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STRESS VARIATIONS WITH ICE FLOW OVER
UNDULATIONS

By W. F. Buop
(Antarctic Division, Department of Supply, Melbourne, Victoria, Australia)

ArsTRACT. The analysis of steady-state flow over bedrock perturbations of Budd (1970[a]) is extended
to evaluate the stress variations associated with the flow. In particular the four separate terms of the funda-
mental one-dimensional (longitudinal) stress equation (Budd, 1968) are examined to show explicitly how
the longitudinal stress gradient G, the base stress =, the surface slope stress s, and the integrated second deriva-
tive of the shear stress 7, all vary over a given wave.

The result shows an error of a factor of 2 in some earlier studies relating longitudinal stress variations to
the slope. This error resulted from the erroneous assumption that the basal stress remains constant at its
regional value. In fact the basal stress varies over the undulations in a similar way to the longitudinal
stress gradient, and this is the same as the surface slope stress for long waves, but for short waves (=4< or
less) requires the addition of the fourth term T, which then becomes dominant.

ResuME.  Variations des efforts avec I'écoulement de la glace suv des ondulations. L’analyse de I'écoulement
permanent sur les irrégularités du lit rocheux de Budd (1970 [a]) est étendue pour estimer les variations
de Peflort associées a I'écoulement. En particulier, les quatre termes séparés de I'équation fondamentale
(Budd, 1968) des efforts selon une seule dimension (longitudinale) sont examinés pour montrer explicitement
comment le gradient G de I’effort longitudinal, 'effort a la base 7, leffort a la surface s et la dérivée seconde
intégrée de l'effort de cisaillement 7 varient tous suivant un rythme ondulatoire donné.

Le résultat montre une erreur d’un facteur 2 dans quelques travaux antérieurs relatant la variation
longitudinale des efforts selon la pente. Cette erreur résultait de Phypothése erronée que 'effort a la base
restait constant a sa valeur moyenne pour le secteur considéré. En réalité, Ueffort 4 la base varie avec les
ondulations de la méme maniére que le gradient de Ieffort longitudinal et il en est de méme pour Peffort a
la_surface dans le case des longues ondulations, alors que dans le case des courtes ondulations (a peu prés
4< ou moins) il faut ajouter le quatriéeme terme 7 qui devient prédominant.

ZUSAMMENFASSUNG.  Spannungsschwankungen bei Eisfluss iiber wellenformige Unebenheiten. Die Analyse des
stetigen Fliessens tiber Stérungen im Felsbett von Budd (1970 [a]) wird zur Bestimmung der mit dem
Fliessen verbundenen Spannungsschwankungen erweitert. Im einzelnen werden die vier unabhingigen
Grossen der eindimensionalen (longitudinalen) Spannungsgleichung (Budd, 1968) untersucht, um explizit
zu zeigen, wie der longitudinale Spannungsgradient G, die Spannung am Grund 7, die Spannung
infolge Oberflichenncigung s und das Integral der zweiten Ableitung der Scherspannung 7 iiber einer
gegebenen Welle variieren,

Das Ergebnis weist einen Fehler mit dem Faktor 2 in cinigen fritheren Untersuchungen nach, die
longitudinale Spannungsunterschiede auf die Neigung zuriickfithren. Dieser Fehler geht auf die irrige
Annahme zuriick, dass die Spannung am Grunde ihren értlichen Wert konstant beibehilt. Tatsichlich
dndert sie sich tiber Undulationen dhnlich wie der longitudinale Spannungsgradient; dieser ist derselbe
wie die Spannung infolge Oberflichenneigung fiir lange Wellen, fiir kurze Wellen (=4.Z oder weniger),
hingegen ist die Addition der vierten Grésse 7 notwendig, die dann iitberwiegt.

1. InTrRODUCTION
1.1. Background

T'he equilibrium equations for an ice mass concern stress gradients at a point. The integral
of these equations through the ice thickness provides the fundamental cquation for the mean
stress of a column along a flow line in terms of the boundary dimensions. Through the intro-
duction of a flow law this fundamental “one-dimensional™ stress equation provides the
mechanism for studying the motion of the ice along the flow line. The resulting velocities
and strain-rates, together with the continuity equation allow the history of change of the
icc mass to be calculated as a one-dimensional problem. In addition there are many other
uses of this equation. Robin (1967) showed that surface slope variations along a line of flow
in Greenland could be interpreted in terms of varying longitudinal stress gradients. Budd
(1968) showed that surface slope deviations along a flow line of the Wilkes ice cap were
proportional to the measured surface strain-rate gradients, and thereby calculated effective
flow-law parameters of the ice. Collins (1968) analysed the derivation of the expression for
the longitudinal stress deviator to investigate the conditions under which Robin’s results
apply. Nye (1969[b]) showed that a simpler form of the equation could be derived with
respect to a variable longitudinal axis parallel to the surface for each point. Nye examined

i

https://doi.org/10.3189/50022143000013162 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000013162

178 JOURNAL OF GLACIOLOGY

the hypotheses of Robin and Budd that the surface slope varied with longitudinal stress or
strain-rate gradients and posed the question: why should the basal stress of the ice remain at
its regional value while the longitudinal stress gradient varies with local slope deviations?
The following analysis provides an answer to this question.

The results of two previous papers by the author (Budd, 1970[a], [b]) are combined to
show how the various stress components are distributed in a simple model of flow over undula-
tions. As before we restrict our study to two dimensions.

1.2. The longitudinal stress equalion
It was shown by Budd (1970[b]) that for an arbitrary homogeneous medium for which

the quasi-static equilibrium stress equations under gravity hold viz.:

~ ~
00y ; OTxz ( ; )
o e = T
ox 0z P8z '
dos OTzz
= P4z (2)

= ~
(24 oxX

where p is the density of the medium and pgr and pg. are gravitational weight components

in the x and z directions for any orthogonal axes system; that the following general integral

equation holds
Iz

d(or—o:) do; ’ Tz
[ 7 ae = et *(E ot Tent | | g den @
21 &1 &
where z;(x) and z,(x) are any smooth, single-valued, distinct boundary curves in the medium,

R=a—% (4)
and 74z, and 742, are the (x, z) shear-stress components at these boundaries.

This equation may be used to study the motion of an ice mass along its longitudinal profile
by choosing z, for the upper boundary, z, for the bed, and the axis x in the general longitudinal
direction (cf. Fig. 1). It was also shown that for small slopes and stress gradients, a good
first-order approximation was the equation of Budd (1968)

HORIZONTAL

ROCK

Fig. 1. Coordinate system and boundaries for longitudinal stress equation.

https://doi.org/10.3189/50022143000013162 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000013162

STRESS VARIATIONS WITH ICE FLOW OVER UNDULATIONS 179

B Porsa )
2 A = pgza—7b~ Xz dzdz lg)
- ,
where 'y = QJ\ (oz—0z) dz (6)

is the mean stress deviator through the column, « is the surface slope, 7y is the basal shear
stress (parallel to the bed), and x is taken generally along the glacier and it is not very im-
portant whether it is along the surface or bed provided the inclinations are small.

Equations (3) and (5) in effect represent the total longitudinal stresses on a column from
the surface to the bed. Similarly to Nye (196g[b]) we shall examine the four individual
terms of Equation (5).

1) G = 0Z& z/¢x is the stress-deviator gradient term and represents the net longitudinal stress
on the column of the ice up- and down-stream. It determines whether the column will
extend or compress in the line of motion.

i) s = pglx is the down-slope stress and represents the down-slope component of the
gravitational stress on a uniform slab resting on an inclined plane of slope =.

(iii) 7y is the basal stress, or [riction, term which, for the uniform slab on the inclined plane,
would balance the slope term.

e
of the medium to a varying stress gradient in the line of motion. It is usually associated
with curved particle paths. For slowly varying stresses or long waves it becomes negligible
(irrespective of the magnitude of 7,.) but for short-wave fluctuations it becomes very
important. Budd (1968) indicated that for variations of wavelength about four times
the ice thickness or shorter this term should be considered.

%7z,
() T'= ff e dz dz may be termed the variational stress since it represents the resistance

We note here that Equations (3) and (5), having been derived directly from the equi-
librium equations, apply whatever the flow law.

1.5. lce flow over sinusoidal bedrock perturbations

Budd (1g70[a]) considered the motion of a medium of uniform thickness 2 down a
uniform slope & on which small harmonic perturbations

b = b coswx (7)

were superimposed, cf. Figure 2. The method used was to consider the perturbations to
the flow down a uniform slope caused by the bedrock undulations. The model chosen was
one in which most of the horizontal shear occurred near the bed so that for the perturbations
the velocity in the upper region could be taken as approximately uniform. Also for this
section of the medium a constant viscosity was taken so that the longitudinal strain perturba-
tions were proportional to the longitudinal stress deviators.

This model is a simpler and more restrictive medium than the general medium for which
Equations (3) and (5) for stresses apply.

We adopt the same simple model here as used in Budd (1970[a]) (cf. Fig. 2) and the same
axes system and boundary conditions, viz.
(1*) Upper boundary. The vertical stress for the perturbed upper surface is taken as

oz)s = —pg(hi cos wx |k, sin wx)
= —pgh 8)

where / is the height above the unperturbed surface z = 2. The sign has been chosen negative
here (as opposed to positive in Budd 1970[a]) to keep tensile stresses positive.
2*) Lower boundary. The vertical velocity at the lower boundary oy, is taken as
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m=VE—VE (9)

(3*) Steady-state condition. For the upper boundary the steady-state surface condition for
the vertical velocity at the surface (vz) leads to
dh

vz = Vo = Va = V(o cos wx—+oe sin wx) (10)

where o, and «, are to be determined.
The stress function to be found to fit these boundary conditions is taken as
¢ = (Aye—vz | A,ev?) cos wx+(Ae~v2+ A,e%) sin wa. (11)

The previous paper used a viscous flow law defined by:

ou oy
— = — —_=1 —
27 x - 27 a,z 2(UI UZ) (12)

(where 7 is the effective mean viscosity parameter) to determine the 4; of Equation (11)
which satisfy the boundary conditions Equations (8), (9) and (10), for the purpose of obtaining
the surface profile, i.e. o, and «, in terms of the bed profile, b — b, cos wx, the ice thickness .,
the velocity 7 and the mean viscosity parameter 7.

HORIZONTAL

Fig. 2. Flow down uniform slope with sinusoidal perturbations.

1.4. Aim of the present paper

The aims of the present analysis can now be given specifically:

(1) First we wish to derive a general result for the stresses in the longitudinal stress
equation. The individual components of stress follow from the stress function (1 1) and the
surface slope from the stress boundary condition (1*). Hence the individual terms of
Equation (5) can be calculated and the relations between them obtained. 'This will be quite
general and independent of the flow law or the state of balance.

(2) Using in addition the further conditions of (i) uniform velocity and flow parameter
and (ii) the steady-state continuity, i.e. boundary conditions (2*) and (3*), a solution for this
special case can be obtained which allows the magnitudes of the various terms to be assessed.

(3) Finally the condition of steady state can be relaxed to show that the motion is inde-
pendent of the state of balance provided the surface variations are small.
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2. GENERAL STRESS EQUATION

We begin by simply evaluating the stress components from the stress function in terms of
the constants 4; which in general are determined by additional boundary conditions (e.g. 2*
and g%).

We note that without loss of generality we may chose 4, = A,, i.c. make the cos wx
component of the base shear stress perturbation 7, zero when z = 0 and x — o. This is
merely specifying the zero of the x axis with respect to ¢, and in addition makes this context
compatible with the next section and the steady-state flow over undulations of Budd (1970[a]).

The stress function is then

¢ = (Aie~v2+4 A,ev%) sin wx-+24; cosh wz sin wx (13)
The stress components follow directly from the definition of the stress function cf. Budd
(1970[a]).

oz = w?(d,e7v24 4,ev?) sin wx+2w?d; cosh wz cos wx (14)
== (15)

= %(‘72_0’2), (16)
—Toz = w?(— A6 4 4,e9%) cos wx—2w?d, sinh wz cos wx. (17)

The next step is to determine the terms ¢ and T as integrals through the ice thickness.
For Equation (5) the limits of the integration were the irregular upper and lower boundaries,
and the equation is not exact.

Equation (3) is exact and we note that although z,(x) and z,(x) may in general be irregular
functions of x, they are arbitrary, and this generality allows an important simplification to
be made here. In this case we choose the limits to be the straight-line means of the surface
and the bed of Figure 2, viz. 2 = o and z = 2. They could of course be taken at any other
two levels in the medium, e.g. cf. Figure 4.

Now Equation (3) becomes

o o z
d(oz—o c 027,
J.(—xﬂ_Z) dz = Png‘Fz«_t,jf:) —722)0+722)z+f f — dzdz. (18)
ex ix )z cx?
< < <
Also we note that for the unperturbed flow this equation becomes simply (cf. Budd 1970[a])
sz)z:~pgx~%' (19)
all other terms being zero.
Furthermore from Equation (8) for the surface
I?'Uz dh
Zg)z = PEL T (20)

= pgsa
where « is the perturbation slope difference from the mean.
Equation (18) now becomes, for the perturbations, noting that with the constant limits
o and { we can simply interchange the differentiation and integration,

o 4
6 s ) 0722 _
2 2 —: Pg'zﬁ‘é“"n}z—ﬁcz)n*‘ff ox? dzdz (21)
= &
0
1 Tr—0a.
where = zj‘%dz
%

is the mean longitudinal stress deviator through the column.
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Equation (21) is now the fundamental relation for which we wish to examine the part
played by its various terms. Using a similar notation to that introduced in section (1.3) we
may write for brevity

2G = s+rg—mp+T. (22)
The first term is found from Equation (16) by performing the integration and differentiation
viz.
00« . . :
o = — w*{— A% 4,007} cos wx+(— A+ A,) cos wxt-w?2d; sinh wl sin wx.  (23)
7

The term s is found from Equations (20) and (15) as

pelo = —wdZ[Ae v A,ev%] cos wx-twd[24; cosh w ] sin wa. (24)
For the surface 7¢ is found from 74, of Equation (17) by putting z = J, i.e.
T22) 7z = —w—AiewZ 4 4,697} cos wx+w?2d; sinh wl sin wy. (25)

Similarly for the base 74z)q = 722 when z = 0
Trz)g = —w(—A;4 A4,) cos wx. (26)

Using (17) we evaluate 7 as follows:

a2
(a:fz = + w4 —Ae 974+ A,ev%) cos wx—w*d;2 sinh wz sin wx, (27)
: ;
EZ'TR z e :
— dz = L+ wi(de w24 A,e9) | cos wx—wid;2 cosh wz| sin wx (28)
ox? 2 <
g (o [®
ey dz dz = w?[(—4de-024 Aev?) | twZ(Ae~0Z 4 A,e0Z)] cos wx-
( <
< <
4 w?[24;(sinh wJ— Jw cosh )] sin wx. (29)
Finally
J J‘ (;;fz dzdz = —w?{—AeZ4 A,evZ} cos wx+w?(—A+4z) cos wa+
& & + w3 Z[Ae~0Z + A,ev%] cos wx+w?2d; sinh wl sin wx—
—w3[24; cosh ] sin wx. (30)

This completes the evaluation of the individual terms of Equation (22). To aid the comparison
of the terms the same brackets have been used for the same expressions in each term. These
terms are now combined together in Table 1.

TABLE I, SEPARATE TERMS OF THE LONGITUDINAL STRESS EQUATION

— 5 +7s —Tn +T
3 [¥ al
= dz + pgla +Tre)z —Trz)o + J f E:-fz dzdz
&<
—2w?{—Ae 92+ Ae"Zcos wx —w?{—Ae 24 4,evZ}cos wy —w*{—Ae=®Z+ A,ePZ}cos wx
+2w?*(—A;+4;)cos wx Fe?(— A4, -+ 4,) cos wx 4w — A+ A;) cos wx
+2w?24, sinh w{ sin wx +w?24, sinh wJ sin wx +w?2d, sinh wl sin wx
—w3Z[A,e7?%+ A,e¥7] cos wx Fadl[de~®Z4 A,e%] cos wx
+ w24, cosh wl]sin wx —a*Z[24; cosh wl] sin wy
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It may not be surprising that the terms do all combine to satisfy Equation (23) exactly
since this was derived more generally in Budd (1970[b]), but it is quite interesting to see
the various relationships between the terms. The essence of the coefficient 2 of ( is that
cach of the terms of & occur twice (in different terms) on the right-hand side. It may be
surprising to some that ( and s in fact have no terms in common. 7 has a term in common
with all others. Some simple sub-relations may be written down which are also exact, e.g.

G = 73—, (31)
G =s+T, 132)
s =mp—7s—T. (33)

The first of these, Equation (31), simply expresses the equilibrium of the column in the line
of motion. When 7 is small, as we shall see is the case for small slopes (cf. next section),
this gives
G~ —7p. (34)

The second relation, Equation (32), shows that for small 7 (as we shall see is the case for
long waves) G ~ s, (not is).

Already we begin to see the answer to Nye’s question. The Robin—Budd hypothesis
may be simply expressed as

i) T £ #p (35)
where the bar represents the large scale regional average along the line of flow (x 207),
and

(i1) 2G ~ s (36)

where G and s are the variations in the longitudinal stress gradient and the surface slope

stress pglo.
The above analysis suggests

i) Th X —§ (37)
and 2G ~ 5—7y, (38)
(i1) or =3 (39)

This will be more clearly brought out, in the next section, in terms of actual magnitudes,
for the simple model described in section 1.3.

3- SPECIAL SOLUTION FOR STEADY-STATE FLOW

3.1. Delermination of stress terms

It is an easy maltter to determine the values of the constants A; of the stress function,
Equation (13), and Tablel, for the special case of steady-state flow, and uniform velocity (1)
and flow parameter () through the thickness.

It was shown in Budd (1970[a]) that the continuity equation for the perturbations with
uniform velocity I” implied

I'% = VB =uwp (40)
S : .
.dh >

Vi = 7o = (41)

where 2, and vz are the velocity components perpendicular to x at the base and surface
respectively, cf. Iigure 2;

and B = B: cos wx (42)
is the given bedrock slope variation.
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These together with the flow law

u oo
27 ox =2 ox %(U-’FJUZ) L‘l’j)
where 7 is assumed uniform through the thickness, are sufficient conditions to determine the
constants A; of the stress function and the steady-state surface « in terms of §, I, and 4,

using Equation (16), viz.
Yor—0z) = w2(de 2+ 4,e9%) sin wx+w?(A;e7v24 4,e9%) cos wx (44)

and the stress boundary condition at the surface Equation (8):

oz)z = —pgh. (45)

The steady-state surface was determined by Budd (1g70[a]). A similar algebraic process
is required to determine explicitly the values of the 4;. This is given in the Appendix. Here
we require only the specific terms appearing in the stress terms of Table I. There are only
five different terms and the required expressions are also derived in the Appendix, viz.

hy oty
wi{— e it dueet) = pp~ = X5 (46)
sinh w.J =
w(—ditds) = —pglas —=— = —2 VB, (47)
w224, sinh w = —pg E = =igpd i, (48)
X wlx
w3Z[4e w2+ A,e0%] = —pglas, (49)
w3Z[24, cosh wZ] = pgla, (50)
where X = ;pflg:" (51)
as = (o2 4az?)h (52)

This directly allows us to construct a Table IT corresponding to Table I, showing the precise
values of each term of the longitudinal stress equation.

Tasre 11, LONGITUDINAL STRESS EQUATION FOR STEADY-STATE FLOW

2G = o8 +7s —7n +T
o z
835 s 927
2 % tpgla +7az)z —Tzz)o +.[ J. a‘;:s dzdz
ol
hy hy hy
—2pg — COS WX — pg — COS wx — pg — €Os wx
X X X
sinh wg sinh w.J sinh w<
—apglas oz €Oos wx — pglas o7 COS WX — pgas oz CO$ wx
hy . s s T s
—2,1g— sin wx — pg — sin wx — pg — sin wy
X X X
|- pela, cOS wx — pgla, COS wx
+ pgla; sin wx — pgla, sin wy
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3.2. The longitudinal stress equation
For typical ice flow conditions the ratio ¢ of the surface variations to the bed variations
is small, cf. Budd (1g70[a]), Budd and Carter (1971).

_ pEg? (evZ—emud)
W=V (wZp (53)

Some conditions may exist (e.g. where .J2/91 is small), for which this factor is not large
in which case Table IT gives the complete terms. In other cases

oy € oy, oy X og,

ng = < pgla.

Thus for small surface variations the term 74 may be neglected and the longitudinal stress
equation may be written as

2G ~ s—my+ T (54)
sinh w.J sinh w g sinh w.{
or 2pglos w—zx = pgilas (1 ‘*'7)"%50‘5 (1 _w—z): (55)
. ( 2 “)2 - (‘UZ 2
1.k 2p8 0 (I+ wf!") +) = pglos (2—4—(“;!') +...)+p_g.<_ot,;( 3!) +) (56)

This last equation shows that for long waves (w.{ small) the longitudinal stress gradient G,
the surface slope stress pgJe, and the base stress 7 are all approximately equal, and the fourth
term 7 is negligible. For short waves (w{ large) the fourth term 7 becomes large and the
variations in longitudinal stress gradient ¢ and basal stress 71, become greater than the surface
slope stress variations pglx by an equal amount. The magnitude of the expression

i (sinh wZ_I) B ((wz)z . (wz)4+--.)

pelns  \ wil 3T ' 5!

(57)

. . A o2m), _—
as a function of relative wavelength (— = —= | is shown in Figure 3.

< o]
This indicates that for wavelengths A & 4 or less the term 7 cannot be neglected
nor can the higher-order terms in the expressions for G and 7p,.

3

2.9. Surface strain-rate variations
In order to relate the stresses to measured surface strain-rates we note that the longitudinal
stress deviator at the surface, or rather for z = 2| is given by:

o'z)z = o sin wx—fgf COS wx (58)
w
050"z
therefore %r_).; = +pg o, cos wx+ pgla; sin wx (59)
= pggo.

This equation is exact and may be used directly to associate the surface strain-rate é, with
the surface slope variations « through

’
U’x)z
27}2.

(60)

é.z)Z =
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6+

A/Z ——

Fig. 3. Relative magnitude of variational stress, T, to slope stress, pga, for different wavelengths.
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T'his gives for the surface strain-rate variations

o (néz)z
gy

5 >, ‘
e = pgAx (61)

which differs from the relation of Budd (1968) by a factor of 2 since the parameter B used
there is related to the viscosity here, 5, by

2ni=10. (62)

Secondly the term on the left concerns surface values and not averages through the column.
However for small slopes and long waves it is apparent from the above that this also becomes
approximately the same as the average through the column. Again Figure 3 indicates the
magnitude of the error.

3.4. Calculation of surface slopes from steady-state flow

For calculations of the type made by Robin (1967) where the continuity equation for
average velocity through the column is used to obtain longitudinal strain-rates, Equations
(54), (55), (56) are relevant. Again there is a correction of a factor 2 required to Robin’s
formula and in addition for the higher frequencies the term 7 is required. For example for
the second half of the southern line from Camp Century the mean ice thickness is ¢. 1100 m
and the predominant mean wavelength ¢. 3.6 km. This gives A/ ~ 3.3. From Figure 3
this indicates an increase in stress (or decrease in calculated slope deviation) of about 709,
Both these features together may explain why Robin’s calculated surface slope variations
were much larger than the measured surface slope deviations, and thus further support his
use of the laboratory flow parameters extrapolated to lower strain-rates.

3.5. Variation of longitudinal and base stress with surface slope

Nye’s question can now be answered explicitly as follows. The empirical evidence for the
Robin-Budd hypothesis was one of proportionality, 1.e. the longitudinal stress (or strain-rate)
variations (- are proportional to the surface slope variations s or

G o s. (63)
The hypothesis was to make the assumption that the base stress stays at its regional value
while the surface slope variations caused variations in the longitudinal stress deviator gradient,

BT
ol 5 (64)
In fact we find for small surface variations

oG = s—ap T (65)

and in addition for long waves where 7 may be neglected
2G >~ s—p (66)
G~z (67)
G~ —p. (68)

The factor 2 difference between the relations was absorbed in the case of Budd (1968) in
the calculated flow parameter. In the case of Robin (1967), higher calculated surface slopes.
The reason for the presence of the factor of 2 is that the base stress does not stay constant at
its regional value but varies similarly to the surface slope for long waves. For short waves the
expressions for both the base stress and average longitudinal stress gradient through the
column require the addition of the higher-order term 7.
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4. (GENERALIZATIONS AND EXTENSIONS

4.1. Relaxation of steady-state condilion
If the surface variations are small the surface stresses (for z = J) are also small and so if
they may be neglected it does not matter much whether they are in a steady state or not.
If the surface stresses are neglected the base stress and longitudinal stress gradient are given by
sinh w{
G = Ty = pglay ———=— CO5 WX, (69)

wl
Using Equation (47) this can be expressed in terms of B;, 7 and 1" as
G ~ 7y = 29V Biw cos wx. (70)

This result still applies whether the surface slope is in exact balance or not. In this case the
surface slope variations are irrelevant. Or in other words for small surface variations compared
to the bed variations the base stress and longitudinal strain-rates are governed by the deforma-
tion of the stream-lines of the ice to conform to the bedrock profile. It so happens that for a
steady state a particular surface shape is formed which is simply related to the bed profile
and the motion, and thereby provides a further means of calculating the base stress or longi-
tudinal stress variations, directly from the surface. The stress effect and motion of non-steady
state or transient surface waves was indicated in Budd (1g70[a]).

4.2. Relaxation of uniform viscosity and velocity conditions

The generalization of the above discussion to take into account the variation of the flow
parameter with stress, temperature or crystal type etc. may be studied in the following way.
The stress solution still applies but the strain-rate solution will be somewhat modified. We
start from the expression for the modified stress deviator and the flow law, viz.

op—0,) = w(Aje w2+ A,e02) sin wx+24; w? cosh wz cos wx (71)
v
and 2 5= —3(oz—0z) (72)

where 7 is now a function of stress and temperature etc.

Since the stress analysis carried out in section 2 applies for any two boundaries z; and 2.,
parallel to the mean bed and distance J apart, we may divide the ice mass up into a number
of thin layers of thickness Ji, Zs. . . ., cf. Figure 4.

For the type of model considered here the viscosity and velocity may be expected to vary
considerably with depth but not appreciably in the longitudinal direction.

v
"——aﬁ_v"__i—-—— T e
L. 1 \ Va_
N § e S T
B = E \\ \_____’______,,--"
\ ‘ v,
,21 Iy L
”F—\“‘:«. i !
—— e
4 % | Y,
|

Fig. 4. Treatment of variable viscosity and variable velocity with depth.
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Hence by considering a sequence of increasing viscosities 7, 7. ... and velocities 17,

I, ... from the base upwards the boundary conditions
- o déb;
vp = Vit = Vi (73)

analogous to Equation (40) may be used where now the b; refer to the stream lines between
the various layers. In this way the decrease in amplitude and degree of phase shift of the
waves as well as the magnitudes of the stress variations at various levels may be traced through
the ice by repetition of the previous analysis using the sequence of specified velocity and
viscosity variations with depth. If a continuous analytical expression is available for 5 and
J” the strain-rate variation is given by

o2

’
v g x

'

T (74)

i

and the velocity variations can be found by integration.
The expression for the damping factor

. pe? sinh w.J _
V= W i

with  and V" in the denominator indicates that for typical profiles of velocity and viscosity
decreasing towards the bed the damping there of the high frequency bedrock variations is
even more greatly enhanced.

For the long waves which do penetrate to the surface, Equation (74) with % in the denomi-
nator indicates that it is the high resistance of the upper layers that is most relevant to the
surface variations i.e. the appropriate average viscosity is a weighted mean of the reciprocals
similar to a harmonic mean, or we may say that the resistances of different layers to the ice
motion combine somewhat like electrical resistances in series in that the highest resistances
are the most important.

The results of this section indicate that where the greatest shear is taking place necar the
bed then both the high-frequency bedrock variations and the lower viscosity near the bed
become unimportant in determining the major stress variations through the ice which are
primarily governed by the higher and more uniform velocity and viscosity of the upper
layers. This indicates that the simple analysis of the previous sections with uniform velocity
and viscosity will not be much affected by decreasing velocity and viscosity with depth
except for the high frequency variations near the bed. For the present study the base z = o
can be chosen at any level and in particular above the high shear layer near the bed.

4.3. Stress variations on a flat base

Suppose instead of undulations superimposed on a flat base we consider harmonic varia-
tions of the basal shear stress about its mean value on a flat bed according to Equation (70).
In this case the same solution describes the motion that takes place. The stream lines are
the same as before with undulating motion near the base being formed by the varying longi-
tudinal stress and strain-rates associated with the varying shear stresses.

It is obvious from Equation (70) that longitudinal stress gradient variations go hand in
hand with basal stress variations and vice versa. Both are involved with the resultant steady-
state surface slope variations. More complex variations of basal stress can of course be studied
by means of Fourier series or integrals. An interesting case of the basal stress varying on a
flat base is the situation where ice flows across a smooth but abrupt transition from grounded
to floating ice. This corresponds to a simple step function variation of basal stress. These
positions are often associated with a surface slope variation. It would be valuable also to
have measurements of the corresponding longitudinal strain-rate variations over such a
transition.
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4.4. Small-scale variations at the base

So far the study has been concerned with flow over the large-scale undulations which
have some influence on the surface. As we have seen the small-scale irregularities are quickly
damped out in the lower layers, and are not relevant to the study of surface variations. Several
studies of the effects of small-scale irregularities however have been made e.g. Lliboutry
(1968), Weertman (1964), Nye (196g[a]), so it is necessary to indicate here the transition
between large and small irregularities.

To do this we go back to the velocity distribution through the ice for the uniform flow of
the unperturbed state, cf. Budd (1970[a]). Here the velocity profile is given by

dV pgal\n

% - (% (76)
where we have taken a power law for flow with parameters n and B and B is in general
dependent on the ice temperature etc., & is the mean regional slope, and { = J—z is the

distance below the surface.
Suppose for the moment the simplest case in which n = 1 and B is constant

Vs = VH(”;%) (Z2—12). (77)

Here Fy is an unspecified boundary condition-—the sliding velocity of the base.
Now the perturbations to the basal stress are given by Equation (70) as

™ = QQI;ﬁIw COS wX.

If we average this value along the x axis for a distance large compared with the wavelength
A = 27w, we find it has negligible effect on the average basal stress, even though the varia-
tions become very high as the frequency w increases (, V. B, assumed constant). What is
more relevant to the effect on the motion is the energy dissipation throughout the ice. Con-
sider a stress variation near the base given by

Taz = 2V Biwe 2 cos wx. (78)
The energy dissipation for constant viscosity is given by
TIZéZZ — QZT]j Fzﬁlzwzt"z“'z COS8? wX. (79)

Now we integrate this expression throughout the ice over distances large compared with the
wavelength
[ | astre dx dz = n3V2B 2. (80)

(e}

.

For %, V, By, constant this expression increases indefinitely with w. However if we take the
integral in the vertical, instead of from zero, from some arbitrary small distance, say b,
(the amplitude of the variations) from the base then the expression for the energy dissipation
in the majority of the ice is given by

90 ao

Wy = J | astes dx dz = 93V 2Bi2we o, )
b

or

Considering variations in wavelength for constant amplitude this may be written
Wy — n3V 2hwdewb,

We notice that this expression tends to zero for very high w.
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If we consider a uniform spectrum of bedrock amplitudes we find that the expression
biwle=v¥ has a maximum for wh = 3/2 or

A = 4mb/3 (82)

indicating that for the ice above z — b the effect of the perturbations starts to decrease for
A << 47b/3.

For the region below this level the energy dissipation still increases with o but becomes
increasingly concentrated at the base. In spite of this the average base stress remains constant.

From Equation (77) we notice that the magnitude of the sliding velocity does not effect
the basal stress. The energy dissipation at the base due to sliding is 74y, So if this is to
decrease while 7, remains constant Iy must decrease. Thus the increasing frequency in
Equation (81) for the dissipation of energy can only go along with a decreasing sliding
velocity Fy so that as w—o0, F'h,—0 and Wy—o0, with the basal material in contact with the
bed motionless. In effect the motion can be described as the layer below z = b becoming
sheared off as A-—o0. Real beds however are much more complex but in two dimensions may
be approximated by Fourier series or integrals in which case steep edges or fronts in the
bedrock are features which may be described as having a strong concentration of high-
frequency terms. It is here that shearing of the ice may take place.

However it is at this stage that any simple treatment becomes somewhat academic because
of the many complications that need to be considered, e.g.

(1) regelation cf. Lliboutry (1968), Nye (1969[a]),

(2) water production and lubrication ¢f. Weertman (1962},

(3) effects of moraine on the bed and in the ice cf. Lister and others (1968),

(4) enhanced horizontal shear caused by the non-linearity of the flow law and the high

longitudinal strain-rates near the bed associated with the irregularities,

T'his latter does not appear to have been dealt with but may be a feature of apparent very
high flow-law exponents found in borehole shear near the bed, cf. Kamb and Shreve (1966).

In this paper we have taken a given ice thickness ., an average surface and bed slope z.
and a mean down-slope velocity I, to calculate the effect of undulations in the bed on the
motion. This does not gloss over the effect of small-scale irregularities but finds they are
only important in so far as their average over the larger scales determines the large-scale
motion including the mean velocity I, surface slope z, the ice thickness . and regional base
stress 7, = pgla. Nye (196g[a]) also found that it is the average bed spectrum of variations
that is relevant to the average base stress and velocity.

Since the large-scale base stress can be determined from Equation (59) for steady-state
flow of uniform thickness or more generally Equation (5) which requires only large-scale
data—ice thickness, surface slope, surface strain-rates, then it suggests that a theory of sliding
and basal stress can be developed from a macroscopic point of view.

5- SUMMARY AND CONCLUSIONS

Harmonic solutions of the stress function provide a relatively simple means of analysing
sinusoidal stress or strain-rate variations in a quasi-static moving medium. Applied to the
flow of ice over undulations this method enables each term of the longitudinal stress equation
to be determined and the relations between the stress terms evaluated. As a result, some
simple expressions are obtained for the relations between these various stress terms. In
addition to the longitudinal stress equation

26 = strsg—mp+7;
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an exact sub-relation for the longitudinal stress gradient term G in terms of the surface slope
term 5 = pg.Jx and the variational stress term T is

G=s+T.
An exact sub-relation between G and the base stress 7 and surface stress 74 1s
G = 15—
These apply whatever the flow law and whether or not the ice mass is in balance.
For small surface variations, 75 is negligible compared with the other terms giving
G~ E

For a simple model whose velocity and viscosity are uniform with depth in the upper layers,
and whose surface is in steady state, the variational stress is given by

g [(“’3—?2--1-(“’55!)%...]

and its variation with wavelength (A = 27/w) is shown in Figure 4. For long waves T is
negligible giving

G —mp~s

but for high frequencies it becomes very important and explains the absence of the effect of
any high-frequency bed variations in the surface. The main effect of high-frequency bed
variations is to impair basal sliding by energy dissipation until the wavelength becomes so
small that other effects such as regelation or lubrication become important.

For typical velocity and viscosity profiles which decrease with depth the high-frequency
bed variations become even less important and the ice reacts to the long waves with an
effective harmonic mean viscosity which places most weight on the upper layers.

MS. received 26 May 1970
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APPENDIX

DETERMINATION OF THE STRESS FUNGTION CONSTANTS Ai FOR STEADY-STATE FLOW WITH UNIFORM
VELOCITY AND VISCOSITY

To avoid excessive repetition or back reference yet maintain satisfactory completeness the following decimal
numbered equations are taken directly from Budd (1970[a], section 4).

(4.1) ¢ = (Ao~ vz 4e2) sin wx+A;(e 24 Ae ¥2) cos wx. (A1)
(4.5) $(oz—02) = w?(d;e” 3+ d,e ) sin wxr+ w?(die~ 924 A6~ ¥2) cos wr. (Az2)
d )

(2.16) —an d_‘_ = M=) (A3)
(4.7) —anp = —w(—A4ie~ ¥4 4,6 ¥2) sin wx— w(— A;e— W2 4.e ¥2) cos wx, (Ag)
= 29 VB, sin wx. (As)

Vi
(4-9) bl k) _Q’T—W‘S’, Ay = A, (A6)

_ ek
= (A7)

__ pe?
(4.20) iy 2V (w2 (A8)

dh

Atz =2 vz = Va = Vm. (Ag)
(4.13) h = #{(—Alc- WEL 4.6 WE) icos wr—Ay(e Wr— e~ 02) 5in wal, (A10)
(4.14) az)s = pgh (Arr)
(4.15) = %;{{—A;c' WZ 4 A,e @Z) cos wx— A;(e®?—e~ ©2) sin wx}. (A1z2)
(4.16) 0z)s = —w? (A1~ YE4- A0 WE) sin wx—w?d; (e ¥Z2 e~ 9Z) cos wx. (A13)
4,7) 7:1_;6 st 7X‘4Ie rquXAle Wz, (‘A14)
(4.18) ¥Asp = Ao BT L Aje 0F, (A15)
(4.19) where ¢ = 2 cosh w.J and s = 2sinh wZ. (A16)

The argument runs as follows. Starting from the harmonic stress function (A1) the longitudinal stress deviator
(A2) is found from the definition of the stress function in terms of the stresses o; and o.. Equation (A3) expresses
the flow law generally. The vertical velocity (A4) is found by integration and here the assumption of constant
7 is introduced. (Aj) expresses the basal boundary condition which gives 4, in terms of 4, and A4, in terms of
A,. Two further conditions are required. (Ag) expresses the steady-state surface criterion and here introduces
an assumption of uniform velocity i.e. the ¥ of (A5) and (Ag) is the same. The other condition results from
the prescribed vertical boundary stress at z = ., (A11). Here to preserve the convention of tensions being
positive, # must represent the distance below z — . Equation (A12) makes the steady-state surface correspond
to the prescribed surface stress distribution. (A13) makes this also agree with the surface stress derived from the
stress function (A1) at z = Z. Finally these two are equated giving (A14) and (A15) which together with (A6)
make a set of three equations in three unknowns 4,, A, and A;.

These equations were not solved explicitly in Budd (1970[a]) since only the ratio of the surface to bed velocity
was being sought.

The following results of that work are noted (with a sign correction)

oy 2c s 2xs

B e B pete (A17)
@, ¢ as 2 1

1 —_—— == A8
o2 x5 B x5 ¢ ( )

Here the object is to determine the constants A; explicitly and the specific combinations of them occuring in
the individual stress terms of Table 1.

From Equation (A6) Ay A.—EI’:V&. (A1g)
Using this to eliminate 4, from (A14) and (A1s) yields
—Aye = —yA;s—ye vz qu,Bl’ (Azo
x w
xAss = Ayc—ewZ ""‘T"""' (A21)
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Eliminating A5 from these gives

§2 5 anl
@ = A;(c«kxz ?)—(l f xz;)cwz'JTﬂ‘ (A22)
¥ . 2
lor e = #, cwz ; L iziz, (A23)
or using (A7)
= &g.& e Wi ﬁ. (Az‘l_)

wiy xz_fz+cz'
Substituting in (A19) gives

anVB, = [ €+x%s .
4; = Grh i [cl—t—xzs*emz_[ (A2s)
__ 2qVB: [xs(e WE—s)4-¢(e ¥Z—c)
o o2 x3s?

w
_20VBe _,p X5—C (A26)
w X252+51l
using (A7)

pgBy xPs—¢
=3 m:lxl xzﬁ-i-cz' (A27)
Substituting 4, from (A23) in (Az2o) yields for 4,

—4; = X [s.‘i;—c‘“z Eﬁ]
¢ @

= x2nVB — [I(c+x25)7 I]

¢ w b o
mVBi .z (5—¢)
=y b o e (A28)
Therefore
P . (A28)

w x4
or using (A7)
. QR

w3 xlsl i 62.
With these values of the A; the various combinations required for Table I may now be easily obtained. Using
(A23) and (A26)

Ae-WEL 4 eWZ — QTIVB‘ I:x15+6 0 Xs—e¢
B " i X2 her |yl

a2V 2x%s (Asz0)

w  x%r4e?

or using (A7)
pgfi _ 2xs "
UJJ x252+ ‘_-z ( 3 L )

and using (A17

— B8 (Ag2)
w?
Similarly
— Ao @Z L Ao ot = L (As33)

@  xisite?
or using (A7)
— R, S i)

wsx xz_;z;cz
and using (Ar7)

— (A35)
wdy
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We write @ = o SIN wX -+ o, COS WX (A36)
and —h = hy cos wx+h, sin wy (A37)
where the negative sign is introduced to make £, and h, height above z — .
Hence by (Ag)
b= 4ot ol et (A38)
w w
Now the various terms of Table I can be easily evaluated.
From (A35) and (A38)
wi{—die~vE+ Azewz) = FESL (A39)
wx
pgh,
= —_=— Aq0
- (A40)
From (A6), (A7) and (A18)
w?(—A,+4;) = —2qVhw (Agq1)
o A (Ag2)
X
= K- (Ag3)
w 2
sinh o
= _sz‘zs wz . (A‘Fﬂ
From (Az29) and (Ar7) and (A38)
- pgB 2s
w?24; sinh wg — w' oo (Ag5)
PE%2
;- (A46)
peha
= JEEEE Ag7)
- (A47)
From (Ag2)
w?l[Ae= Wi+ d,eE] = —pgla, (A48)
From (Az2g9) and (A17)
‘ _ pelpy 2
w?Z (24, cosh wg) = =2 P (Ag9)
pgser. (As0)

This completes the evaluation

of the five different terms required for Table I. Equations (A40), (A44),

(A47), (A48) and (A50) now allow the stress of Table I to be expressed simply in terms of the steady-state surface
parameters the ice thickness and wavelength of the undulations.
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