ≤ m∗.

(2.11)

2.2. Page-CUSUM Detectors

In a series of recent contributions, Fremdt (2015), Kirch and Stoehr (2022a), and
Kirch and Stoehr (2022a) study a different family of detectors, known as the “Page-
CUSUM” processes, designed to offer a shorter detection delay:

Z†
m (k) = max

1≤	≤k

∣∣∣∣∣
m+k∑

i=m+	

(
yi − β̂myi−1

)
yi−1

1+ y2
i−1

∣∣∣∣∣, k ≥ 1. (2.12)

Intuitively, this family of detectors searches for the “worst-case scenario” at each
point in time k, and therefore should guarantee faster detection in the presence of
a changepoint. Consistently with the approach studied in this article, we consider
weighted versions of Z†

m (k); the corresponding stopping rules are defined as:

τ
†
m,ψ =

{
inf{k ≥ 1 : Z†

m (k) ≥ gm,ψ (k)},
∞, if Z†

m (k) < gm,ψ (k) for all 1 ≤ k < ∞,
(2.13)

with gm,ψ (k) defined in (2.5), for an open-ended procedure (replacing the critical
value cα,ψ with c†

α,ψ );

τ
∗†
m,ψ =

{
inf{1 ≤ k ≤ m∗ : Z†

m (k) ≥ g∗
m,ψ (k)},

m∗, if Z†
m (k) < g∗

m,ψ (k) for all 1 ≤ k ≤ m∗,
(2.14)

with g∗
m,ψ (k) defined in (2.9), for the case of a closed-ended procedure with a long

monitoring horizon (replacing the critical value c∗
α,ψ with c∗†

α,ψ ); and

τ
†
m,ψ =

{
inf{1 ≤ k ≤ m∗ : Z†

m (k) ≥ gm,ψ (k)},
m∗, if Z†

m (k) < gm,ψ (k) for all 1 ≤ k ≤ m∗,
(2.15)

with gm,ψ (k) defined in (2.10), for the case of a closed-ended procedure with a

short monitoring horizon (replacing the critical value cα,ψ with c†
α,ψ ).
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3. ASYMPTOTICS

We begin by listing a set of technical assumptions, which complement Assump-
tion 2.1.

Assumption 3.1. If E log
∣∣β0 + ε0,1

∣∣ < 0, it holds that P
(
y0 = 0

)
< 1.

Assumption 3.2. If E log
∣∣β0 + ε0,1

∣∣ ≥ 0, it holds that: (i) ε0,2 has a bounded
density; (ii)

{
εi,1, −∞ < i < ∞}

and
{
εi,2, −∞ < i < ∞}

are independent.

Assumption 3.3. If E log
∣∣β0 + ε0,1

∣∣ > 0, it holds that P
(
ε0,2 = x

)
< 1 for all

−∞ < x < ∞.

Assumption 3.1 is required, essentially, in order to avoid degeneracy in the
denominator of β̂m defined in (2.3); examples of this restriction can be found also in
Horváth and Trapani (2023a). Assumption 3.2, and in particular the independence
between εi,1 and εi,2 is needed specifically in order to derive the anti-concentration
bound in Horváth and Trapani (2016, Lem. A.4). Assumption 3.3, together with
part (ii) of Assumption 3.2, ensures that |yi| a.s.→ ∞, ruling out that it could be
identically equal to zero, and it is taken from Berkes et al. (2009) (see their
equations (3.4) and (3.5)). Note that, according to Assumption 3.3, it suffices that
ε0,2 is a nondegenerate random variable.

3.1. Asymptotics Under the Null

We derive the weak limits of our test statistics. Results differ depending on the
choice of the weight ψ , on whether an open-ended or a closed-ended monitoring
scheme is used (and, in the latter case, on the length of the monitoring horizon),
and on whether the detector is constructed using the standard CUSUM or the
Page-CUSUM. In all cases, we derive nuisance free limiting distributions, from
which critical values can be obtained by simulation for a given desired nominal
significance level, α.

3.1.1. Weighted standard CUSUM-based detectors. We begin by studying the
standard CUSUM detectors defined in Section 2.1, starting with the open-ended
case, also studied in Horváth et al. (2004) in the context of a linear regression.

Theorem 3.1. We assume that Assumptions 2.1 and 2.2 hold, and either: (i)
E log

∣∣β0 + ε0,1

∣∣ < 0 holds and Assumption 3.1 hold; or (ii) E log
∣∣β0 + ε0,1

∣∣ = 0
and Assumption 3.2 hold; or (iii) E log

∣∣β0 + ε0,1

∣∣ > 0 and Assumptions 3.2–3.3
hold. Then, under H0 it holds that, for all ψ < 1/2

lim
m→∞P

{
τm,ψ = ∞} = P

{
sup

0<u≤1

|W (u)|
uψ

< cα,ψ

}
.

Theorem 3.1 offers the limiting distribution (and, therefore, an approximation
for critical values) of our procedure in the open-ended case; in essence, the result
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is the same as in Horváth et al. (2004, Thm. 2.1), of which it is an extension to the
case of an RCA model. Importantly, the theorem holds irrespective of whether the
observations {yi, −∞ < i < ∞} form a stationary sequence or not.

We now turn to the closed-ended case. We begin by considering the case of (2.8),
where the monitoring goes on for a sufficient amount of time:

m∗ = O
(
mλ

)
for some λ ≥ 1, and lim

m→∞
m∗

m
= m0 ∈ (0,∞] > 0. (3.1)

In this case, we use the boundary function g∗
m,ψ (k) defined in (2.9), and the

corresponding stopping rule (2.8). Define m∗ = m0/(1+m0) if m0 < ∞, and
m∗ = 1 if m0 = ∞.

Theorem 3.2. We assume that the conditions of Theorem 3.1, and (3.1), are
satisfied. Then, under H0 it holds that, for all ψ < 1/2

lim
m→∞P

{
τ ∗

m,ψ = ∞} = P

{
sup

0<u≤m∗

|W (u)|
uψ

< c∗
α,ψ

}
. (3.2)

Theorem 3.2 extends the results in Theorem 3.1 to the closed-ended case;
to the best of our knowledge, this result is new, and it has important practical
implications. Indeed, in real applications, the monitoring horizon can be viewed
to be always closed, since sooner or later the researcher will stop. Hence, in real
applications, even when m∗ is “much bigger” than m, m∗ will always be smaller
than 1. In turn, this entails that critical values derived using Theorem 3.1 are
bound to overstate (sometimes slightly, sometimes more decidedly) the true critical
values, thereby yielding a loss of power. On the contrary, the result in Theorem 3.2
does not suffer from this issue: the applied user can mechanically compute m∗ after
deciding m and m∗, and simulate critical values based on (3.2).

We now study the case of (2.11), in a closed-ended set-up where monitoring
stops after very few steps, viz.

m∗ → ∞, and lim
m→∞

m∗

m
= 0. (3.3)

In this case, we use the boundary function gm,ψ (k) defined in (2.10), and the
corresponding stopping rule defined in (2.11).

Theorem 3.3. We assume that the conditions of Theorem 3.1 and (3.3) are
satisfied. Then, under H0 it holds that, for all ψ < 1/2

lim
m→∞P

{
τm,ψ = ∞} = P

{
sup

0<u≤1

|W (u)|
uψ

< cα,ψ

}
. (3.4)

Theorem 3.3 completes the theory spelt out in Theorems 3.1 and 3.2 by
considering a very short, closed-ended monitoring procedure. This result is also
new in the literature; note that the critical value defined in (3.4) is the same,
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for a given nominal level α, as the one in Theorem 3.1; however, as also noted
above, comparing equations (2.5) and (2.10), in the case of a short closed-ended
monitoring procedure the boundary function differs, and therefore the decision
rule, as to whether to mark a break or not, also differs.

We now turn to the case ψ = 1/2, studying the closed-ended monitoring
procedure under both (3.1) and (3.3). Define

γ (x) = √
2logx and δ (x) = 2logx+ 1

2
loglogx− 1

2
logπ, (3.5)

and

c∗
α,0.5 = cα,0.5 = x+ δ (logm∗)

γ (logm∗)
. (3.6)

Theorem 3.4. We assume that the conditions of Theorem 3.1 are satisfied. Then,
under H0 for all −∞ < x < ∞:

- if (3.1) holds, then it holds that limm→∞ P
{
τ ∗

m,0.5 = m∗} = exp (−exp (−x));
- if (3.3) holds, then it holds that limm→∞ P

{
τm,0.5 = m∗} = exp (−exp (−x)).

Theorem 3.4 completes our theory, considering (under any length for the
monitoring horizon) the case where the weight ψ = 1/2. The result is a typical
Darling–Erdös theorem (Darling and Erdős, 1956), and it is essentially the same
as Horváth, Kokoszka, and Steinebach (2007, Thm 1.1); however, similarly to
Theorem 3.1, the result in Theorem 3.4 does not require that the observations
{yi, −∞ < i < ∞} be stationary. Upon inspecting the proofs of Theorems 3.1–
3.3 and 3.4, the limiting distributions of the weighted CUSUM with ψ < 1/2, and
of the standardized CUSUM with ψ = 1/2 are asymptotically independent,5 and
therefore the two procedures, in principle, can be combined.

Theorem 3.4 offers an explicit formula to compute asymptotic critical values;
however, these are bound to be inaccurate due to the slow convergence to the
Extreme Value distribution. In particular, simulations show that, in finite samples,
asymptotic critical values overstate the true values thus leading to low power.
A possible correction can be proposed, similarly to Gombay and Horváth (1996),
as follows. Define hm∗ = hm∗ (m∗) such that, as m∗ → ∞
hm∗ → ∞ and hm∗/m∗ → 0, (3.7)

and let φm = (m∗ +hm∗)/(2hm∗). Let also ĉα,0.5 → ∞ denote the solution of

ĉα,0.5 exp
(− 1

2 ĉ2
α,0.5

)
(2π)1/2

(
logφm + 4− logφm

ĉ2
α,0.5

)
= α. (3.8)

5Intuitively, this is because W (·) has independent increments, and the limiting distribution, in the case of 0 ≤ ψ < 1/2,
is determined by the ‘central’ values of W (·); conversely, when ψ = 1/2, the limiting law is determined by values at
the very beginning of W (·).
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Theorem 3.5. We assume that the conditions of Theorem 3.4 are satisfied.
Then, replacing c∗

α,0.5 and cα,0.5 with ĉα,0.5 defined in (3.8), it holds that
limm→∞ P

{
τ ∗

m,0.5 = m∗} = α and limm→∞ P
{
τm,0.5 = m∗} = α respectively.

Theorem 3.5 offers an alternative way of approximating critical values for the
case where ψ = 1/2; whilst it is a relatively standard Gaussian approximation
(see also the book by Csörgő and Horváth, 1993), to the best of our knowledge
this is the first time that such an extension is considered in the case of sequential
monitoring. The choice of hm∗ is a matter of tuning; qualitatively, as hm∗ increases,
critical values become smaller (thus making the procedure more conservative) and
vice versa. Our simulations indicate that hm∗ = (logm∗)1/2 yields the best results
in terms of size and power.

3.1.2. Weighted Page-CUSUM detectors. We now consider the use of the
Page-CUSUM detector Z†

m (k) defined in (2.12), using the stopping rules defined
in (2.13)–(2.15). Let {W1 (x),x ≥ 0} and {W2 (x),x ≥ 0} denote two independent
standard Wiener processes.

Theorem 3.6. We assume that the conditions of Theorem 3.1 are satisfied. Then,
under H0, for all ψ < 1/2

- it holds that

lim
m→∞P

{
τ

†
m,ψ = ∞

}
= P

{
sup

0<x<∞
sup0≤t≤x |(W2 (x)−W2 (t))− (x− t)W1 (1)|

(1+ x) (x/(1+ x))ψ
< c†

α,ψ

}
; (3.9)

- if, in addition, (3.1) holds, then it holds that

lim
m→∞P

{
τ

†∗
m,ψ = ∞

}
= P

{
sup

0<x≤m0

sup0≤t≤x |(W2 (x)−W2 (t))− (x− t)W1 (1)|
(1+ x) (x/(1+ x))ψ

< c†∗
α,ψ

}
; (3.10)

- if, in addition, (3.3) holds, then it holds that

lim
m→∞P

{
τ

†
m,ψ = ∞

}
= P

{
sup

0<x≤1

sup0≤t≤x |(W (x)−W (t))|
xψ

< c†
α,ψ

}
. (3.11)

Theorem 3.6 offers the full-blown asymptotic theory for the weighted Page-
CUSUM detectors; the same considerations as above hold, e.g., the case under
(3.1) studied in (3.10), where a closed-ended scheme is considered, may be more
realistic and therefore give a better approximation than the case of an open-ended
scheme as considered in (3.9).
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3.1.3. LRV estimation. In order to apply all the results above, we require an
estimate of s2 defined in (2.6). This can be constructed using the data in the training
sample as

ŝ
2
m = 1

m

m∑
i=2

((
yi − β̂myi−1

)
yi−1

1+ y2
i−1

)2

. (3.12)

Corollary 3.1. Under the conditions of Theorem 3.1, there exists a ζ > 0 such
that ŝ2

m = s2 +OP
(
m−ζ

)
.

Corollary 3.1 holds irrespective of whether yi is stationary or not, and therefore,
practically, it entails that ŝ2

m can be used with no prior knowledge of the stationarity
or not of yi. Furthermore, we note that ŝ2

m does not depend on ψ , so the result in
Corollary 3.1 can be applied for all 0 ≤ ψ ≤ 1/2, and for both open-ended and
closed-ended procedures.

3.2. Asymptotics Under the Alternative

We consider the following alternative, where the deterministic part of the autore-
gressive coefficient of (2.1) undergoes a change

yi =
{(

β0 + εi,1
)

yi−1 + εi,2 1 ≤ i ≤ m+ k∗,(
βA + εi,1

)
yi−1 + εi,2 i > m+ k∗, (3.13)

where β0 	= βA and k∗ is the time of change. In (3.13), we do not put any
constraints on the values of β0 and βA. Hence, under (3.13), the observations
could transition from a stationary regime to another stationary regime (if both
E log

∣∣β0 + ε0,1

∣∣ < 0 and E log
∣∣βA + ε0,1

∣∣ < 0); from a nonstationary regime to
another nonstationary regime (if both E log

∣∣β0 + ε0,1

∣∣ ≥ 0 and E log
∣∣βA + ε0,1

∣∣ ≥
0); or either regime can be stationary and the other one nonstationary (which arises
if E log

∣∣β0 + ε0,1

∣∣ < 0 and E log
∣∣βA + ε0,1

∣∣ ≥ 0, implying a switch from stationarity
to nonstationarity, or if E log

∣∣β0 + ε0,1

∣∣ ≥ 0 and E log
∣∣βA + ε0,1

∣∣ < 0, implying a
switch from nonstationarity to stationarity). We entertain the possibility that the
amplitude of change may depend on the (training) sample size m, thus defining

�m = βA −β0. (3.14)

Theorem 3.7. We assume that (3.13) holds with k∗ = O(m). Under the condi-
tions of Theorem 3.1, if it holds that

lim
m→∞m1/2 |�m| = ∞, (3.15)
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then it holds that limm→∞ P
{
τm,ψ < ∞|HA

} = 1, for all ψ < 1/2. Under the
conditions of Theorem 3.4, if it holds that

lim
m→∞

m1/2 |�m|√
log logm

= ∞, (3.16)

then it holds that limm→∞ P
{
τ ∗

m,0.5 < ∞|HA
} = 1. The same results hold under

the conditions of Theorem 3.2; and under the conditions of Theorem 3.3 upon
replacing m with m∗ in (3.15) and (3.16). The same results also hold, for ψ < 1/2,
using the procedures based on the Page-CUSUM detector Z†

m (k) defined in (2.13)–
(2.15).

Condition (3.15) entails that |�m| can drift to zero, but not too fast (i.e., power
is ensured as long as breaks are “not too small”), for all ψ < 1/2. When using
ψ = 1/2, condition (3.16) suggests that there is a (minor) loss of power.

3.2.1. Detection delays. In this section, we study the limiting law of the
detection delay τm,ψ − k∗; we only consider detectors based on the weighted
CUSUM, to make a direct comparison with related results derived by Aue and
Horváth (2004) and Aue et al. (2008).

Define

ξ
(1)
m,ψ =

(
cα,ψm1/2−ψ

|�m|
)1/(1−ψ)

, and ξ
(2)
m,ψ = s(2)

1−ψ

(ξ
(
m,ψ1))1/2

|�m| , (3.17)

for the case where 0 ≤ ψ < 1/2, and

ξ
(1)
m,0.5 = 2s2

(2) log logm

�2
m

, and ξ
(2)
m,0.5 =

(
2

loglogm

)1/2

ξ
(1)
m,0.5, (3.18)

for the case where ψ = 1/2, where s2
(2) is defined as the counterpart to (2.6) after

the changepoint, viz.

s2
(2) =

{
a1,(2)σ

2
1 +a2,(2)σ

2
2 , if −∞ ≤ E log

∣∣βA + ε0,1

∣∣ < 0,
σ 2

1 , if E log
∣∣βA + ε0,1

∣∣ ≥ 0,

with

a1,(2) = E

(
y2

0,(2)

1+ y2
0,(2)

)2

and a2,(2) = E

(
y0,(2)

1+ y2
0,(2)

)2

,

and y2
0,(2) is the stationary solution of yi = (

βA + εi,1
)

yi−1 + εi,2 when
E log

∣∣βA + ε0,1

∣∣ < 0.
Let �(x) denote the standard normal distribution function.
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Theorem 3.8. We assume that the conditions of Theorem 3.1 are satisfied, and
that

lim
m→∞|�m| = 0, and lim

m→∞m1/2 |�m| = ∞, (3.19)

and k∗ = O
(
mθ

)
, for some 0 ≤ θ < ((1−2ψ)/(2(1−ψ)))2. Then, under HA it

holds that

lim
m→∞P

{
τm,ψ − ξ

(1)
m,ψ

ξ
(2)
m,ψ

≤ x

}
= �(x), (3.20)

for all 0 ≤ ψ < 1/2. The same result holds under the conditions of Corollary 3.2
when replacing τm,ψ with τ ∗

m,ψ .

Theorem 3.9. We assume that the conditions of Theorem 3.4 are satisfied, and
that

c0 (logm)−ε ≤ |�m| ≤ c1, and k∗ = o

(
(log logm)1/2

�2
m

)
, (3.21)

for some c0,c1 > 0 and ε > 0. Then, under HA it holds that

lim
m→∞P

{
τ ∗

m,0.5 − ξ
(1)
m,0.5

ξ
(2)
m,0.5

≤ x

}
= �(x) . (3.22)

Theorems 3.8 and 3.9 state that the stopping times, τm,ψ (and τ ∗
m,ψ , in the case

of a closed-ended monitoring procedure) and τ ∗
m,0.5 follow a Gaussian distribution.

After some algebra, it can be verified that, as m → ∞, it holds that

τm,ψ ≈
(

cα,ψ

|�m|
)1/(1−ψ)

m(1−2ψ)/(2(1−ψ)), and τ ∗
m,0.5 ≈ 2s2

(2) log logm

�2
m

, (3.23)

and the same holds for τ ∗
m,ψ , mutatis mutandis. Given that, in the assumptions of

Theorems 3.8 and 3.9, k∗ is of smaller order of magnitude than τm,ψ and τ ∗
m,0.5,

(3.23) can be interpreted also as the delay in detecting a changepoint. When
0 ≤ ψ < 1/2, the delay is proportional to a polynomial function of m, which
declines as ψ approaches 1/2; the shortest detection time is found for ψ = 1/2,
where fixed size changepoints are found with a delay proportional to as little as
O(log logm). These results hold for all values of E log

∣∣βi + ε0,1

∣∣, and therefore
they can be employed irrespective of whether yi is stationary or explosive. Hence,
as an example also mentioned above, in the context of monitoring for the onset (or
crash) of financial bubbles, τm,ψ and τ ∗

m,0.5 can be used for the purpose of “date-
stamping”: if e.g. an explosive sequence is found to change into a stationary regime
(or if, vice versa, a stationary sequence is found to change into an explosive one),
the stopping times τm,ψ or τ ∗

m,0.5 will be the estimate for the end of the bubble (or
of the onset thereof, respectively).
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4. MONITORING THE RCA MODEL WITH COVARIATES

In a recent contribution, Astill et al. (2023) argue in favor of adding covariates to
the basic AR specification, showing theoretically and empirically that this results
in better (and quicker) detection of bubble episodes. Hence, we modify (2.1) as

yi = (
βi + εi,1

)
yi−1 +λ

ᵀ
0 xi + εi,2, (4.1)

where y0 is an initial value and xi ∈ R
p. Equation (4.1) is, essentially, a dynamic

model with exogenous covariates, with λ0 constant over time.
In order to monitor for the stability of the autoregressive coefficient, we propose

again a detector based on the WLS loss function

Gm (β,λ) =
m∑

i=2

(yi −βyi−1 −λᵀxi)
2

1+ y2
i−1

. (4.2)

The estimators of β0 and λ0 are defined as
(
β̂m,̂λm

) = argminβ,λGm (β,λ), and
satisfy

∂

∂β
Gm

(
β̂m,̂λm

) = −2
m∑

i=2

(
yi − β̂myi−1 − λ̂ᵀ

mxi
)

yi−1

1+ y2
i−1

= 0, (4.3)

which suggests the following detector

ZX
m (k) =

∣∣∣∣∣
m+k∑

i=m+1

(
yi − β̂myi−1 − λ̂ᵀ

mxi
)

yi−1

1+ y2
i−1

∣∣∣∣∣ . (4.4)

The following assumptions complement Assumptions 2.1–3.3.

Assumption 4.1. (i) E (xi) = 0, and E‖xi‖κ1 < ∞ for some κ1 > 4; (ii) xi =
g(ηi,ηi−1,...), where g : S∞ → R

p is a non-random, measurable function and
{ηi, −∞ < i < ∞} are i.i.d. random variables with values in the measurable

space S and
(

E
∥∥∥xi −x∗

i,j

∥∥∥κ1
)1/κ1 ≤ c0j−κ2 , with some c0 > 0 and κ2 > 2, where

x∗
i,j = g

(
ηi,...,ηi−j+1,η

∗
i−j,i,j,η

∗
i−j−1,i,j...

)
where

{
η∗

	,i,j, −∞ < 	,i,j < ∞
}

are i.i.d.

random copies of η0, independent of {ηi, −∞ < i < ∞}.
Assumption 4.2.

{(
εi,1,εi,2

)
, −∞ < i < ∞}

and {ηi, −∞ < i < ∞} are inde-
pendent.

Assumption 4.3. If E log
∣∣β0 + ε0,1

∣∣ > 0, it holds that
P

{(
β0 + ε0,1

)
y0 +λᵀx0 + ε0,2 = x

} = 0 for all −∞ < x < ∞.

Assumption 4.1 states that the regressors xi form a decomposable Bernoulli
shift, i.e., a weakly dependent, stationary process which can be well-approximated
by an m-dependent sequence. The concepts of Bernoulli shift and decomposability
appeared first in Ibragimov (1962) (see also Wu, 2005 and Berkes, Hörmann, and
Schauer, 2011). Bernoulli shifts have proven a convenient way to model dependent
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time series, mainly due to their generality and to the fact that they are much easier
to verify than e.g., mixing conditions: Aue et al. (2009) and Liu and Lin (2009),
inter alia, provide numerous examples of such DGPs, which include ARMA
models, ARCH/GARCH sequences, and other nonlinear time series models (such
as e.g., random coefficient autoregressive models and threshold models). Indeed,
under stationarity, yi itself can be approximated by a decomposable Bernoulli shift
(Horváth and Trapani, 2023a). Assumption 4.2 states that the exogenous variables
xi are independent of the innovations εi,1 and εi,2, and Assumption 4.3 is similar
to Assumption 3.3, ensuring |yi| a.s.→ ∞.

Finally, we note that, in the presence of covariates, we need to exclude the
boundary case E log

∣∣β0 + ε0,1

∣∣ = 0; this is because we would need an exact (and
large enough) rate of divergence for |yi| as i → ∞, but this result is not available
in the case E log |β0 +ε0,1| = 0 (see also Horváth and Trapani (2019, Thm. 4), and
the discussion thereafter). The boundary function is defined as

g(x)
m,ψ (k) = c(x)

α,ψs
2
xm1/2

(
1+ k

s2
x,dm

)(
k

s2
x,dm+ k

)ψ

, (4.5)

where c(x)
α,ψ is a critical value, and

s2
x =

{
s2

x,2/sx,1, if −∞ ≤ E log
∣∣β0 + ε0,1

∣∣ < 0,
σ1, if E log

∣∣β0 + ε0,1

∣∣ > 0,
(4.6)

s2
x,d =

{
s2

x,2/s
2
x,1, if −∞ ≤ E log

∣∣β0 + ε0,1

∣∣ < 0,
1, if E log

∣∣β0 + ε0,1

∣∣ > 0,

with

s2
x,1 = aᵀQCQa, and s2

x,2 = σ 2
1 E

(
y2

0

1+ y2
0

)2

+σ 2
2 E

(
y0

1+ y2
0

)2

, (4.7)

where a, Q and C are defined in (C.26)-( C.28) in the Supplementary Material.
The stopping rule is

τ
(x)
m,ψ =

{
inf{k ≥ 1 : ZX

m (k) ≥ g(x)
m,ψ (k)},

∞, if ZX
m (k) < g(x)

m,ψ (k) for all 1 ≤ k < ∞,
(4.8)

and

τ
∗(x)
m,ψ =

{
inf{k ≥ 1 : ZX

m (k) ≥ g(x)
m,ψ (k)},

m∗, if ZX
m (k) < g(x)

m,ψ (k) for all 1 ≤ k ≤ m∗,
(4.9)

for an open-ended and a closed-ended monitoring procedure respectively.
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Theorem 4.1. We assume that Assumptions 2.1, 4.1, and 4.2 are satisfied, and
either (i) E log

∣∣β0 + ε0,1

∣∣ < 0, or (ii) E log
∣∣β0 + ε0,1

∣∣ > 0 and Assumption 4.3 hold.

Then, under H0, the results of Theorems 3.1, 3.2, and 3.3 hold for τ
(x)
m,ψ , τ

∗(x)
m,ψ , and

τ
(x)
m,ψ respectively.

Theorem 4.2. We assume that the conditions of Theorem 4.1 are satisfied. Then,
for ψ = 1/2, under H0, the same results as in Theorem 3.4 hold.

Along the same lines as in Section 3.1.2, it is possible to construct weighted
monitoring schemes based on the detector

Z†(X)
m (k) = max

1≤	≤k

∣∣∣∣∣
m+k∑

i=m+	

(
yi − β̂myi−1 − λ̂ᵀ

mxi
)

yi−1

1+ y2
i−1

∣∣∣∣∣, k ≥ 1. (4.10)

Theorem 4.3. We assume that Assumptions 2.1, 4.1, and 4.2, and (3.1), are
satisfied, and either (i) E log

∣∣β0 + ε0,1

∣∣ < 0, or (ii) E log
∣∣β0 + ε0,1

∣∣ > 0 and
Assumption 4.3 hold. Then, under H0, the results of Theorem 3.6 hold.

In all the results above, the limiting behavior of the stopping time is the same
as in the absence of covariates; however, this does not mean that these do not play
a role, since they build into the recursion that defines yi. As far as Theorem 4.2 is
concerned, the same approximation for critical values as in (3.8) can be used.

Under the alternative that the deterministic part of the autoregressive root
changes,

yi =
{ (

β0 + εi,1
)

yi−1 +λ
ᵀ
0 xi + εi,2 1 ≤ i ≤ m+ k∗,(

βA + εi,1
)

yi−1 +λ
ᵀ
0 xi + εi,2 i > m+ k∗, (4.11)

the same results as in Section 3.2 hold, as summarized in the following theorem.

Theorem 4.4. We assume that the conditions of Theorem 4.1 are satisfied. Then,
under (4.11), the same results as in Theorem 3.7 hold.

5. SIMULATIONS

We provide some Monte Carlo evidence and guidelines on implementation; further
details and results are reported in Section A of the Supplementary Material, where,
in particular, we consider the case of covariates (Section A.1 of the Supplementary
Material), the case of a smooth break (Section A.2 of the Supplementary Material),
and a further investigation of power versus breaks of variable magnitude in
the cases of STUR and explosive processes (Section A.3 of the Supplementary
Material). We consider the following Data Generating Process, based on (4.1)

yi = (
β0 + εi,1

)
yi−1 +λ0xi + εi,2, (5.1)
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for 1 ≤ i ≤ m + 1,000, where we simulate εi,1 and εi,2 as independent of one
another and i.i.d. with distributions N

(
0,σ 2

1

)
and N

(
0,σ 2

2

)
respectively, discarding

the first 1,000 observations to avoid dependence on initial conditions. We used
σ 2

1 = 0.01 in all experiments, and we have considered three cases: in Case I, we set
β0 = 0.5, with E log

∣∣β0 + εi,1

∣∣ = −0.717, corresponding to a stationary regime; in
Case II, we set β0 = 1.05, with E log

∣∣β0 + εi,1

∣∣ = 0.044, corresponding to a mildly
explosive regime; and in Case III, we set β0 = 1, with E log

∣∣β0 + εi,1

∣∣ = −0.007,
indicating a stationary, but ‘on the cusp’ process (this case corresponds to the
STUR model). The variance of the idiosyncratic shock is σ 2

2 = 0.5 in Case I,
and σ 2

2 = 0.1 in Cases II and III; in unreported simulations, using different values
does not result in any significant changes, save for the (expected) fact that tests
have better properties (in terms of size and power) for smaller values of σ 2

2 . When
covariates are used, we set λ0 = 1 and generate xi as i.i.d.N (0,1). Critical values
(for a nominal level equal to 5%) are computed using the results in Theorem 3.2
when using the weighted CUSUM with ψ < 1/2, and Theorem 3.6(ii) when using
Page-CUSUM statistics. When using the weighted CUSUM with ψ = 1/2, we use
both the asymptotic critical values cα,0.5 defined in (3.6), and the approximation
ĉα,0.5 defined as the solution of (3.8), with hm∗ = (logm∗)1/2. Results are based on
1,000 replications.

When considering Case I—i.e., when considering stationarity—we compare our
tests with the test by Otto and Breitung (2023) to assess the relative merits of
our approach. Whilst we refer to Section 3.3 in the original paper by Otto and
Breitung (2023) for the full-fledged details, here we offer a brief description of
how the test works, focusing on the case of no covariates for simplicity. During
the training period, we estimate an AR(1) model based on yi = βyi−1 +ui, so that
ui = εi,1yi−1 + εi,2, with β̂m = (∑m

i=2 y2
i−1

)−1 ∑m
i=2 yi−1yi. Subsequently, for each

point in time m+1 ≤ i ≤ m+m∗, we define the recursive residuals ûi = yi − β̂iyi−1,
and the weighted residuals yi−1̂ui,6 using the detector

OB(k) = max
1≤	≤k

∣∣∣∣∣∣∣∣∣
1

m1/2σ̂mĈ1/2
m

m+k∑
i=m+	

yi−1̂ui[
1+

(∑i−1
s=2 y2

s−1

)−1
y2

i−1

]1/2

∣∣∣∣∣∣∣∣∣ ; (5.2)

note that, in essence, this is a Page-CUSUM detector along the lines of equation
(2.12). In (5.2), we have defined

σ̂ 2
m = 1

m

m∑
i=2

(yi−1̂ui)
2

1+
(∑i−1

s=2 y2
s−1

)−1
y2

i−1

and Ĉm = 1

m

m∑
i=2

y2
i−1,

6In principle, it would be possible to also consider WLS estimation of β, and therefore use the corresponding weighted
WLS residuals. However, preliminary Monte Carlo evidence suggests that this approach, whilst feasible, does not
work as well as using a plain OLS estimator cum weighted OLS residuals.
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with stopping rule

τOB =
{

inf{k ≥ 1 : OB(k) ≥ gOB (k)},
m∗, if OB(k) < gOB (k) for all 1 ≤ k ≤ m∗,

and boundary function

gOB (k) = cα,OB

[
1+2

(
k −	

m

)]
, (5.3)

where cα,OB is a critical value.7 Note that the procedure by Otto and Breitung
(2023) requires m∗ > m, so it is not suitable for short horizon closed-ended
procedures.

Empirical rejection frequencies are in Tables 1–3, where we consider the case
where, in (5.1), λ0 = 0, i.e., a “pure” RCA without covariates. The empirical
rejection frequencies—with some exceptions which can be ascribed to sampling
error—clearly tend to home towards their confidence band [0.036,0.064] as m and
m∗ both increase (note that numbers are to be compared across the same value
of the ratio m∗/m, as the nature of the results in e.g., Theorem 3.2 indicate). In
the case of stationarity (Table 1), the procedure-wise probability of Type I Errors
is always controlled when using ψ = 1/2; the asymptotic critical values cα,0.5

defined in (3.6) lead to under-rejection, as can be expected in light of the slow
convergence to the asymptotic distribution; conversely, their approximation using
ĉα,0.5 defined as the solution of (3.8) achieves size control in all cases considered.
When using ψ < 1/2, both in the case of the CUSUM and the Page-CUSUM, the
procedure-wise probability of Type I Errors is also controlled, but larger sample
sizes m are required. In the explosive case (Table 2), our procedures tend to under-
reject whenever using ψ = 1/2 (both with cα,0.5 and ĉα,0.5), although this seems
to slowly improve as m increases, for all lengths of the monitoring horizon m∗;
results are less conservative when using ψ < 1/2, again both in the case of the
CUSUM and the Page-CUSUM. On the other hand, in the STUR case (Table 3),
empirical rejection frequencies tend to be higher than in the other cases, which may
be explained as a consequence of the fact that the behavior of |yi| becomes unstable,
as it sits on the boundary between the stationary and the explosive regimes. The
procedure-wise probability of Type I Errors is controlled in all cases when using
ψ = 1/2 and cα,0.5, whereas using ĉα,0.5 requires either large m (≥ 200), or not
overly long monitoring horizons when m < 200 (in those cases, using m∗ ≤ m
always results in size control). When ψ < 1/2, size control is more problematic and
the procedure tends to be oversized, unless m∗ is “small” compared to m. Whilst
results are broadly similar for the CUSUM and the Page-CUSUM, we note that
the latter yields marginally improved size control over the former.

The main message of Tables 1–3 is that, broadly speaking, using the CUSUM
with ψ = 1/2 seems the preferred solution across all cases considered. The

7See e.g., Table 2 in Otto and Breitung (2023).
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Table 1. Empirical rejection frequencies under the null of no changepoint and
no covariates - Case I, β0 = 0.5.

Weighted CUSUM Standardized Weighted OB

CUSUM Page-CUSUM

ψ 0 0.25 0.45 0.5 0 0.25 0.45

cα,0.5 ĉα,0.5

m m∗

25 0.047 0.057 0.045 0.023 0.045 0.045 0.057 0.054

50 50 0.068 0.081 0.066 0.034 0.055 0.060 0.080 0.069 0.049

100 0.064 0.079 0.070 0.036 0.053 0.058 0.052 0.061 0.058

200 0.092 0.107 0.086 0.038 0.057 0.087 0.089 0.083 0.051

50 0.063 0.068 0.055 0.025 0.048 0.061 0.066 0.054

100 100 0.057 0.067 0.075 0.027 0.056 0.059 0.066 0.063 0.043

200 0.062 0.062 0.066 0.029 0.048 0.059 0.055 0.060 0.037

400 0.062 0.061 0.054 0.028 0.050 0.062 0.064 0.061 0.045

100 0.060 0.064 0.053 0.020 0.034 0.050 0.056 0.058

200 200 0.049 0.063 0.058 0.023 0.044 0.045 0.058 0.055 0.049

400 0.057 0.057 0.060 0.023 0.042 0.055 0.057 0.052 0.051

800 0.049 0.050 0.056 0.024 0.048 0.047 0.062 0.067 0.047

choice between cα,0.5 and ĉα,0.5 essentially depends on m (and m∗), but in the
vast majority of the cases considered, using ĉα,0.5 offers excellent size control
without having an overly conservative procedure. Our results suggest avoiding
overly long monitoring horizons when m ≤ 100. In these cases, monitoring can
be carried out firstly over a short horizon and, if no changepoints are detected,
the procedure can be started afresh including the previous monitoring horizon
within the training sample. In the Supplementary Material, we report empirical
rejection frequencies in the presence of covariates in (5.1). Whilst results are
essentially the same in the stationary and in the explosive case, in the STUR
case (Table A.1 in the Supplementary Material) the procedures tend to (sometimes
massively) over-reject. The best results are obtained with ψ = 1/2 and cα,0.5, which
achieves size control at least when m > 50 (or when m ≤ 50, but the monitoring
horizon is not too long, i.e., m∗ ≤ m). This suggests that, when covariates are
included in the basic RCA specification, ψ = 1/2 and cα,0.5 should be employed—
especially when trying to detect the inception of a bubble from a near stationary
regime.

We would like to emphasize that all the cases considered above are fully under
the researcher’s control: whether to include covariates or not, and the length of the
monitoring horizon m∗, can be decided a priori; as mentioned above, preliminary
analysis on yi during the training period offers further help.
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Table 2. Empirical rejection frequencies under the null of no changepoint and
no covariates - Case II, β0 = 1.05.

Weighted CUSUM Standardized Weighted

CUSUM Page-CUSUM

ψ 0 0.25 0.45 0.5 0 0.25 0.45

cα,0.5 ĉα,0.5

m m∗

25 0.035 0.042 0.026 0.011 0.022 0.027 0.037 0.030

50 50 0.046 0.051 0.040 0.012 0.029 0.044 0.054 0.039

100 0.033 0.049 0.027 0.009 0.023 0.028 0.026 0.025

200 0.055 0.063 0.044 0.018 0.034 0.051 0.056 0.047

50 0.044 0.043 0.030 0.008 0.020 0.033 0.038 0.027

100 100 0.033 0.036 0.039 0.015 0.025 0.034 0.034 0.028

200 0.054 0.052 0.041 0.009 0.019 0.051 0.040 0.024

400 0.059 0.050 0.046 0.014 0.035 0.052 0.055 0.044

100 0.047 0.049 0.034 0.015 0.027 0.039 0.040 0.038

200 200 0.041 0.055 0.050 0.022 0.036 0.041 0.055 0.047

400 0.051 0.054 0.053 0.015 0.037 0.049 0.046 0.046

800 0.042 0.042 0.047 0.013 0.023 0.037 0.048 0.047

Under the alternative, monitoring is carried out for m+1 ≤ i ≤ m+m∗, with the
same specifications as in Cases I–III and

yi = (
β0 +�I (i ≥ m+1)+ εi,1

)
yi−1 +λ0xi + εi,2. (5.4)

We set: � = 0.5 under Case I, with βA = 0.75 and E log
∣∣βA + εi,1

∣∣ = −0.298, thus
having a change in persistence with yi stationary under the null and the alternative;
� = −0.1 under Case II, with βA = 0.969 and E log

∣∣βA + εi,1

∣∣ = −0.063, thus
having a change from nonstationarity to stationarity; and � = 0.1 under Case III,
with βA = 1.1 and E log

∣∣βA + εi,1

∣∣ = 0.089, thus having a change from stationarity
to nonstationarity. Median delays and empirical rejection frequencies for m = 200,
under the case of no covariates (λ0 = 0), are in Table 4.

Under stationarity, using ψ = 0.45 yields the best results in terms of delay and
power, with little difference between the CUSUM and the Page-CUSUM (with the
latter occasionally delivering higher power, if not shorter detection delays); results
are anyway satisfactory also when using ψ = 1/2 with ĉα,0.5, which is always
either the best or the second best in terms of detection delay. The same results
are observed in the explosive and in the STUR cases. The latter is particularly
remarkable: using ψ = 1/2 with ĉα,0.5 delivers essentially the same performance as
using ψ = 0.45; however, according to Table 3, the latter choice yields an oversized
procedure, thus making its performance under the alternative less reliable. Hence,

https://doi.org/10.1017/S0266466625000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625000052


24 LAJOS HORVÁTH AND LORENZO TRAPANI

Table 3. Empirical rejection frequencies under the null of no changepoint and
no covariates - Case III, β0 = 1.

Weighted CUSUM Standardized Weighted

CUSUM Page-CUSUM

ψ 0 0.25 0.45 0.5 0 0.25 0.45

cα,0.5 ĉα,0.5

m m∗

25 0.070 0.069 0.053 0.028 0.047 0.062 0.072 0.058

50 50 0.068 0.073 0.055 0.031 0.044 0.066 0.076 0.058

100 0.092 0.100 0.078 0.053 0.070 0.089 0.076 0.076

200 0.111 0.114 0.092 0.055 0.073 0.109 0.098 0.091

50 0.070 0.068 0.049 0.020 0.037 0.064 0.070 0.049

100 100 0.075 0.082 0.072 0.038 0.057 0.077 0.078 0.069

200 0.095 0.099 0.085 0.047 0.067 0.092 0.083 0.077

400 0.111 0.100 0.089 0.057 0.076 0.106 0.106 0.092

100 0.060 0.066 0.051 0.024 0.040 0.057 0.058 0.052

200 200 0.093 0.102 0.096 0.045 0.059 0.090 0.097 0.083

400 0.076 0.079 0.071 0.032 0.060 0.078 0.076 0.072

800 0.093 0.087 0.082 0.040 0.057 0.085 0.096 0.088

Table 4 essentially indicates that using ψ = 1/2 with ĉα,0.5 yields the best results
in terms of timeliness of detection and power. As a final remark, detection delays
worsen as m∗ increases; this is a natural phenomenon, since critical values (see
e.g., Corollary 3.2) increase with m∗, thus making detection, ceteris paribus, more
infrequent. In Table A.2 in the Supplementary Material, we report median delays
and empirical rejection frequencies in the presence of covariates in the basic RCA
specification. Our guidelines based on size control suggest using ψ = 1/2 with
cα,0.5 in this case; median delays appear very satisfactory, although the cases
ψ = 1/2 with ĉα,0.5 and especially ψ = 0.45 perform better in several cases.
We also refer to Section A.2 of the Supplementary Material for a Monte Carlo
investigation of power in the presence of a smooth break, and to Section A.3 of the
Supplementary Material for a more detailed set of simulations on the effect of �

on power in the STUR and nonstationary case.
In conclusion, the results in this section show that online changepoint detection

in an RCA model based on weighted CUSUM statistics seems to work very well
both under stationarity and nonstationarity. Broadly speaking, in the latter case
using the standardized CUSUM (i.e., ψ = 1/2) is the preferred choice; in the
former case, choosing ψ close to (but smaller than) 1/2, appears to yield the best
compromise between size control and timely detection.
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Table 4. Median delays and empirical rejection frequencies under alternatives—
no covariates.

Weighted Standardized Weighted OB

CUSUM CUSUM Page-CUSUM

DGP ψ 0 0.25 0.45 0.5 0 0.25 0.45

cα,0.5 ĉα,0.5

100 54
(0.705)

44
(0.695)

35.5
(0.618)

37
(0.465)

34
(0.552)

55
(0.700)

44
(0.690)

35.5
(0.644)

Case I
(β0=0.5)

m∗ 200 82
(0.821)

63
(0.822)

49
(0.769)

57
(0.633)

51
(0.704)

79
(0.818)

62
(0.819)

47
(0.779)

55
(0.834)

400 105
(0.947)

80
(0.941)

61
(0.894)

74
(0.784)

62
(0.847)

105
(0.940)

80.5
(0.926)

59
(0.885)

77
(0.881)

800 135
(0.964)

103
(0.952)

69
(0.923)

90
(0.843)

75.5
(0.889)

135
(0.959)

89
(0.958)

60
(0.933)

115
(0.843)

100 20
(1.000)

14
(1.000)

11
(1.000)

12
(1.000)

11
(1.000)

20
(1.000)

14
(1.000)

11
(1.000)

Case II
(β0=1.05)

m∗ 200 26
(1.000)

16
(1.000)

11
(1.000)

13
(1.000)

11
(1.000)

25
(1.000)

16
(1.000)

10
(1.000)

400 29
(1.000)

18
(1.000)

11
(1.000)

13
(1.000)

11
(1.000)

30
(1.000)

18
(1.000)

11
(1.000)

800 32
(1.000)

19
(1.000)

12
(1.000)

13
(1.000)

12
(1.000)

32
(1.000)

18
(1.000)

10
(1.000)

100 29
(0.994)

23
(0.993)

20
(0.991)

24
(0.989)

21
(0.990)

30
(0.996)

23
(0.995)

19
(0.993)

Case III
(β0=1)

m∗ 200 37
(1.000)

26
(1.000)

19
(1.000)

24
(1.000)

21
(1.000)

37
(1.000)

26
(1.000)

19
(1.000)

400 42
(1.000)

29
(1.000)

20
(1.000)

25
(1.000)

21
(1.000)

42
(1.000)

29
(1.000)

20
(1.000)

800 47
(1.000)

31
(1.000)

21
(1.000)

25
(1.000)

22
(1.000)

47
(1.000)

29
(1.000)

21
(1.000)

Note: For each DGP, we report the median detection delay for only the cases where a changepoint is
detected (thus leaving out the cases where no changepoint is detected). Numbers in round brackets
represent the empirical rejection frequencies.

6. EMPIRICAL APPLICATIONS

We validate our approach through two empirical applications, both involving
(potentially) nonstationary data. In Section 6.1, we consider a ‘pure’ RCA model
with no covariates, and use it to detect daily Covid-19 hospitalizations; in Sec-
tion 6.2, we consider and RCA model with covariates, and use it to detect changes
in the dynamics of house prices.8

8Further results can be found in Section B of the Supplementary Material. Here, we would also like to point out that,
by way of robustness analysis, we have also carried out our empirical exercises using a weighted-sum-of-covariance
estimator for the long-run variance s2, using the formulas suggested in Horváth and Trapani (2023a, eqns. (3.5)–
(3.7)). Results are essentially the same, which indirectly confirms the assumption that

{(
εi,1,εi,2

)
, −∞ < i < ∞}

is
an i.i.d. sequence.
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Table 5. Online changepoint detection for Covid-19 daily hospitalization -
England data.

Changepoint 1 Changepoint 2 Changepoint 3

28 August 2020 4 November 2020 27 January 2021

β̂ = 0.995
[11 April 2020–15 August 2020]

β̂ = 1.010
[29 August 2020–29 October 2020]

β̂ = 1.002
[5 November 2020–31 December 2020]

Note: The series ends at 30 January 2021. We use the logs of the original data (plus one, given that, in
some days, hospitalizations are equal to zero): no further transformations are used.

For each changepoint, we report the left WLS estimates of β0 - i.e., the value of β0 prior to the
breakdate; we report the sample on which estimation was performed in square brackets, based on the
changepoints identified using the test by Horváth and Trapani (2023a).

6.1. Sequential Monitoring of Covid-19 Hospitalizations

We consider daily data on Covid-19 hospitalizations. There is a huge literature
on the application of time series methods to the reduced form of epidemiological
models; Shtatland and Shtatland (2008), inter alia, advocate using a low-order
autoregression as an approximation of the popular SIR model, especially as a
methodology for the early detection of outbreaks; and Horváth et al. (2024) apply
the RCA model to a similar dataset, detecting several changepoints. In this context,
it is important to check whether the observations change from an explosive to
a stationary regime (meaning that the epidemic is slowing down), or vice versa
whether they change from a stationary to an explosive regime (corresponding to a
surge in the epidemic). Our dataset consists of daily data for England recorded
between 19 March 2020 and 30 January 2021, i.e., spanning the period from
approximately the first lockdown (which was announced on 23 March 2020), until
after the third and last lockdown of 6 January 2021. We transform the series into
logs (plus one since on some days the number of hospitalization is zero); no further
pre-processing is applied.9

We use a “pure” RCA specification with no covariates. The purpose of our
exercise is to ascertain whether public health authorities, back in 2020, could have
benefited from the use of a sequential monitoring procedure to flag changes in the
dynamics of daily hospitalizations, thus informing their decisions. We have used
ψ = 1/2 in gm,ψ (k) in (2.5); based on the empirical rejection frequencies reported
in Tables 1–3, we use the critical values ĉα,0.5 defined in (3.8);10 in all scenarios
we set the length of the monitoring horizon always equal to the training sample
size, i.e., m = m∗, which, according to the results in Tables 1–3, always ensures
size control.

9The data are available from https://ourworldindata.org/grapher/uk-daily-covid-admissions?tab=
chart\&stackMode=absolute\&time=2020-03-29.latest\&region=World

See also https://www.instituteforgovernment.org.uk/sites/default/files/2022-12/timeline-coronavirus-lockdown-
december-2021.pdf, for a timeline of the UK Government decisions on lockdown and closures.
10Results with different values of ψ - and with ψ = 1/2 and asymptotic critical values—are available upon request.

https://doi.org/10.1017/S0266466625000052 Published online by Cambridge University Press

https://ourworldindata.org/grapher/uk-daily-covid-admissions?tab=chart$\setminus $&stackMode=absolute$\setminus $&time=2020-03-29.latest$\setminus $&region=World
https://www.instituteforgovernment.org.uk/sites/default/files/2022-12/timeline-coronavirus-lockdown-december-2021.pdf
https://doi.org/10.1017/S0266466625000052


MONITORING RCA MODELS 27

By way of preliminary analysis (and also to assess how our online detection
methodology fares), in Section B.2 of the Supplementary Material we apply the
test by Horváth and Trapani (2023a) to the whole sample (Table B.2, in the Supple-
mentary Material). In particular, after the closure of the education and hospitality
sectors in all UK nations announced on 23 March 2020 (and implemented 3 days
later), a changepoint is found at 10 April 2020, indicating that the lockdown had
started to “bite” after that date; subsequently, another changepoint is found towards
the end of August, which can be naturally interpreted as the beginning of the second
wave in the UK, after an increase in travelling during the holiday season. Hence,
we use, as the training sample, the period between 11 April 2020 and 15 August
2020, with m = 127. We find evidence of a changepoint on 28 August 2020. As can
be seen in Table B.2 in the Supplementary Material, the ex-post test by Horváth and
Trapani (2023a) finds a break at August 26th. Clearly, a direct comparison between
the two tests is not meaningful, since ex-post detection uses the information
contained in the full sample, whereas online detection cannot make use of it—thus
putting the latter at a disadvantage compared to the former. Still, there is (only)
a two days delay between the two procedures. Moreover, the August changepoint
was officially acknowledged by the Prime Minister on 18 September 2020; hence,
our sequential monitoring procedure could have brought forward public health
decisions. The value of β after the break is above 1, indicating explosive dynamics
in Covid-19 hospitalizations. Table B.2 in the Supplementary Material indicates
that there was a further break on 29 October 2020, corresponding to the lockdown
at the end of that month. Hence, we restart our monitoring procedure, and we use
the training sample 29 August 2020 till 29 October 2020, with m = 61; under an
explosive regime, this should suffice to ensure size control and short detection
delay, according to the results in Tables 3 and 4. Results are reported in Table 5.
A changepoint is flagged on 4 November 2020, with a decline in β indicating the
effect of the closures and also of the growing concerns about a second wave. The
break is detected very close to (and indeed before) the lockdown, suggesting that
lockdowns tended to occur when a turning point in hospitalizations had already
occurred, or was “in the making”. Such evidence can be read in conjunction
with the results in Table B.2 in the Supplementary Material, and also with Wood
(2022), who, albeit with a different methodology and focus, finds similar results
for hospital deaths. Finally, we carry out monitoring using a training sample
between 5 November 2020, till 31 December 2020, thus having m = 58. We find a
changepoint on 27 January 2021, i.e., two weeks later the break found with the ex-
post test by Horváth and Trapani (2023a), and three weeks later after the national
lockdown announced on 6 January 2021. In Section B.2 of the Supplementary
Material, we also report the findings when using the test by Otto and Breitung
(2023), which confirm our findings here (although we point out that, strictly
speaking, the test by Otto and Breitung, 2023 is not designed for an RCA model,
nor is it designed for the case of nonstationary data).

In conclusion, the empirical evidence presented above shows that our RCA-
based approach to online changepoint detection is suitable to detect the onset (and
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the receding) of a pandemic with short delays, thus being a recommended item in
the toolbox of public health decision-makers.

6.2. Sequential Monitoring of Housing Prices

We apply our sequential detection procedures to the online detection of a change
in housing prices in Los Angeles at the end of the first decade of the century.
Horváth and Trapani (2023a) apply an RCA-based, ex-post changepoint test, and
find evidence of such a bubble starting around 4 February 2009, when, after a
period of “hard landing”, prices stabilized;11 we also refer to a related paper by
Horváth, Liu, and Lu (2022), who use monthly data. We use Los Angeles as a case
study to check how timely online detection is, and also to assess the robustness
of our results to the choice of the training and monitoring sample sizes, and the
benefit of adding covariates. In our application, following Horváth and Trapani
(2023a), we use (logs of) daily housing prices.12

All our monitoring exercises start at 15 January 2009; Horváth and Trapani
(2023a) find no changepoints between 4 May 2006, and 3 February 2009, which
entails that the non-contamination assumption during the training period is satis-
fied in all cases considered. We monitor for changepoints using several alternative
models. In addition to the basic RCA specification, with no covariates, we also
use different combinations of regressors, including: two variables that are closely
related to the risk-free interest rate, taking into account the opportunity cost of
capital (the Moody’s Seasoned Aaa Corporate Bond Yield, and the 10 Year US
Treasury Constant Maturity Rate); a measure of volatility (namely, the VXO
volatility index); and a measure of real economic activity (we use the Lewis–
Mertens–Stock Weekly Economic Indicator, WEI13). All regressors are taken from
the FRED St Louis website. The risk-free interest rate proxies and the volatility
measure are transformed into logs. Applying standard unit root tests, and also the
test by Trapani (2021) designed for the RCA model, to these explanatory variables,
we find overwhelming evidence of a unit root in all of them during the period 28
March 2008, corresponding to the earliest starting point for the training sample,
and 30 October 2009, corresponding to the latest ending point for the monitoring
horizon (see Section B.3 of the Supplementary Material for details); hence, we
employ their (demeaned) first differences. As far as the WEI is concerned, it
comes at a weekly frequency, and we use its weekly value for each day by way
of disaggregation; other disaggregation methods could be employed following the
Mixed-Data Sampling literature (MIDAS; see e.g., Ghysels, 2018), e.g., using a
weighted average interpolation, but we found that these did not make virtually
any difference in our results (in fact, marginally worsening the detection delay).

11See Section B.3 of the Supplementary Material for a plot of the data.
12We use the daily data constructed by Bollerslev, Patton, and Wang (2016), and we refer to that paper for a description
of the datasets.
13See Lewis et al. (2022) for a thorough description.
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Table 6. Online changepoint detection for Los Angeles daily housing prices.

Model: yi = (
βi + εi,1

)
yi−1 + εi,2 Model: yi = (

βi + εi,1
)

yi−1

+λ1x1,i +λ2x2,i + εi,2

m∗ 100 200 m∗ 100 200

m m

100 9 June 2009
[no changepoint found]

15 June 2009 100 2 June 2009 2 June 2009

200 9 June 2009
[no changepoint found]

15 June 2009 200 3 June 2009 10 June 2009

Model: yi = (
βi + εi,1

)
yi−1 +λ1x1,i yi = (

βi + εi,1
)

yi−1 +λ1x1,i

Model: +λ2x2,i +λ3x3,i + εi,2 +λ2x2,i +λ3x3,i +λ4x4,i + εi,2

m∗ 100 200 m∗ 100 200

m m

100 2 June 2009 2 June 2009 100 18 May 2009 18 May 2009

200 3 June 2009 10 June 2009 200 2 June 2009 2 June 2009

Note: For each combination of m and m∗, we report the estimated breakdate. For all combinations of
m and m∗, monitoring starts on 15 January 2009. When m = 100, the training sample covers the period
20 August 2008, till 14 January 2009; when m = 200, the training sample covers the period 28 March
2008, till 14 January 2009. Similarly, when m∗ = 100, the monitoring horizon stops at 9 June 2009;
when m∗ = 200, the monitoring horizon stops at October 30th, 2009.

We have used the following notation for the regressors: x1,i denotes the 10 Year US Treasury
Constant Maturity Rate, x2,i denotes the Moody’s Seasoned Aaa Corporate Bond Yield, x3,i is the VXO
volatility index, and x4,i is the WEI. Horváth and Trapani (2023a) find evidence of a changepoint on
3 February 2009, applying ex-post changepoint detection to the period 5 January 1995–23 October
2012. The deterministic part of the autoregressive coefficient, β, is found to be equal to 0.99931 in the
period before the changepoint, and 1.00007 afterwards.

No further pre-processing is carried out. As far as implementation is concerned,
we have used ψ = 1/2 in g(x)

m,ψ (k) in (4.5); in the case considered, the data have
an autoregressive coefficient whose deterministic part is close to unity during the
training period; in Table 6, we report results using the asymptotic critical values
cα,0.5.14

Results in Table 6 show that adding covariates can potentially lead to meaningful
improvements in terms of detection delay: a measure of economic activity such as
the WEI index, in particular, seems to contain relevant information to model the
dynamics of house prices. We also note that detection delays seem to be around 4
months, which may be a consequence of the relatively small change in β before
and after the change. Interestingly, results are unaffected by the size of the training
sample m, but they do differ if m∗ changes. This is a purely mechanical effect, due
to the increase in the asymptotic critical values as m∗ increases, as also noted in
Section 5.

14In Table B.5 in the Supplementary Material, we report results obtained with ĉα,0.5, which show that differences, if
any, are minimal.
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7. DISCUSSION AND CONCLUSIONS

We propose a family of weighted CUSUM statistics for the online detection of
changepoints in a Random Coefficient Autoregressive model. Our statistics are,
in particular, based on the CUSUM process of the WLS residuals, and we study
both the standard CUSUM, and the so-called Page-CUSUM monitoring schemes,
which is designed to offer higher power/shorter detection delay. In the case of
the standard CUSUM, we also study the standardized version using ψ = 1/2,
obtaining, under the null, a Darling–Erdös limit theorem. In this case, seeing
as the asymptotic critical values are a poor approximation leading to an overly
conservative procedure, we also propose an approximation which works well
in finite samples, avoiding overrejections. As our simulations show, the use of
weighted statistics is particularly beneficial under the alternative, with detection
delays decreasing as ψ increases. Whilst, for the ease of exposition, we focus on
the RCA case with no covariates, we also extend our theory to include exogenous
regressors, which are allowed to be weakly dependent according to a very general
definition of dependence. Simulations show that our procedures broadly guarantee
size control; indeed, our experiments indicate that, for any given training sample
size m and monitoring horizon m∗, it is always possible to choose the appropriate
weighing scheme to ensure the best balance between size control and timely
detection. This is reinforced by our empirical illustrations, showing that when our
methodology is applied to the online detection of epidemiological and housing
data, it manages to find breaks very quickly, even when compared against ex-post
detection methodologies.

Importantly, building on the well-known fact that, in an RCA model, WLS
inference on the deterministic part of the autoregressive parameter is always Gaus-
sian, irrespective of whether the observations form a stationary or nonstationary
sequence, our monitoring procedures can be applied to virtually any type of
data: stationary, or with explosive dynamics, or on the boundary between the two
regimes, with no modifications required. Hence, our methodology is particularly
suited, as a leading example, to the detection of both the onset, or the collapse, of a
bubble (when using financial data), or of a pandemic (when using epidemiological
data). Other cases also can be considered, e.g., monitoring for changes in the
persistence of a stationary series such as inflation, and the extension of the basic
RCA specification to include covariates should enhance the applicability of our
methodology.

This article is part of a wider research program. Our methodologies and pro-
posed tests can also be extended to other nonlinear models where the phenomenon
known as “volatility induced stationarity” holds.15 A prime example is the Double
AutoRegressive model (DAR) studied by Ling (2004) and Cavaliere and Rahbek
(2021), inter alia, defined as

yt = βyt−1 +ηt
(
σ 2

1 +σ 2
2 y2

t−1

)1/2
, (7.1)

15We are grateful to the Co-Editor for suggesting this possible extension.
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where ηt is i.i.d., with mean zero and unit variance. Letting the information set
available up to t − 1 be defined as Ft−1, it is easy to see that E (yt|Ft−1) = βyt−1,
and Var (yt|Ft−1) = σ 2

1 + σ 2
2 y2

t−1, which entails that the DAR model is second-
order equivalent to the RCA of (2), and that testing for the constancy of β in
(7.1) is tantamount to testing for the constancy of the conditional mean function,
similarly to the case of an RCA model. Furthermore, Ling (2004) notes that, under
the assumption of Gaussian ηt, the DAR and the RCA models are equivalent
in distribution. Heuristically, this suggests that Maximum and Quasi Maximum
Likelihood based inference for (2) and (7.1), studied in Aue and Horváth (2011)
and Cavaliere and Rahbek (2021) respectively, should yield equivalent results; in
turn, seeing as the WLS estimator is first-order equivalent to QML in the context
of (2), the same can be expected when applying the WLS estimator to (7.1). This
suggests that our tests, which are designed for (2), could be applied to test for
the constancy of β even if the true DGP is the one in (7.1). By the same token,
our methodologies can be applied to monitoring Garch-type processes (Horvath,
Trapani, and Wang, 2024).

Further, in Section 4 we have considered (for the first time in the literature, to
the best of our knowledge) an RCA model with covariates. In Assumption 4.2, we
need to rule out any form of endogeneity in order for our asymptotics to hold.
However, the literature has investigated the issue of monitoring using models
with endogenous covariates; in particular, Kurozumi (2017) studies a family of
procedures based on the weighted CUSUM process based on residuals using both
the Instrumental Variable (IV) and the OLS estimators; Kurozumi (2017) shows
that (in the presence of endogeneity) procedures based on the OLS residuals can
have higher power than IV-based ones, at least when the break occurs early in the
monitoring period. This immediately suggests that, even in our context, estimation
and changepoint testing are two separate tasks: the former requires IV (or a similar
technique that controls for endogeneity), whereas the latter seems to be better
served using a Least Squares estimator, as also discussed in Perron and Yamamoto
(2014) and Casini and Perron (2019).16 Extensions of the results in Section 4 to
the case of endogenous regressors are currently under investigation by the authors.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/
S0266466625000052.
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