
J. Fluid Mech. (2025), vol. 1017, A24, doi:10.1017/jfm.2025.10468

Emergent clogging of continuum particle
suspensions in constricted channels

Anushka Ananthraj Herale
1

, Philip Pearce
1,2

and Duncan Robin Hewitt
3

1Department of Mathematics, University College London, London, UK
2Institute for the Physics of Living Systems, University College London, London, UK
3Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
Corresponding authors: Philip Pearce, philip.pearce@ucl.ac.uk; Duncan Robin Hewitt,
drh39@cam.ac.uk

(Received 29 January 2025; revised 10 July 2025; accepted 13 July 2025)

Particle suspensions in confined geometries can become clogged, which can have a catas-
trophic effect on function in biological and industrial systems. Here, we investigate the
macroscopic dynamics of dense suspensions in constricted geometries. We develop a min-
imal continuum two-phase model that allows for variation in particle volume fraction. The
model comprises a ‘wet solid’ phase with material properties dependent on the particle
volume fraction, and a seepage Darcy flow of fluid through the particles. We find that spa-
tially varying geometry (or material properties) can induce emergent heterogeneity in the
particle fraction and trigger the abrupt transition to a high-particle-fraction ‘clogged’ state.
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1. Introduction
Particle suspensions are abundant in industrial and natural systems, from cosmetic and
food products to human blood. Dense particle suspensions can exhibit a wide range of
complex dynamical behaviours, owing to particle interactions mediated by the suspending
fluid. From a continuum modelling perspective, their effective rheology depends not
only on the local shear rate, but also, among other things, on the local particle volume
fraction and particle pressure – a macroscopic representation of isotropic interparticle
forces (Guazzelli & Pouliquen 2018). One common feature of particle suspensions is that
a critical stress must be met to overcome friction and allow particles to rearrange; that
is, suspensions have a frictional ‘yield stress’. A simple representation of this behaviour
within a continuum framework is to impose that, below the yield stress, no shear can occur
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and the solid fraction is equal to a critical ‘jamming fraction’. Above the yield stress, the
suspension can flow and the volume fraction drops below the jamming fraction. Numerous
experimental measurements have captured the divergence of the effective suspension
viscosity as the particle fraction approaches the jamming fraction from below (Zarraga,
Hill & Leighton 2000; Boyer, Guazzelli & Pouliquen 2011; Dbouk, Lobry & Lemaire
2013; Gallier et al. 2014; Dagois-Bohy et al. 2015).

Suspensions flowing through confined geometries such as pipes can see their particle
flow obstructed by the formation of a ‘clog’, which can broadly be defined as causing a
local or global restriction in particle flux (Dressaire & Sauret 2017; Marin & Souzy 2024).
This could be a local and temporary blockage of particle movement because of particles
forming intermittent ‘bridges’ between walls, or a complete clog in which particle flux is
zero everywhere. Even in free-flowing regimes, particle–wall interactions are an important
factor in suspension flow. It is common to assume that particles and fluid are unable to
move past walls because of frictional effects, leading to a non-uniform shear which is
highest at the walls and zero around the centreline; in straight pipes, this leads to radially
varying material properties and an unyielded central plug (Lyon & Leal 1998; Ahnert,
Münch & Wagner 2019). In practice, particles are typically able to move past walls to
some extent because of a fluid lubrication layer (Barnes 1995), allowing some particle
flux even in an unyielded mixture (Szafraniec et al. 2022, 2025). The unique features of
suspensions – wall slip, yield stress and clogging – lead to a complex relationship between
particle volume fraction and particle flux, and typically the particle flux through channels
is maximal at an intermediate volume fraction (Farutin et al. 2018).

The first aim of our work is to understand the implications of these features at
a continuum scale as particle suspensions flow through gradually spatially varying
geometries. Local geometrical constrictions have widely been found to promote clogging
(Dressaire & Sauret 2017; Dincau, Dressaire & Sauret 2023; Marin & Souzy 2024). More
generally, changes in geometry often cause non-intuitive variation in particle volume
fraction in dense suspensions, as in the phenomenon of ‘self-filtration’ (Haw 2004;
Kulkarni, Metzger & Morris 2010), where driving a high-particle-fraction material
through a constriction leads to a lower solid fraction downstream. Theoretical models
of suspension flow through constrictions have typically taken an approach that resolves
all particles and accounts for their stochastic motion (Parry & Millet 2010; Mondal, Wu
& Sharma 2016; Bächer et al. 2017; Marin & Souzy 2024). However, in general it is
not understood how particle dynamics connects to emergent (spatially varying) material
properties, which drive continuum-scale suspension flow profiles and particle transport.

The second aim of our work is to explore whether analogies can be drawn between
the effects on suspension flow of spatial variations in channel geometry and of spatial
variations in particle properties. Biological suspensions containing certain constituents
can exhibit such changes at the particle level, with substantial effects on overall suspension
flow and function. An example is human blood, which is essentially a suspension
containing deformable, fluid-filled capsules: red blood cells (RBCs). The properties
of RBCs change as they age, and are also affected during certain drug treatments
(Stathoulopoulos et al. 2025) and by diseases such as malaria and diabetes. Here, we
are interested in spatial variations in RBC properties, which can be drastic in sickle
cell disease, a genetic disease that affects the haemoglobin inside RBCs, causing them
to stiffen under deoxygenated conditions. Experiments on blood from patients with
sickle cell disease have shown that deoxygenation can promote vessel occlusion (Wood
et al. 2012; Szafraniec et al. 2022), which is linked to poor clinical outcomes. More
recently, large spatio-temporal variations in RBC volume fraction (or haematocrit) have
been observed to emerge in channels with a deoxygenated region containing stiffened
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cells (Szafraniec et al. 2025) – it is not clear whether this process is analogous to self-
filtration in constricted channels. Phenomenological continuum models have been able
to capture vessel occlusion in sickle cell disease by imposing the differential velocity
between particles (RBCs) and the suspending fluid (Cohen & Mahadevan 2013), but it
is not understood how this differential flow emerges mechanistically, i.e. how changes to
differential flow follow from changes to particle stiffness.

To achieve these two aims, here we build a minimal, mechanistic continuum model
for the flow of a dense particle suspension down a pipe with a constriction in the axial
direction. We also allow for varying particle properties via a spatially varying jamming
fraction, which has been found to depend on deformability (Tapia et al. 2024). For
simplicity, we assume no slip at the walls. We allow for the emergence of variations in
volume fraction, mediated by differential flow of the suspending fluid past the particles.
We find that, for a given constriction or variation in particle properties, flow with a
sufficiently low particle fraction can be sustained with a steady, spatially varying profile
down the pipe. However, if the intended particle flux crosses a critical threshold, the model
predicts the emergence of a high-particle-fraction, high-resistance, ‘clogged’ state, which
develops from a free-flowing, unclogged initial state and propagates upstream.

2. Model

2.1. Mass and momentum conservation
The overall suspension consists of solid particles, filling a volume fraction φ(x, t),
and interstitial fluid, occupying a fraction 1 − φ. We assume the suspension is dense,
in the sense that both hydrodynamic and contact forces contribute to the dynamics
(Stickel & Powell 2005; Guazzelli & Pouliquen 2018). The overall velocity U in such a
suspension can be broken into the respective local solid and fluid velocities us and u f as
U = φus + (1 − φ)u f (see schematic in figure 1a). Assuming each phase is individually
incompressible, conservation of mass in each phase requires that

∂φ

∂t
+ ∇ · (φus) = 0,

∂φ

∂t
− ∇·[(1 − φ)u f ] = 0, (2.1)

which combine to yield ∇ · U = 0. Rather than specifying individual, coupled momentum
equations for the separate solid and fluid phases (Baumgarten & Kamrin 2019), which can
be difficult to compare with rheometric measurements, we instead choose to decompose
U into the motion of the bulk ‘wet solid’ phase, which tracks the solid particles and the
interstitial fluid moving at the same speed, and thus has velocity φus + (1 − φ)us = us ,
and a Darcy seepage velocity, uD ≡ (1 − φ)(u f − us), which captures the differential
transport of fluid through the moving solid particles. Therefore, the part of the fluid motion
that moves with the solid particles is tracked within the bulk velocity us , and the part of
the fluid motion that moves past the solid is tracked by uD . This decomposition, which is
similar to the recent ‘mixture-theory’ approach of Lu et al. (2025), leads to

U = us + uD. (2.2)

Momentum conservation for the overall suspension, neglecting any inertial or
gravitational effects, yields

∇ · σ = 0, (2.3)

where σ is the total stress tensor for the suspension. This stress can be divided into its
isotropic and deviatoric parts: the former consists of the fluid pressure pf and the excess
‘particle pressure’ ps that arises due to the interactions of the solid particles, while the
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Figure 1. (a) A schematic of the ‘wet solid’ phase, with velocity us , and the differential ‘Darcy’ phase, with
velocity u f , in pipe flow with a total flow rate Q. (b) Equivalent flow resistance schematic with wet solid phase
Rs and differential flow RD in parallel.

latter we label τ , leading to

σ = −(pf + ps)I + τ , (2.4)

where I is the identity tensor, and thus, from (2.3),

∇ · τ = ∇(pf + ps). (2.5)

Based on the premise that the suspension remains in a dense regime, we assume that
the stress state of the interstitial fluid is dominated by viscous (Darcy) drag on the particle
suspension. As such, deviatoric contributions to the total stress from the motion of the
differential fluid are neglected; the differential flow is instead controlled by Darcy’s law,
which relates fluid pressure gradients to the Darcy seepage velocity

uD = − K (φ)

η f
∇ pf , (2.6)

where η f is the fluid viscosity and K (φ) describes the permeability of the suspension.

2.2. Suspension rheology and constitutive laws
It has been widely observed that both shear stress and particle pressure in a sheared dense
suspension scale linearly with the strain rate γ̇ = ∇us + ∇uT

s (Guazzelli & Pouliquen
2018). Given this observation, we follow Boyer et al. (2011) by assuming a tensorial
rheological model for the components of the stress tensor in (2.4) of the form

ps = η f ηn(φ)|γ̇ |, τ = η f ηs(φ)γ̇ , (2.7)

provided φ < φm , where φm is the jamming fraction, with γ̇ = 0 otherwise. Here, ηn(φ)

and ηs(φ) are the dimensionless normal and shear viscosity functions, respectively; these
are constitutive functions which must diverge as φ → φm . The tensorial magnitude |γ̇ | =√

γ̇i j γ̇i j/2 denotes the second invariant of that tensor.
This way (2.7) of presenting the rheology gives the particle pressure and stress in

terms of the solid fraction and strain rate. An entirely equivalent modelling approach is
to write the solid fraction and the stress in terms of the dimensionless ‘viscous number’
J ≡ η f

∣∣γ̇ ∣∣ /ps , which provides a comparison of characteristic time scales for particle
rearrangement and shear (cf. Boyer et al. 2011), in the form

τ = μ(J )

J
γ̇ , φ = η−1

n (1/J ), (2.8)

where μ(J ) = Jηs[φ(J )]. The two formulations in (2.7) and (2.8) are entirely equivalent.
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Here, we take slightly simplified versions of the constitutive expressions presented by
Boyer et al. (2011)

ηn(φ) = φ2

(φm − φ)2 , ηs(φ) = 1 + μ1ηn(φ), (2.9)

with both viscosity functions diverging quadratically as the solid fraction approaches
its jamming value, φ → φm , in agreement with numerous experimental measurements
(Zarraga et al. 2000; Boyer et al. 2011; Dbouk et al. 2013; Gallier et al. 2014; Dagois-
Bohy et al. 2015). The viscosity ratio, on the other hand, converges to a finite limiting
‘yield friction’ ηs/ηn → μ1 in this limit. With these constitutive laws, (2.8) reduces to

τ = (η f + μ1 ps/|γ̇ |)γ̇
φ/φm = 1/(1 + J 1/2)

}
for |τ |�μ1 ps; J ≡ η f |γ̇ |

ps
, (2.10)

with γ̇ = 0 and φ = φm otherwise. This representation makes explicit the existence of
a ‘yield stress’ in the formulation (at |τ | = μ1 ps), which is somewhat obscured in (2.7).
Below this stress, the material is held at its maximum jamming fraction and cannot deform;
above this stress the material deforms and dilates, and the particle fraction is forced to be
lower than the maximum jamming fraction. In fact, the expression for τ in (2.10) resembles
the classical Bingham viscoplastic law, with the only difference being that here the yield
stress depends on the particle pressure ps .

Note that taking the full expressions for the constitutive laws in (2.9) from Boyer et al.
(2011) leads to a system that qualitatively resembles (2.10), sharing the essential features
of a pressure-dependent yield stress with viscous flow above yield, but with a slightly
more complicated expression for τ that proves rather less analytically tractable in the
subsequent analysis. Since our aim here is to provide a general framework to describe
suspensions, without placing too much emphasis on specific rheological choices, we retain
the simplified form (2.10) here.

In a similar vein, for the permeability of the packing we adopt the commonly used
Carman–Kozeny law

K (φ) = k̂k(φ) = k̂(1 − φ)3

φ2 , (2.11)

which comfortingly vanishes when the void space vanishes and diverges as the particle
fraction vanishes. The dimensional prefactor k̂ is expected to scale with the square of the
particle size, and sets the magnitude of the resistance to Darcy flow. This constitutive
law is an established model for spherical particles, and in the absence of any more
specific particle shape is used illustratively throughout this work. In fact, as we will see,
the qualitative conclusions of this work do not depend sensitively on this choice, and
the behaviour we observe would also occur even if a constant value was used for the
permeability throughout.

2.3. Pipe flow, pipe averaging and lubrication approximation
For unidirectional, steady flow in a straight pipe of radius R aligned with the z direction,
the equations simplify dramatically: only the shear stress τ = τr z and the pressures pf and
ps play a role, with (2.3) reducing to

1
r

∂

∂r
(rτ) = ∂

∂z
(ps + pf ) ≡ −G, (2.12)
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given a total pressure gradient G along the pipe. Integrating yields a linear stress profile
across the pipe, τ = −Gr/2. Comparison of this linear profile with the rheology in (2.8)
shows that the stress must inevitably fall below the yield value μ1 ps at some radius,
provided the particle pressure is non-zero, leading to the existence of a ‘plugged’ core
in the pipe with particle fraction φm , as has previously been observed (Ahnert et al. 2019).

Mass conservation (2.1) is more usefully presented in its integrated, or pipe-averaged,
form,

∂φ

∂t
+ ∂

∂z

(
φus

) = 0,
Q

π R2 = us + u D, (2.13)

where Q is the total flux of the overall suspension down the pipe, us and u D denote
the respective flows in the z direction, and the overbar denotes a radial average,
so f = (2/R2)

∫ R
0 r f dr . The associated total pressure drop along a stretch of pipe of

length L̂ is �p = ∫ L̂
0 G dz, which motivates the definition of the overall resistance to flow

down the pipe,

Ro = �p

Q
. (2.14)

In a similar manner, we can define the individual resistances from the wet solid and Darcy
phases, respectively, as Rs = �p/(π R2us) and RD = �p/(π R2u D); these individual
resistances effectively act in parallel (see figure 1b) to make up the total resistance

Ro = �p

Q
=

[
1

Rs
+ 1

RD

]−1

, (2.15)

which follows from the expression for the total flux in (2.13). Note that these pipe-averaged
equations are one-dimensional, which precludes any issues of ill posedness that can arise
in granular and suspension models (Barker et al. 2015).

It is straightforward to generalise these results beyond straight pipes, provided that
variations in the pipe geometry occur over a length scale L̂ that is much larger than the
characteristic radial scale R̂ of the pipe (i.e. ∂ R/∂z � 1). This is the realm of classical
lubrication theory. After scaling radial lengths with R̂, axial lengths with L̂ , velocities
with an as-yet undetermined scale V , stresses and particle pressures with η f V/R̂ and
fluid pressure with η f V L̂/R̂2, and working under the assumption that R̂ � L̂ , we arrive
at the following equations, written now in terms of dimensionless variables:

G = −∂pf

∂z
, τ = −Gr

2
, u D = −Da k(φ)

∂pf

∂z
, (2.16)

to leading order in R̂/L̂ , while the rheology reduces to

ps = ηn(φ)

∣∣∣∣∂us

∂r

∣∣∣∣, τ = ηs(φ)
∂us

∂r
, (2.17)

provided φ < φm . The Darcy number

Da = k̂

R̂2
, (2.18)

determines the role of the permeability, and compares the square of the typical particle
size, k̂1/2, with the square of the pipe radius, R̂; it should, therefore, be significantly
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smaller than unity for a continuum description of the suspension to be reasonable. The
Darcy number in our model is a measure of the resistance of the Darcy phase; indeed, at
the jamming fraction φ = φm the suspension resistance Rs diverges, leaving the overall
resistance (2.15) equal to the Darcy resistance RD , with RD ∼ Da−1, in line with classical
models of flow through porous media (see (A7)).

The pipe-averaged equations (2.13), written in terms of dimensionless variables,
become

∂φ

∂t
+ 1

R2
∂

∂z

(
R2φus

) = 0,
Q

π R2 = us + u D, (2.19)

where R(z) is the dimensionless pipe radius. The definitions of the resistances remain as in
(2.15). Note that one can set the undetermined velocity scale V to scale out either the total
flux Q or the total pressure drop �p from the problem, but in either case the resistance
in (2.15), which is the ratio of the two, is unchanged. From this point on, we focus on
the case of an imposed total flux, and thus choose the velocity scale V so as to scale the
dimensionless flux Q to unity (i.e. V = Q/π R̂2), although we briefly revisit this question
of whether the flux or pressure drop is imposed in Appendix C. The solid flux that appears
in (2.19) will prove an important quantity, and so we label it as

F = R2φus . (2.20)

Note that, given the choice of scaling the dimensionless flux to unity, F here represents
the fraction of the total volume flux that is made up of solid.

As a side note, a key simplification arising from these lubrication scalings is the first
equation in (2.16): the suspension rheology (2.7) enforces that the particle pressure ps
must scale with the shear stress τ , but the usual lubrication scalings enforce that the
fluid pressure pf is asymptotically larger (by a factor L̂/R̂). As such, particle-pressure
gradients are negligible compared with fluid pressure gradients, and so can be ignored in
the overall pressure gradient G: the suspension is pushed along the channel by fluid (pore)
pressure gradients to leading order. As a result of this difference in scaling for the two
pressures, (2.19) becomes a hyperbolic equation for φ. In principle, one could include the
asymptotically small particle-pressure gradients, which would add a weak non-local and
non-hyperbolic character to the model that should slightly smooth over sharp fronts and
shocks when they arise.

In summary, the model comprises the evolution equation for φ(z, t) in (2.19), which,
in turn, is determined by knowledge of the pipe-averaged quantities φ, us , u D and φus .
These can be deduced from the local force balances across the pipe and the suspension
rheology (2.16)–(2.17), as outlined at the start of the next section. The parameters of the
model are the Darcy number Da, which controls the permeability of the suspension, and
the maximum solid fraction φm of the suspension, together with the other rheological
constants and any imposed variation in the pipe radius R(z) (in § 3.5 we briefly consider
other forms of variation along the pipe). Throughout this work, we take the limiting
friction coefficient to be μ1 = 0.3, following Boyer et al. (2011).

We take a fixed total flux, which in dimensionless form is scaled to give Q = 1, and
consider a fixed inlet solid fraction φin = φ(z = 0, t = 0) at the start of the pipe. In a
steady state, the model simply reduces to two algebraic statements of flux conservation:
the total flux Q ≡ 1 and the relative solid flux F (2.20) are both fixed. The time-dependent
model (2.19), on the other hand, is a hyperbolic first-order partial differential equation,
details of which are discussed in § 3.4 below and Appendix B.
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3. Results

3.1. Flow and volume fraction profiles in a straight pipe
From (2.16)–(2.17), we see that the ratio of the shear stress and the particle pressure
yields a function of φ alone, |τ/ps | = ηs(φ)/ηn(φ) = Gr/2ps , provided φ < φm . Given
the specific rheological functions in (2.9), this equation reduces to

φ(r, t) = φm
√

R√
R + √

μw (r − Rμ1/μw)
for r > rc, (3.1)

where

μw(t) ≡ GR
2ps

, and rc(t) ≡ Rμ1

μw

= 2psμ1

G
, (3.2)

with φ(r < rc) = φm . Here, the grouping μw combines the local pipe radius, pressure
gradient and particle pressure, and can be thought of as an effective friction coefficient for
the suspension at the pipe walls. The critical ‘yield’ radius rc separates a central core of
material with φ = φm from a flowing region with φ < φm given by (3.1). Example plots of
the profiles of φ predicted by (3.1) are shown in figure 2(a).

Given φ, the associated velocity profile us follows from the expression for τ = −Gr/2
in (2.16), and thus the expression for ∂us/∂r in (2.17). We assume here that the suspension
experiences a no-slip condition (us = 0) at the walls of the pipe r = R, and as such can
integrate ∂us/∂r to give the yield-stresslike flow profile

us(r, t) =

⎧⎪⎨
⎪⎩

G

4
(R − rc)

2 for r < rc

G

4

[
(R − rc)

2 − (r − rc)
2] for r � rc,

(3.3)

(the same expression can equivalently be reached directly by integrating the expression
for the stress in (2.10) using (2.17)). Equation (3.3) describes a central plug of unyielded
material (corresponding to where φ = φm), bordered by sheared regions, as illustrated in
figure 2(a). This qualitative flow structure for dense suspensions in a channel or pipe is
well known (Phillips et al. 1992; Koh, Hookham & Leal 1994; Lyon & Leal 1998).

The cross-pipe profiles for φ and us provide all the necessary information to determine
the pipe-averaged quantities in (2.19). These integrals can be computed analytically, but are
algebraically unpleasant: details of this integration and the form of the resultant average
quantities are given in Appendix A. Note that the structure of the flow across the pipe
depends only on the grouping μw = GR/2ps , which sets the radius of the central plug
region (3.2), rather than on the pressure gradient or particle pressure alone. It is, therefore,
this grouping μw that controls whether the suspension is able to flow or not: the suspension
formally clogs (i.e. the solid flux goes to zero) only if the central plug fills the pipe, rc → R,
in which limit φ → φm .

Figure 2(b) shows the dependence of the average solid fraction φ on μw, which follows
from the radial integral of (3.1). This plot illustrates directly the above point: φ → φm
when GR � 2μ1 ps , as the central plug fills the entire pipe. The associated solid flux will
also vanish in this limit, owing to the no-slip condition on the walls.

3.2. Role of the Darcy phase: flow resistance and maximum particle flux
The results so far are independent of the differential (Darcy) flow of fluid through the
suspension. Its role is to modulate the total flux Q, through (2.19), which provides another
constraint linking G and ps , and thus determines the behaviour of the system explicitly
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is independent of Da, if the overall pressure gradient is fixed, rather than the overall flux. ( f ) The maximum
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increases.
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(see Appendix A for the explicit expressions). Figure 2(c) shows the individual mean ‘wet
solid’ and Darcy velocities as a function of the mean solid fraction, given that the total
flux is fixed at Q = 1. It is clear that the solid velocity dominates the flux until the solid
fraction approaches its maximum packing. In this limit, the flow resistance from the wet
solid phase is so great that fluid is forced through the packing instead: both the pressure
gradient G and the particle pressure ps grow significantly over a narrow range of φ in order
to maintain the desired solid fraction whilst providing the necessary total flux. As such,
the Darcy velocity grows near φ = φm as the solid flux drops towards zero in this limit.
The Darcy number Da controls the permeability of the packing, and thus the resistance to
Darcy flow; hence the region in which the Darcy flow becomes dominant is increasingly
localised to be close to φm as Da is reduced (figure 2c). Note that the pressure gradient
G drives both the bulk wet solid motion and the Darcy seepage flow along the pipe, and
thus for any G there is always some Darcy flow, but its contribution is generally negligible
unless the solid fraction is near its maximum value (as can be seen in figure 2c).

The competition between ‘wet solid’ flow and Darcy flow is perhaps better illustrated
in figure 2(d), which shows the individual resistances for each phase and the overall
flow resistance, as defined in (2.15). The ‘wet solid’ resistance is generally much lower
than the Darcy resistance, but it increases dramatically as φ → φm . Because the two
resistances effectively act in parallel (figure 1b and (2.15)), the overall resistance (dashed
line) becomes limited by the Darcy resistance in that limit instead.

As a consequence of this behaviour, the solid flux down the pipe (as a fraction of
the overall flux) F = R2φus does not simply increase monotonically as φ is increased
(figure 2e): it has a maximum F = Fmax at a solid fraction lower than φm , before reducing
again for high solid fraction and vanishing in the limit φ → φm , when the particles become
stationary (because there is no slip of particles on the walls in our model). This means
that any given solid flux (below the maximum) can be attained at two different values
of the solid fraction: a low φ, with a correspondingly high solid velocity and relatively
low resistance; or a high φ, with a correspondingly low solid velocity and high resistance.
Again, lowering the Darcy number (permeability) increases the resistance to porous flow
and tends to squash the ‘high-φ’ branch of the flux closer to φ = φm (figure 2e). Note that
the same qualitative behaviour of a non-monotonic solid flux is also seen if the pressure
gradient G is held fixed, rather than the total flux (inset to figure 2e).

More generally, these solid-flux profiles F(φ; Da) also vary with the pipe radius
(figure 2f ), with smaller radii offering a lower maximum solid flux Fmax . The reason
for this reduction in solid flux is that the relative contribution of the Darcy flux to the
total flux increases in thinner pipes: given a pipe with cross-sectional area A ∼ R2, the
solid flux scales with AGR2 ∼ GR4, because us ∼ GR2 (from (3.3)), whereas the Darcy
velocity is constant across the pipe and the Darcy flux scales like ∼ AG ∼ G R2 (see
also Appendix A). This reduction in the attainable solid flux with radius will prove a
crucial detail for interpreting the behaviour in constricted pipes where R, and thus all the
quantities calculated here, can vary along the pipe.

3.3. Flow and particle flux in constricted pipes
We now consider pipes with an imposed radial constriction R(z) (figure 3), in which the
radius decreases smoothly from R = 1 to R = Rmin as shown in figure 3(b). For all cases
shown here, we adopt a profile

R(z) = (1 + Rmin) − (1 − Rmin) erf [(z − 0.5) 10]
2

. (3.4)
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Figure 3. Illustration of ‘non-clogging’ and a ‘clogging’ constrictions. (a) Solid flux F(φ) for φm = 0.65,
Da = 10−2 and different values of the radius R varying between R = 1 and R = Rmin = 0.5. The red dashed
line shows Fin for φin = 0.35. (b) Steady solution φ(z) for an imposed radial constriction between R = 1 and
R = Rmin = 0.5 as shown by the blue dashed line; the green crosses correspond to the crosses in (a). (c) The
same flux curves as in (a), but now showing Fin for a slightly larger inlet solid fraction φin = 0.45; there
is no steady solution with this value of φin because the downstream constriction cannot sustain this flux.
(d) Heat map of overall resistance against φin and Da for the same constricted system; the dashed line
represents Da = 10−2 and the two stars correspond to the cases illustrated in (a) and (c).

Provided that gradients in the true (dimensional) pipe radius are sufficiently small, the
evolution of solid fraction is described by (2.19), with the local flux at any location R(z)
given by the flux for a straight pipe of that radius. As such, the steady-state flow is
determined simply by a statement of flux conservation: the solid flux through each section
of the pipe must be equal, which should allow for determination of the associated average
profile φ(z).

Figure 3(a,b) show such a steady solution. Given a value of the inlet solid fraction φin ,
the local solid fraction along the pipe φ(z) follows directly from the expression for the
solid flux F(φ, R) evaluated at each local radius R(z) (figure 3a). Since the solid flux is
conserved, the variation in the volume fraction along the pipe can simply be read off from
the intersection of the different solid-flux curves for each radius with the incident solid
flux Fin (green crosses in figure 3a), leading to a profile φ(z) that increases slightly in the
constricted part of the channel (figure 3b) – this effect has been observed qualitatively in
particle-scale simulations (Bächer et al. 2017).

However, this solution construction is not always possible. For sufficiently high inlet
volume fractions φin , or sufficiently large constrictions, it is no longer possible to
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determine the local solid fraction using the incident solid flux and the local radius in
this manner. This is the case when the solid-flux curve for the most constricted part of the
pipe is everywhere lower than the solid flux set by the inlet solid fraction (as illustrated
in figure 3c), and so there is no steady solution to (2.19) that conserves the imposed inlet
solid flux in that part of the channel.

A full parameter sweep illustrates that, as φin increases, the overall pipe resistance
increases until the ‘no solution’ region of parameter space is reached; figure 3(d) shows
this parameter space for a fixed radial constriction with Rmin = 0.5. Note that, for
sufficiently high φin , the associated inlet solid flux Fin reduces (see flux curves in
figure 3a) and a steady solution can again be found. In this region of parameter space, φ is
always on the upper branch of the flux curve: the solid fraction now decreases through the
constriction, rather than increasing, and is everywhere fairly close to the jamming fraction,
such that the overall flow resistance can be very large (figure 3d). Physically, this region
of parameter space appears because sufficiently near φin = φm , the solid flux Fin in the
wider section of the pipe must fall below the maximum flux Fmax that can be sustained in
the constricted section of the pipe.

3.4. Emergent spatio-temporal heterogeneity in constricted pipes
To understand the dynamics of the system in the regions of parameter space that
do not appear to exhibit a steady solution (black region in figure 3d), we solve the
time-dependent problem (2.19) using the Clawpack finite-volume method for hyperbolic
problems (Clawpack Development Team 2024) (see Appendix B for further details). We
use an initial condition given by the steady state for φin = 0.2, corresponding to a solid
flux F0, and consider a step increase in the injected solid fraction at z = 0 to a new (higher)
value of φin(t = 0). We subsequently enforce reflection conditions (∂φ/∂z = 0) at z = 0,
rather than holding the inlet particle fraction fixed, in order to allow for variations in φ to
emerge throughout the entire pipe.

We obtain temporal solutions in regions of parameter space both with and without
a steady solution. For the former, the system reaches the steady state described above
in which the solid fraction increases slightly within the constricted part of the channel
(figure 4a upper panels). In the ‘no solution’ region of parameter space, however, while
the solid fraction again increases downstream, it now starts to ‘back-up’ solid, and forms a
shock just upstream of the constriction. The shock then travels upstream all the way back
to the inlet (figure 4a lower panels), raising the solid fraction significantly everywhere
upstream. Note that the existence of a shock – that is, an axial discontinuity in solid fraction
– locally violates our lubrication approximation; in reality we might expect this backwards-
propagating region to be smoothed out over a dimensional length comparable to the
pipe radius, with locally more complex and non-unidirectional dynamics. The associated
overall resistance steadily increases as the shock moves backwards, extending the region
where the solid fraction – and thus the flow resistance – is high (figure 4a,b). Thus, as
the shock passes through the inlet the solid fraction φin increases to a much higher value,
which we designate φin(t → ∞), and a new steady state is reached.

We refer to this new state – shown in figure 4(a–c) – as ‘clogged’. This is for two reasons:
first, because of its very high solid fraction and overall resistance, and second, because
of the way it emerges discontinuously to fill the pipe from an apparently free-flowing,
moderate-solid-fraction state. In this manner, the emergence of the ‘clogged’ state provides
a downstream control on upstream properties (via the backwards-propagating shock), in
direct contrast to the ‘non-clogged’ state, in which the imposed upstream solid fraction
φin sets the profile down the pipe. For clarity, we note that in our model, the solid flux is
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Figure 4. Transient evolution of constricted flow. (a) Evolution from a low-solid-fraction steady state, with
φin = 0.2, when φin(t = 0) = 0.35 (upper) and φin(t = 0) = 0.45 (lower), for φm = 0.65, Da = 10−2 and
Rmin = 0.5 (with 0 � z � 1 for all panels). These solutions correspond to a ‘not clogged’ (upper) and emergent
‘clogged’ (lower) state, respectively, with symbols corresponding to those marked in (c). (b) Overall resistance
Ro over time for each case. (c) The solid flux F for the widest and narrowest parts of the pipe, for the ‘not-
clogged’ (left) and ‘clogged’ (right) examples in panel (a). The pre-existing steady state has flux F0 that is
initially increased at z = 0 to Fin (green dot). In the right-hand case, the downstream flux (black cross) is too
low, and the upstream solid fraction is forced to increase towards the red dot, reducing the eventual solid flux
F∞, as outlined in the main text.

not reduced to zero in this ‘clogged’ state, which has φ < φm everywhere. However, the
resistance increases so dramatically (figure 4b) that an experimental apparatus imposing a
fixed overall flux (as in our theory) might be expected to fail in this regime. Alternatively,
the apparatus may be unable to adjust to a new, higher, inlet particle fraction, as occurs in
our model, which would also lead to failure. If, instead, the pressure drop down the pipe
were fixed, the overall flux would decrease significantly in the ‘clogged’ state, as briefly
discussed in Appendix C.

The transient solutions indicate how to find this ‘clogged’ steady state directly. If the
imposed solid flux is too large for the constricted pipe (i.e. in the ‘no-solution’ region of
phase space; figure 3d) then the flux is lowered until a solution can be found. Physically,
this occurs by ‘backing up’ the excess solid upstream of the constriction, which pushes
the upstream solid fraction up onto the high-φ branch of its flux curve. This process is
illustrated in figure 4(c), which shows how the solid flux evolves in the pipe for each
of the two cases considered in panel (a). In each case, the initial steady state carries
a flux F0, and at t = 0 this is increased at z = 0 to Fin . In the ‘not clogged’ case,
this new flux can be sustained all along the pipe, and the suspension simply evolves
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Figure 5. The final steady-state (a) upstream (inlet) solid fraction and (b) total resistance as a function of the
initial inlet solid fraction, for a constricted pipe with minimum radius as marked, Da = 10−2 and φm = 0.65.
The central line, which matches the parameters in figure 4, corresponds to traversing the yellow dashed line
in the phase plot in figure 3(d). The discontinuities in each case represent the development of the upstream-
propagating ‘clogged’ state.

towards the associated steady state; there is no subsequent change in the solid flux and
F∞ = F(t → ∞) is simply Fin . In the ‘clogged’ case, however, the flux is limited by the
downstream maximum: incoming solid builds up upstream of the constriction, and the
only resolution to this mismatch is for the upstream solid fraction to increase to the point
where the flux is reduced to match the downstream limiting value. Thus F∞ is lower than
Fin , as shown in figure 4(c).

The eventual emergent state in this case can therefore be directly constructed by finding
the limiting downstream flux, and following the high-φ flux branch upstream from this
value. Equivalently, this steady state corresponds to the point where a horizontal line in a
phase-space plot like figure 3(d) meets the right-hand boundary of the ‘no solution’ region.

We find that this construction holds for any initial condition within the ‘no solution’
region. Figure 5(a) shows how the eventual solid fraction at the start of the pipe,
φin(t → ∞), varies with the initial solid fraction at the start of the pipe. These quantities
are equal when the solid fractions are sufficiently small, but above some critical φin
the fluxes down the pipe can no longer balance, as outlined above, and the system is
forced into this new state with a much higher solid fraction throughout the pipe. The
associated resistance is also significantly increased, as shown in figure 5(b). If the size of
the constriction is increased (i.e. Rmin decreased), the transition to this emergent ‘clogged’
state is more dramatic, and occurs at a lower inlet solid fraction (figure 5). Note that both
the final inlet solid fraction and the resistance increase again for φ very close to φm ; this
region of parameter space corresponds to the steady states that lie entirely on the high-φ
branch of the flux curves, as discussed at the end of the previous section and illustrated by
the band of steady solutions close to φm in figure 3(d).

3.5. Emergent heterogeneity in straight pipes with variation in particle properties
Motivated by recent experiments on blood flow from patients with sickle cell disease
(Szafraniec et al. 2022, 2025), in which RBCs stiffen under deoxygenated conditions, we
also briefly consider suspension flow in straight pipes with spatial variation in particle
properties. To represent such variations in the simplest way possible, we allow the
maximum particle fraction φm(z) to decrease smoothly from high to low through the
pipe (figure 6a), qualitatively capturing the reduction in jamming fraction for suspensions
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Figure 6. (a) Evolving solutions for a spatially varying jamming fraction φm decreasing from 0.8 to 0.6 (dashed
line) along a pipe, with Da = 10−1, uniform radius R = 1 and uniform initial conditions φ(t = 0) = 0.35 (upper
row) and φ(t = 0) = 0.5 (lower row). (b) The associated evolution of the flow resistance in each case. (c) The
solid flux in each case, comparing the flux for the highest and lowest values of φm , with fluxes and symbols as
in figure 4.

containing rigid particles in comparison with more deformable particles (Tapia et al.
2024). In so doing, our aim is to explore whether analogies can be drawn between
variation in particle properties and the geometrical constrictions studied above. We also
aim to provide at least a basic qualitative explanation of experimental observations
of large-scale spatial variations in haematocrit (i.e. particle fraction) for blood flow
in channels with a downstream deoxygenated region that contains stiffened RBCs
(Szafraniec et al. 2025).

We find that steady solutions of (2.19) with varying φm(z) exhibit a bifurcation
analogous to the one observed for channel constrictions: if the incident particle fraction
φin(t = 0) is too large relative to the downstream maximum particle fraction, then the
incident solid flux Fin cannot be maintained, and a shock forms and propagates upstream.
This behaviour is illustrated in figure 6(a), which shows results from time-dependent
simulations in which an initially uniform solid fraction is exposed at t = 0 to a prescribed
reduction in the jamming fraction φm along the pipe. If the initial solid fraction is
sufficiently low (upper row), the suspension evolves smoothly to a steady state that carries
the same solid flux Fin as before. However, larger initial solid fractions (lower row) instead
result in a shock developing and spreading upstream, leading to a final state with a much
higher solid fraction, that carries a lower solid flux F∞. As in the case of a constriction,
the associated overall flow resistance increases markedly in this ‘clogged’ state (figure 6b).
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The final states can again be constructed simply by consideration of the solid fluxes, as
illustrated in figure 6(c).

These results suggest that the spatial variations observed in previous experiments on
blood flow (Szafraniec et al. 2025) may be explained by a reduction in maximal RBC
flux as cells become stiffened under deoxygenation. More broadly, the results demonstrate
that our predictions of emergent heterogeneity in solid fraction apply to a broad range of
synthetic and biological particle suspension systems in which either geometry or particle
properties vary in space.

4. Discussion
We have built a mechanistic continuum model that allows for spatio-temporal variations
in the volume fraction of particle suspensions flowing through a pipe. A key feature of
our approach is the separation of suspension flow into a ‘wet solid’ phase, which tracks
particles moving with the suspending fluid, and a differential Darcy phase, which tracks
flow of suspending fluid past the particles; the constitutive properties of each of these
phases can, in principle, be directly measured.

In pipes with a sufficiently small constriction or low solid fraction, we find steady
solutions in which a given upstream solid fraction increases as it passes through the
constriction, maintaining the same solid and total flux. A key finding here is that
significant spatio-temporal volume fraction variations can emerge spontaneously if the
constriction is large enough, resulting in an abrupt transition to a high-particle-fraction,
high-resistance ‘clogged’ state, which develops at the entrance to the constriction and
propagates back upstream. The resultant steady state in this case is controlled by the
downstream constriction, rather than the upstream particle fraction, and has a particle
fraction that drops, rather than increases, through the constriction (akin to observations of
self-filtration; e.g. Kulkarni et al. 2010).

The transition to a ‘clogged’ state follows directly from the existence of a maximal solid
flux at an intermediate particle fraction that depends on geometry and particle properties,
and can therefore vary in space. More specifically, the emergence of ‘clogging’ can occur
whenever the flux in one region (e.g. a wider region of the pipe) is higher than the maximal
flux in another region (e.g. a constriction; see figure 3). There are numerous parallels
and qualitative similarities in these predictions to models of constrictions in traffic flow
(e.g. Lighthill & Whitham 1955); these, in their basic form, also comprise hyperbolic
advection problems with non-monotonic flux curves, which can result in the upstream
build-up of traffic density – that is, traffic jams – via backwards-propagating shocks if the
maximum flux in the ‘constricted’ region is not sufficiently large.

In our model, the presence of this maximum solid flux emerges from the constitutive
assumptions. In a suspension with fixed overall flux, without a differential Darcy flow,
the flow speed of the ‘wet solid’ phase would be fixed and the solid flux would linearly
increase with particle fraction (the flux of interstitial fluid that moves at the same speed
as the particles would reduce). However, in our model we include differential flow of
fluid through the pore space of the bulk suspension, and the proportion of the overall
flux taken up by each phase is determined by their relative resistances, which effectively
act in parallel (figure 1). As the solid fraction approaches its maximal jamming fraction,
the resistance of the wet solid phase increases drastically, and more of the flux is pushed
through the differential Darcy phase, leading to a reduction in the particle flux (figure 2).
The emergence of the ‘clogged’ state in a constricted channel is a consequence of the fact
that the maximal solid flux decreases as the pipe radius decreases. The wet solid resistance
has a stronger dependence on radius than the resistance to Darcy flow (see § 3.2); Darcy
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flux is thus promoted for smaller radii, leading to a reduction in the attainable solid flux
there.

In addition to studying constrictions, we have demonstrated that, in principle, variations
in particle properties (parameterised here by variation in the jamming fraction φm) can
similarly lead to the emergence of ‘clogging’. This provides a qualitative explanation for
recent experimental results on blood flow from patients with sickle cell disease (Szafraniec
et al. 2022, 2025), in which spatial variations in haematocrit were observed to emerge
because of deoxygenation-induced stiffening of RBCs in downstream regions of flow.
Specifically, our results show that the mechanism for these results might be the same as
previous results on clogging in constricted channels: the particle (or cell) flux in certain
regions of the channel is higher than the maximal flux in other regions. These results will
contribute to our understanding of vaso-occlusion and other pathological outcomes related
to blood rheology in sickle cell disease.

Our model is continuum and deterministic; it therefore differs in approach from
stochastic and discrete theories for the effect of constrictions on particle suspensions
(Zuriguel et al. 2014; Marin et al. 2018; Souzy, Zuriguel & Marin 2020), but can be
interpreted as parameterising particle-scale effects mechanistically over long length and
time scales. As an example, previous work on clogging has identified a probability of
particles forming a temporary bridge between confining walls (‘bridging’), contributing to
a local build up of particles (Dressaire & Sauret 2017; Vani, Escudier & Sauret 2022).
To directly capture such effects, including the intermittent nature of particle bridges,
our model would need to be extended to include stochasticity. However, our model can
be interpreted as reflecting this process at the macroscale by relating the probability of
bridging to the resistance of the suspension phase, which allows fluid to flow differentially
through the Darcy phase.

Further additional physics could be incorporated into our model for detailed quantitative
comparisons with experiments on synthetic and biological suspensions. For example,
allowing particle slip on the walls would allow for the prediction of an unyielded
but flowing state, as has been observed experimentally (Szafraniec et al. 2022, 2025).
Improvements could also be made in capturing the rheology of deformable particles
beyond our simple approximation of a change in the jamming fraction: particle
deformability would also affect the ‘wet solid’ material properties, as well as the presence
of a particle-free layer at the walls. More generally, relaxing the lubrication approximation
would allow the model to describe pipes with sharper along-flow variations in their
properties. Our model provides a step towards a broadly applicable continuum framework
that links particle motion and macroscopic material properties during self-filtration and
clogging of suspensions.
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Appendix A. Cross-sectional averaging

A.1. Radial integration
To solve (2.19) we need to compute various radial averages, which follow from suitable
integration of the expressions for φ (3.1) and us (3.3). We can isolate the dependence on
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Figure 7. The average functions fi , defined in (A1)–(A2), which depend on the grouping μw = G R/2ps ,
and represent the scaled average solid fraction, solid flux, solid velocity and Darcy velocity, respectively. For
μw < μ1, the entire pipe is clogged with φ = φm everywhere and us = 0. Here, we have taken Da = 10−1 and
φm = 0.8.

the grouping μw = G R/2ps in these expression to write the relevant averages in terms of
four dimensionless functions

φ

φm
= f1(μw),

usφ

Gφm R2 = f2(μw), (A1)

us

GR2 = f3(μw),
u D

Da G
= f4(μw, φm), (A2)

where the functions fi can be computed analytically by integrating the expressions in (3.1),
(3.3) and the final equation in (2.16). The expressions are rather analytically involved, and
are listed below for reference. Note that f4 is really just the radially averaged permeability
function, coming from Darcy’s law (2.16), and thus depends in general on both μw

and φm .
Figure 7 shows how these functions vary with μw. For μw < μ1, the entire pipe is

clogged: φ = φm everywhere and us = 0; hence f1 = 1 and f2 = f3 = 0 over that range.
As μw is increased beyond this critical value, the material starts to flow, so f1 decreases
and the other functions increase.

In terms of these functions, the governing equations (2.19) become

∂φm f1

∂t
+ 1

R2
∂

∂z

(
R4φm G f2

) = 0,
Q

π R2 = R2G f3 + Da G f4. (A3)

The latter expression can be inverted to give an explicit expression for the pressure
gradient G,

G(μw, R, φm) = Q

π R4
(

f3 + Da f4/R2
) , (A4)
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and so (A3) becomes

∂

∂t
(φm f1) + 1

R2
∂F
∂z

= 0, F(μw, φm, R) ≡ φm f2 Q

π
(

f3 + Da f4/R2
) , (A5)

where F = R2usφ is the solid flux. The total pressure drop along the channel can be
calculated from

�p =
∫ 1

0
G dz = Q/π

∫ 1

0

(
R4( f3 + Da f4/R2))−1dz, (A6)

which also determines the overall resistance Ro = �p/Q = 1/π
∫ 1

0 (R2( f3 +
Da f4/R2))−1dz and the individual resistances of each phase

Rs = �p

π R2us
=

(
�p

Q

)
f3 + Da f4/R2

f3
, RD = �p

π R2u D
=

(
�p

Q

)
f3 + Da f4/R2

Da f4/R2 .

(A7)

In the limit φ → φm , the particle velocity, and thus the function f3, vanish, such that
Rs → ∞ and RD → Ro ∼ Da−1.

Note that the radius R enters the expression for the solid flux F in (A5) only in the
term multiplying the Darcy number. This feature illustrates how the reduction in the flux
for smaller pipe radii, which controls the emergent ‘clogging’ behaviour that we observe
here, is physically a result of the fact that the Darcy flow is relatively larger when the radius
is reduced, as discussed in § 3.2. Relatively speaking, more of the total flux is taken up by
differential seepage flow in a thinner pipe.

A.2. Integral functions
Explicit forms of the integral functions defined above are listed below for reference

f1 = 2(μw

( − 3 + 2(μw − μ1)
1/2) + 3μ1 + 2(μw − μ1)

1/2(3 + 2μ1)

− 6(1 + μ1)
(
1 + (μw − μ1)

1/2)/(3μ2
w) + (μ1/μw)2

f2 = (2μ1 − μw)/
(
2μ2

w

) − (μw − μ1)
1/2/(7μw) − (

μ2
1 − 1

)
/
(
2μ3

w

) − μ1/
(
2μ2

w

)
+ 1/(6μw) + (μ1 + 1)/

(
4μ2

w

) − μ3
1/

(
6μ4

w

) − (
(μw − μ1)

1/2( − 64μ3
1 + 140μ2

1μw

− 119μ2
1 − 70μ1μ

2
w + 210μ1μw + 70μ1 − 105μ2

w + 105
))

/
(
105μ4

w

)
+ (

(8μ1 − 7)(μw − μ1)
1/2)/(35μ2

w

) − (
μ1

( − μ2
1 + 2μ1μw − μ2

w + 1
))

/
(
2μ4

w

)
+ (

μ2
1(μ1 − 1)

)
/
(
4μ4

w

) + (
(μw − μ1)

1/2(32μ2
1 − 70μ1μw + 7μ1 + 35μ2

w − 35
))

/(
105μ3

w

) + (
μ2

1(μ1 − μw)2)/(4μ4
w

)
+ (

log
((

μw − μ1 + 2(μw − μ1)
1/2 + 1

))
(μ1 + 1)

× (− μ2
1 + 2μ1μw − μ2

w + 1
))

/
(
2μ4

w

)
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f3 = (
(μ1/μw)2(μ1/μw − 1/2)

)
/2 − μ1/6μw + (

(μ1/μw)2(μ1/μw − 1)2)/4

− (
5(μ1/μw)4)/24 + 1/8

f4 = −(
16μ2

1(μw − μ1)
1/2 − 24μ2

w(μw − μ1)
1/2 + 60φ3

m(μw − μ1)
1/2

+ 15μ1μ
2
w + 30μ1φ

3
m + 45μ2

wφm − 30μwφ3
m − 5μ3

1 − 15μ2
w − 10μ3

w

− 30φ3
m log

((
μw − μ1 + 2(μw − μ1)

1/2 + 1
)) + 15μ2

1φ
3
m − 45μ2

wφ2
m

+ 8μ1μw(μw − μ1)
1/2 − 30μ1φ

3
m log

((
μw − μ1 + 2(μw − μ1)

1/2 + 1
))

− 24μ2
1φm(μw − μ1)

1/2 + 40μ1φ
3
m(μw − μ1)

1/2 + 36μ2
wφm(μw − μ1)

1/2

+ 20μwφ3
m(μw − μ1)

1/2 − 12μ1μwφm(μw − μ1)
1/2)/(15μ2

wφ2
m

)
.

(A8)

Appendix B. Time-dependent numerical method
Equation (2.19) is a quasi-linear hyperbolic partial differential equation which can give
rise to shocks for certain initial conditions. To handle these, we use the finite-volume
package Clawpack (Clawpack Development Team 2024). Clawpack uses a high-resolution
Godunov-type method, which employs Riemann solvers at cell interfaces to capture the
propagation of waves accurately. We use second-order Godunov method with a van Leer
flux limiter to solve the Riemann problems for the whole domain.

For the boundary conditions, we use zero-order extrapolation by implementing ghost
cells that extend the cell values from the upstream and downstream boundaries; these
are updated at every time step. This ensures that no spurious waves are generated at the
boundaries that might alter the solution. The system of equations that we input in Clawpack
are in conservative form to ensure accuracy. Using definitions of integral functions from
(A2), we define a new variable q for computational purposes

q = R2φm f1(μw). (B1)

We encode a spatially varying radius R(z) or maximum packing fraction φm(z) through
two extra equations in combination with the explicit form of the conservation equation
(2.19)

∂q

∂t
+ ∂

∂z

(
φm f2

f3 + Da f4/R2

)
= 0,

∂ R

∂t
= 0,

∂φm

∂t
= 0. (B2)

The specific form of R(z) or φm(z) is then set as an ‘initial’ condition for that variable.
The form for radial constrictions was given in (3.4), and for simulations with varying
jamming fraction we set φm(z, t = 0) = a − (a − b) {1 + erf [(z − 0.5)10]} /2, where a
and b represent the upstream and downstream values.

Appendix C. Fixed pressure drop
The time-dependent numerical method would become significantly more numerically
expensive if the pressure drop along the pipe, as opposed to the total flux, was fixed (this
would require iteration of an integral constraint on the flux at each time step). However,
the steady solutions can be straightforwardly inverted to give the case with a fixed pressure
drop: results follow directly from the overall resistance in figure 5(b). The resistance
provides a measure of the pressure drop required to sustain a given total flux, and so
its inverse provides the flux required to sustain a given pressure drop in steady state. This
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Figure 8. Steady results for fixed pressure drop, showing how the final steady-state total flux Q decreases with
the initial inlet solid fraction, for (a) varying Da with Rmin = 0.5 and (b) varying constriction ratio Rmin with
Da = 10−2. Here, φm = 0.65.

quantity is plotted in figure 8, for various different parameters, which shows how the total
flux drops discontinuously upon entering the ‘clogged’ regime.
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