
The Journal of Symbolic Logic

Volume 81, Number 1, March 2016

FORKING AND SUPERSTABILITY IN TAME AECS

SEBASTIEN VASEY

Abstract. We prove that any tame abstract elementary class categorical in a suitable cardinal has an
eventually global good frame: a forking-like notion defined on all types of single elements. This gives the
first known general construction of a good frame in ZFC. We show that we already obtain a well-behaved
independence relation assuming only a superstability-like hypothesis instead of categoricity. These methods
are applied to obtain an upward stability transfer theorem from categoricity and tameness, as well as new
conditions for uniqueness of limit models.

§1. Introduction. In 2009, Shelah published a two volume book [24,25] on clas-
sification theory for abstract elementary classes. The central new structural notion
is that of a good �-frame (for a given abstract elementary class (AEC) K): a gener-
alization of first-order forking to types over models of size � in K (see Section 2.4
below for the precise definition). The existence of a good frame shows that K is
very well-behaved at � and the aim was to use this frame to deduce more on the
structure ofK above �. Part of this programhas already been accomplished through
several hundreds of pages of hard work (see for example [23], [24, Chapter 2 and 3],
[16–19]). Among many other results, Shelah shows that good frames exist under
strong categoricity assumptions and additional set-theoretic hypotheses:
Fact 1.1 (Theorem II.3.7 in [24]). Assume 2� < 2�

+
< 2�

++
and theweak diamond

ideal in �+ is not �++-saturated.
Let K be an AEC with LS(K) ≤ �. Assume:
(1) K is categorical in � and �+.
(2) 0 < I (�++, K) < �unif(�++, 2�

+
).

Then K has a good �+-frame.
It is a major open problem whether the set-theoretic hypotheses in Fact 1.1
are necessary. In this paper, we show that if the class already has some global
structure, then good frames aremuch easier to build. For example we prove, in ZFC
(see Theorem 7.4):
Theorem 1.2. Let K be an AEC with amalgamation and no maximal models.
AssumeK is categorical in a high-enough1 successor �+. Then K has a type-full good
�-frame.
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358 SEBASTIEN VASEY

By themain theoremof [22], the hypotheses ofTheorem 1.2 implyK is categorical
in �. On the other hand, we do not need any set-theoretic hypothesis and we do
not need to know anything about the number of models in �++. Moreover, the
frame Shelah constructs typically defines a notion of forking only for a restricted
class of basic types (the minimal types). With a lot of effort, he then manages to
show [24, Section III.9] that under some set-theoretic hypotheses one can always
extend a frame to be type-full. In our frame, forking is directly defined for every
type. This is technically very convenient and closer to the first-order intuition.
Of course, we pay for this luxury by assuming amalgamation and no maximal
models2.
Our proof relies on two key properties of AECs. The first one is tameness (a local
ity property of Galois types, see Definition 2.4), and assuming it lets us relax the
“high-enough successor” assumption in Theorem 1.2, see Theorem 7.3:
Theorem 1.3. Let K be an AEC with amalgamation and no maximal models.
Assume K is �-tame and categorical in some cardinal � such that cf(�) > �. Then K
has a type-full good ≥ �-frame.
That is, not only do we obtain a good �-frame, but we can also extend this frame
to any model of size ≥ � (this last step essentially follows from earlier work of
Boney [6]). Hence we obtain a global forking notion above �, although only defined
for 1-types.A forking notion for types of all lengths is obtained in [3] (using stronger
tameness hypotheses than ours) but the authors assume the extension property for
coheir, and it is unclear when this holds, even assuming categoricity everywhere.
Thus our result partially answers [4, Question 7.1] (which asked when categoricity
together with tameness implies the existence of a forking-like notion for types of all
lengths satisfying uniqueness, local character, and extension). We also obtain new
theorems whose statements do not mention frames:
Corollary 1.4. Let K be an AEC with amalgamation and no maximal models.
Assume K is �-tame and categorical in some cardinal � such that cf(�) > �. Then K
is stable everywhere.

Remark 1.5. Shelah already established in [22] that categoricity in � > LS(K)
implies stability below � (assuming amalgamation and no maximal models). The
first upward stability transfer for tame AECs appeared in [13]. Later, [5] gave some
variations, showing for example ℵ0-stability and a strong form of tameness implies
stability everywhere. Our upward stability transfer improves on [5, Corollary 4.7]
which showed that categoricity in a successor � implies stability in �.

Corollary 1.6. Let K be an AEC with amalgamation and no maximal models.
Assume K is �-tame and categorical in some cardinal � such that cf(�) > �. Then K
has a unique limit model3 in every �′ ≥ �.
Remark 1.7. This is also new and complements the conditions for uniqueness
of limit models given in [22], [29], and [14].

2After submitting this paper, we discovered that Shelah claims to build a good frame in ZFC from
categoricity in a high-enough cardinal in Chapter IV of [24]. We were unable to fully check Shelah’s
proof. At the very least, our construction using tameness is simpler and gives much lower Hanf numbers.
3This holds even in the stronger sense of [27, Theorem 3.3.7], i.e., two limit models over the same base

are isomorphic over the base.
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The second key property in our proof is a technical condition we call local charac-
ter of �-splitting for �-chains (see Definition 3.10). This follows from categoricity
in a cardinal of cofinality larger than � and we believe it is a good candidate for a
definition of superstability, at least in the tame context. Under this hypothesis, we
already obtain a forking notion that is well-behaved for �+-saturated base models
and can prove the upward stability transfer given by Corollary 1.4. Local character
of splitting already played a key role in other papers such as [27], [29], and [14].
Even if this notion of superstability fails to hold, we can still look at the length of
the chains for which �-splitting has local character (analogous to the cardinal κ(T )
in the first-order context). Using the generalized continuum hypothesis (GCH),
we can generalize one direction of the first-order characterization of the stability
spectrum (Theorem 7.6).
The paper is structured as follows: In Section 2, we review background in the
theory of AECs and give the definition of good frames. In Section 3, we fix a
cardinal� and build a�-frame-like object named a skeletal frame. This is done using
the weak extension and uniqueness properties of splitting isolated by VanDieren
[28], together with the assumption of local character of splitting. In Section 4, we
show that some of the properties of our skeletal frame in � lift to cardinals above �
(and in fact become better than theywere in�). This is done using the samemethods
as in [24, Section II.2].
In Section 5, we show assuming tameness that the other properties of the skeletal
frame lift as well and similarly become better, so that we obtain (if we restrict
ourselves to�+-saturatedmodels and so, assuming categoricity in the right cardinal,
to all models) all the properties of a good frame except perhaps symmetry. This uses
the ideas from [6]. Next in Section 6 we show how to get symmetry by using more
tameness together with the order property (this is where we really use that we have
structure properties holding globally and not only at a few cardinals).Finally, we put
everything together in Section 7. In Section 8, we conclude.
At the beginning of Sections 3, 4, 5, and 6, we give hypotheses that are assumed
to hold everywhere in those sections. We made an effort to show clearly how much
of the structural properties (amalgamation, tameness, superstability, etc.) are used
at each step, but our construction is new even for the case of a totally categorical
AEC K with amalgamation, no maximal models, and LS(K)-tameness. It might
help the reader to keep this case in mind throughout.
This paper was written while working on a Ph.D. thesis under the direction of
Rami Grossberg at CarnegieMellon University and I would like to thank Professor
Grossberg for his guidance and assistance in my research in general and in this
work specifically. I also thank John T. Baldwin, Will Boney, Adi Jarden, Alexei
Kolesnikov, and the anonymous referee for valuable comments that helped improve
the presentation of this paper.

§2. Preliminaries.
2.1. Abstract elementary classes. We assume the reader is familiar with the
definition of an AEC and the basic related concepts. See [11] for an introduction.
For the rest of this section, fix an AEC K . We denote the partial ordering on K
by≤, and writeM < N ifM ≤ N andM �= N . ForR a binary relation onK and �
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an ordinal, anR-increasing chain (Mi)i<� is a sequence of models inK such that for
all i < �, if i +1 < � then R(Mi,Mi+1). The chain is continuous if it is≤-increasing
and for any limit i < �, Mi =

⋃
j<i Mj . When we talk of an increasing chain, we

mean a ≤-increasing chain. Strictly increasing means <-increasing.
For K an AEC and F an interval4 of cardinals of the form [�, �), where � > � is
either a cardinal or ∞, let KF := {M ∈ K | ‖M‖ ∈ F}. We write K� instead of
K{�}, K≥� instead of K[�,∞) and K≤� instead of K[0,�].
The following properties of AECs are classical:

Definition 2.1 (Amalgamation, joint embedding, nomaximalmodels). LetF be
an interval of cardinals as above.

(1) KF has amalgamation if for any M0 ≤ M� ∈ KF , � = 1, 2 there exists
N ∈ KF and f� :M� −−→

M0
N , � = 1, 2.

(2) KF has joint embedding if for anyM� ∈ KF , � = 1, 2 there exists N ∈ KF
and f� :M� → N , � = 1, 2.

(3) KF has no maximal models if for anyM ∈ KF there exists N > M in KF .

Fact 2.2. Let F be an interval of cardinals as above.
(1) If K� has no maximal models for all � ∈ F , then KF has no maximal models.
(2) If K� has amalgamation for all � ∈ F , then KF has amalgamation.
Proof. No maximal models is straightforward and amalgamation is [24,
Conclusion I.2.12]. 

Finally, we will also use:

Lemma 2.3. Let F = [�, �) be an interval of cardinals as above. If KF has
amalgamation and K� has joint embedding, then KF has joint embedding.
Proof sketch. Let M� ∈ KF , � = 1, 2. Pick M ′

� ≤ M� of size �. Use joint
embedding onM ′

1,M
′
2, then use amalgamation. 


2.2. Galois types, stability, and tameness. We assume familiarity with Galois
types (see [11, Section 6]). ForM ∈ K , we write Sα(M ) for the set of Galois types
of sequences of length α overM . We will at one point also consider types over the
empty set, which are defined analogously (see e.g., [26, Definition 1.4]). We write
S(M ) for S1(M ). We write Sna(M ) for the set of nonalgebraic 1-types over M ,
that is:

Sna(M ) := {gtp(a/M ;N) | a ∈ N\M,M ≤ N ∈ K}.
From now on, we will write tp(a/M ;N) for gtp(a/M ;N).
We briefly review the notion of tameness. Although it appears implicitly (for
saturated models) in [22], tameness as a property of AECs was first introduced in
[13] and used to prove a stability spectrum theorem. It was later used in [12] to
prove an upward categoricity transfer. Our definition follows [7, Definition 3.1].

Definition 2.4 (Tameness). Let � > κ ≥ LS(K). Let α be a cardinal. We say
thatK is (κ, �)-tame for α-length types if for anyM ∈ K≤� and any p, q ∈ Sα(M ),
if p �= q, then there existsM0 ∈ K≤κ withM0 ≤ M such that p � M0 �= q � M0.

4The definitions that follow make sense for an arbitrary set of cardinals F , but the proofs of most of
the facts below require that F is an interval.
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We define similarly (κ,< �)-tame, (< κ, �)-tame, etc. When � = ∞, we omit
it. When α = 1, we omit it. We say that K is fully κ-tame if it is κ-tame for all
lengths.

We also recall that we can define a notion of stability:

Definition 2.5 (Stability). Let � ≥ LS(K) and α be cardinals. We say that K is
α-stable in � if for anyM ∈ K�, |Sα(M )| ≤ �.
We say thatK is stable in � if it is 1-stable in �.
We say that K is α-stable if it is α-stable in � for some � ≥ LS(K). We say that
K is stable if it is 1-stable in � for some � ≥ LS(K). We write “unstable” instead of
“not stable”.
We define similarly stability for KF , e.g., KF is stable if and only if K is stable in
� for some � ∈ F .
Remark 2.6. If α < 	 , and K is 	-stable in �, then K is α-stable in �.

The following follows from [8, Theorem 1.1].

Fact 2.7. Let � ≥ LS(K). Let α be a cardinal. Assume K is stable in � and
�α = �. Then K is α-stable in �.

2.3. Universal and limit extensions.

Definition 2.8 (Universal and limit extensions). ForM,N ∈ K , we say thatN is
universal overM (writtenM <univ N) if and only ifM < N and for anyM ′ ∈ K‖M‖
with M ′ ≥ M , M ′ can be embedded inside N over M . We also write N >univ M
forM <univ N .
For � ≥ LS(K) and 0 < � < �+ an ordinal, we say that N is (�,�)-limit over
M (written M <�,� N) if and only if M,N ∈ K�, M ≤ N , and there is a <univ-
increasing chain (Mi)i≤� withM0 = M ,M� = N andM� =

⋃
i<� Mi if � is limit.

We also write N >�,� M forM <�,� N .
We say that a modelN is limit if it is (‖N‖, 
)-limit overM for someM ≤ N and
some limit ordinal 
 < �+.

Definition 2.9. A model N ∈ K is �-model-homogeneous if for any M ≤ N
with ‖M‖ < �, we haveM <univ N . N is model-homogeneous if it is ‖N‖-model-
homogeneous.

Fact 2.10. Let � ≥ LS(K). Assume K� has amalgamation, no maximal models,
and is stable. For anyM ∈ K�, there exists N ∈ K� such thatM <univ N . Therefore
there is a model-homogeneousN ∈ K�+ withM < N .
Proof. The first part is by [24, Claim II.1.16.1(a)]. The second part follows from
iterating the first part �+ many times. 

Remark 2.11. By [23,Lemma0.26], for� > LS(K),N is�-model-homogeneous
if and only if it is �-saturated.

The next proposition is folklore and the results appear in several places in the
literature (see for example [22, Lemma 2.2]). For the convenience of the reader, we
have included the proofs.
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Proposition 2.12. LetM0,M1,M2 ∈ K�, � ≥ LS(K) and 0 < � < �+. Then:
(1) M0 <�,� M1 impliesM0 <univ M1.
(2) M0 <univ M1 ≤M2 impliesM0 <univ M2.
(3) AssumeK� has amalgamation. ThenM0 ≤M1 <�,� M2 impliesM0 <�,� M2.
(4) Assume K� has amalgamation, no maximal models, and is stable. Then there
existsM ′

0 such thatM0 <�,� M
′
0.

(5) Conversely, if for everyM0 ∈ K� there existsM ′
0 ∈ K� such thatM0 <univ M ′

0,
then K� has amalgamation, no maximal models, and is stable.

Proof.

(1) Fix (Ni )i≤� witnessing that M0 <�,� M1. Let M ′
0 ≥ M0 have size �. Since

� > 0, N1 is well defined, and is universal over N0 = M0, hence M ′
0 can be

embedded inside N1 over M0, and hence since N1 ≤ M1 can be embedded
insideM1 overM0.

(2) LetM ′
0 ≥M0 have size �. SinceM ′

0 embed insideM1 overM0, it also embeds
insideM2 overM0.

(3) Let (Ni)i≤� witnessM0 <�,� M1. We show thatM0 <univ N1. This is enough
since then M0 � (Ni )0<i≤� will witness that M0 <�,� M2. Let M ′

0 ≥ M0
have size �. By amalgamation, findM ′

1 ≥M1 and h :M ′
0 −−→
M0
M ′
1. Now use

universality of M2 over M1 to find g : M ′
1 −−→
M1
M2. Let f := g ◦ h. Then

f :M ′
0 −−→
M0
M2, as desired.

(4) Iterate Fact 2.10 � many times.
(5) Let M0 ∈ K� and let M ′

0 >univ M0 be in K�. M
′
0 witnesses that M0 is not

maximal inK�.Moreover,M0 is an amalgamationbase, since any twomodels
of size � extendingM0 can amalgamated overM0 insideM ′

0. Finally, all types
overM0 are realized inM ′

0 which has size �, there can be at most � many of
them, so stability follows. 


We give orderings satisfying the conclusion of Proposition 2.12 a name:

Definition 2.13 (Abstract universal ordering). An abstract universal ordering
on K� is a binary relation � on K� satisfying the following properties. For any
M0,M1,M2 ∈ K�:
(1) M0 �M1 impliesM0 <univ M1.
(2) There exists N0 ∈ K� such thatM0 � N0.
(3) M0 ≤M1 �M2 impliesM0 �M2.
(4) Closure under isomorphism: ifM0 � M1 and f : M1 ∼= M ′

1, then f[M0] �
M ′
1.

Note that this implies that� is a strict partial ordering on K� extending <.
For 0 < � < �+, a model M ∈ K� is (�,�)-limit if there exists a �-increasing
chain (Mi)i<� in K� such thatM =

⋃
i<� Mi .M is �-limit if there exists a limit �

such thatM is (�,�)-limit.

Remark 2.14. AssumeK� has amalgamation, nomaximal models, and is stable.
Then by Proposition 2.12, for any 0 < � < �+,<�,� is an abstract universal ordering
on K�. Moreover, the existence of any abstract universal ordering on K� implies
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that <univ is an abstract universal ordering, and hence that K� has amalgamation,
no maximal models, and is stable.

Let LS(K) ≤ � < �. Even assuming stability everywhere, it is unclear whether
there should be any model-homogeneous model in � (think for example of the case
cf(�) = �). The following tells us that we can at least get an approximation to one:
we can do the usual construction of special models in a cardinal � if K is stable
below �. This will be used in the proof of the superstability theorem (Theorem 5.6).

Lemma 2.15. Let LS(K) ≤ �+ < �. AssumeK[�,�) has amalgamation, nomaximal
models, and is stable in �′ for unboundedly many � < �′ < � (that is, for any
� < �′ < �, there exists �′ ≤ �′′ < � such thatK�′′ is stable).
For any N0 ∈ K[�,�), there exists (Ni )i<� <univ-increasing continuous in K[�,�) with
each Ni+1 �+-model-homogeneous.Moreover anyM ∈ K[�,�] such thatN0 ≤M can
be embedded inside N :=

⋃
i<� Ni over N0.

Proof. We build (Ni )i<� by induction. N0 is already given and without loss of
generality ‖N0‖ ≥ �+. Take unions at limits and for a given Ni , first take N ′

i ≥ Ni
such that K‖N ′

i ‖ is stable, and iterate Fact 2.10 �
+-many times to pick Ni+1 ∈

K‖N ′
i ‖ which is also �

+-model-homogeneous such that N ′
i <univ Ni+1 (and so by

Proposition 2.12 also Ni <univ Ni+1).
Now given M ∈ K[�,�] with N0 ≤ M , let (Mi)i≤� be an increasing continuous
resolution ofM such that ‖Mi‖ < � for all i < � andM0 = N0. Inductively build
(fi)i≤� an increasing continuous chain of K-embeddings such that for each i ≤ �,
fi : Mi −−→

M0
Ni . This is easy since Ni+1 >univ Ni for all i < �. Then f� embedsM

into N . 


2.4. Good frames. Good frames were first defined in [24, Chapter II]. The idea
is to provide a localized (i.e., only for base models of a given size �) axiomatization
of a forking-like notion for (a “nice enough” set of) 1-types. Jarden and Shelah
(in [17]) later gave a slightly more general definition, not assuming the existence of
a superlimit model and dropping some of the redundant clauses. We will use a slight
variation here: we assume the models come from KF , for F an interval, instead of
justK�. We first adapt the definition of a pre-�-frame from [24, Definition III.0.2.1]
to such an interval:

Definition 2.16 (Pre-frame). Let F be an interval of the form [�, �), where � is
a cardinal, and � > � is either a cardinal or∞.
A pre-F -frame is a triple s = (K,,Sbs), where:
(1) K is an AEC5 with � ≥ LS(K), K� �= ∅.
(2) Sbs ⊆ ⋃

M∈KF S
na(M ). ForM ∈ KF , we write Sbs(M ) for Sbs ∩ Sna(M ).

(3)  is a relation on quadruples of the form (M0,M1, a,N), whereM0 ≤M1 ≤
N , a ∈ N , and M0, M1, N are all in KF . We write (M0,M1, a,N) or

a
N


M0

M1 instead of (M0,M1, a,N) ∈.

5In [24, Definition III.0.2.1], Shelah only asks that K contains the models of size F of an AEC. For
easy of exposition, we do not adopt this approach.
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(4) The following properties hold:

(a) Invariance: If f : N ∼= N ′ and a
N


M0

M1, then f(a)
N ′


f[M0]

f[M1]. If

tp(a/M1;N) ∈ Sbs(M1), then tp(f(a)/f[M1];N ′) ∈ Sbs(f[M1]).
(b) Monotonicity: If a

N


M0

M1, M0 ≤ M ′
0 ≤ M ′

1 ≤ M1 ≤ N ′ ≤ N ≤ N ′′

with a ∈ N ′ and N ′′ ∈ KF , then a
N ′


M ′
0

M ′
1 and a

N ′′


M ′
0

M ′
1.

(c) Nonforking types are basic: If a
N


M
M , then tp(a/M ;N) ∈ Sbs(M ).

We write �-frame instead of {�}-frame, (≥ �)-frame instead of [�,∞)-frame.
We sometimes drop the F when it is clear from context.
A pre-frame is type-full if Sbs(M ) = Sna(M ) for allM ∈ KF .
For F ′ ⊆ F an interval, we let s � F ′ denote the pre-F ′-frame defined in the
obvious way by restricting the basic types and to models in KF ′. For �′ ∈ F , we
write s � �′ instead of s � {�′}.
By the invariance and monotonicity properties,  is really a relation on types.
This justifies the next definition.

Definition 2.17. If s = (K,,Sbs) is a pre-F -frame, p ∈ S(M1) is a type, we
say p does not s-fork overM0 if a

N


M0

M1 for some (equivalently any) a and N such

that p = tp(a/M1;N).

Remark 2.18. A pre-frame defines an abstract notion of forking. That is, we
only know that the relation satisfies some axioms but it could a-priori be defined
arbitrarily. Later in the paper, we will study a specific definition of forking (based on
splitting). While the specific definition will coincide (over sufficiently saturated
models) with first-order forking when the AEC is a class of models of a first-order
theory, the reader should remember that we are working in much more generality
than the first-order framework, hence most of the properties of first-order forking
need not hold here.

Remark 2.19. We could have started from (K,) and defined the basic types
as those that do not fork over their own domain. The existence property of good
frames (see below) would then hold for free. Since we are sometimes interested in
studying frames that only satisfy existence over a certain class of models (like the
saturated models), we will not adopt this approach.

Remark 2.20 (Monotonicity of s-forking). If s = (K,,Sbs) is a pre-F -frame,
M0 ≤M1 ≤ N1 ≤ N0 are inKF , and p ∈ Sbs(N0) does not s-fork overM0, then by
the monotonicity axiom, p � N1 does not s-fork overM1. We will use this fact freely.
Definition 2.21 (Good frame). Let F be as above.
A good F -frame is a pre-F -frame (K,,Sbs) satisfying in addition
(1) KF has amalgamation, joint embedding, and no maximal model.
(2) bs-Stability: |Sbs(M )| ≤ ‖M‖ for allM ∈ KF .
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(3) Density of basic types: IfM < N andM,N ∈ KF , then there is a ∈ N such
that tp(a/M ;N) ∈ Sbs(M ).

(4) Existence: IfM ∈ KF and p ∈ Sbs(M ), then p does not s-fork overM .
(5) Extension: If p ∈ S(N) does not s-fork over M , and N ′ ∈ KF is such
that N ′ ≥ N , then there is q ∈ S(N ′) extending p that does not s-fork
overM .

(6) Uniqueness: If p, q ∈ S(N) do not s-fork over M and p � M = q � M ,
then p = q.

(7) Symmetry: If a1
N


M0

M2, a2 ∈ M2, and tp(a2/M0;N) ∈ Sbs(M0), then there

isM1 containing a1 and there is N ′ ≥ N such that a2
N ′


M0

M1.

(8) Local character: If � is a limit ordinal, (Mi)i≤� is an increasing chain inKF
withM� =

⋃
i<� Mi , and p ∈ Sbs(M�), then there exists i < � such that p

does not s-fork overMi .
(9) Continuity: If � is a limit ordinal, (Mi )i≤� is an increasing chain inKF with
M� =

⋃
i<� Mi , p ∈ S(M�) is so that p �Mi does not s-fork overM0 for all

i < �, then p does not s-fork overM0.
(10) Transitivity6: IfM0 ≤ M1 ≤ M2, p ∈ S(M2) does not s-fork overM1 and

p �M1 does not s-fork overM0, then p does not s-fork overM0.
For L a list of properties, a good−L F -frame is a pre-F -frame that satisfies all the
properties of good frames except possibly the ones in L. In this paper, L will only
contain symmetry and/or bs-stability.We abbreviate symmetry by S, bs-stability by
St, and write good− for good−(S,St).
We say that K has a good F -frame if there is a good F -frame where K is the
underlying AEC (and similarly for good−).

Remark 2.22. Using F instead of a single cardinal � is only a convenience: just
like an AECK is determined by KLS(K), a good

− F -frame s is determined by s � �,
where � := min(F). More precisely, if t is a good− F -frame such that t � � = s � �,
then the arguments from [24, Section II.2] show that t = s.

Note that local character implies nonforking is always witnessed by a model of
small size:

Proposition 2.23. Assume F is an interval of cardinals with minimum �. Assume
s = (K,,Sbs) is a pre-F -frame satisfying local character and transitivity. IfM ∈
KF and p ∈ Sbs(M ), then there existsM ′ ∈ K� such that p does not s-fork overM ′.

Proof. By induction on �′ := ‖M‖. If �′ = �, then since local character implies
existence, we can take M ′ := M . Otherwise, �′ > � so we can take a resolution
(Mi)i<�′ of M such that � ≤ ‖Mi‖ < �′ for all i < �′. By local character, there
exists i < �′ such that p does not s-fork overMi . By monotonicity, p �Mi does not
s-fork overMi , so must be basic. By the induction hypothesis, there existsM ′ ∈ K�
such that p � Mi does not s-fork over M ′. By transitivity, p does not s-fork
overM ′. 

6This actually follows from uniqueness and extension, see [24, Claim II.2.18].
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§3. A skeletal frame from splitting.
Hypothesis 3.1.

(1) K is an AEC. � ≥ LS(K) is a cardinal. K� �= ∅.
(2) K� has amalgamation.

In this section, we start our quest for a good frame. Note that we do not assume
that any abstract notion of forking is available to us at the start. Recall the following
variations on first-order splitting from [22, Definition 3.2]:

Definition 3.2. For p ∈ S(N), we say that p �-splits over M if M ≤ N and
there existsN1, N2 ∈ K� so thatM ≤ N� ≤ N for � = 1, 2, and h : N1 ∼=M N2 such
that h(p � N1) �= p � N2.
When � is clear from context, we drop it.

Remark 3.3 (Monotonicity of splitting). If p ∈ S(N) does not �-split overM
andM ≤M ′ ≤ N ′ ≤ N are all in K�, then p � N ′ does not �-split overM ′.

Remark 3.4. If s is a good− �-frame, and p does not s-fork overM , then p does
not �-split overM (this will not be used but follows from the uniqueness property,
see e.g., [4, Lemma 4.2]). Thus splitting can be seen as a first approximation to a
forking notion.

Our starting point will be the following extension and uniqueness properties
of splitting, first isolated by VanDieren [28, Theorem II.7.9, Theorem II.7.11].
Intuitively, they tell us that the usual uniqueness and extension property of a forking
notion hold of splitting provided we have enough room (concretely, the base model
has to be “shifted” by a universal extension).

Fact 3.5. LetM0 <univ M ≤ N withM0,M,N ∈ K�. Then:
(1) Weak uniqueness: If p� ∈ S(N) does not split over M0, � = 1, 2, p1 � M =
p2 �M , then p1 = p2.

(2) Weak extension: If p ∈ S(M ) does not split over M0, then there exists q ∈
S(N) extending p that does not split overM0. Moreover, q can be taken to be
nonalgebraic if p is nonalgebraic.

Proof. See [29, Theorem I.4.12] for weak uniqueness. For weak extension, use
universality to get h : N −−→

M0
M . Further extend h to an isomorphism ĥ : N̂ ∼=M0 M̂ .

So that M̂ contains a realization a of p. Let a′ := ĥ−1(a), and let q := tp(a/N ; N̂ ).
The proof of [29, Theorem I.4.10] shows q is indeed an extension of p that does
not split overM0. In addition if q is algebraic, a′ ∈ N so a = h(a′) ∈ M , so p is
algebraic. 

Wewill mostly use those two properties instead of the exact definition of splitting.
However, they characterize splitting in the following sense:

Proposition 3.6. AssumeK� has amalgamation, nomaximalmodels, and is stable.
Let s be a type-full pre-�-framewith underlying AECK . The following are equivalent.

(1) For allM,N ∈ K� withM ≤ N and all types p ∈ S(N), if p does not s-fork
overM , then for anyM <univ M ′ ≤ N , p does not split overM ′.

(2) s-forking satisfies weak uniqueness and weak extension (i.e., the conclusion of
Fact 3.5 holds with “split” replaced by “fork”).
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Proof. Chase the definitions (not used). 

We also obtain a weak transitivity property:

Proposition 3.7 (Weak transitivity of splitting). LetM0 ≤ M1 <univ M ′
1 ≤ M2

all be in K�. Let p ∈ S(M2). If p � M ′
1 does not split over M0 and p does not split

overM1, then p does not split overM0.

Proof. By weak extension, find q ∈ S(M2) extending p � M ′
1 and not splitting

overM0. By monotonicity, q does not split overM1. By weak uniqueness, p = q,
as needed. 

We now turn to building a forking notion that will satisfy a version of uniqueness
and extension (see Definition 2.21) in K�. The idea is simple enough: we want to
say that a type does not fork overM if there is a “small” substructureM0 ofM over
which the type does not split. Fact 3.5 suggests that “small” should mean “such that
M is a universal extension ofM0”, and this is exactly how we define it:

Definition 3.8 (�-forking). Let M0 ≤ M ≤ N be models in K�. We say p ∈
S(N) explicitly does not �-fork over (M0,M ) if:

(1) M0 <univ M ≤ N .
(2) p does not �-split overM0.

We say p does not �-fork over M if there existsM0 so that p explicitly does not
�-fork over (M0,M ).

The reader should note that the word “forking” is used in two different senses in
this paper:

• In the sense of an “abstract notion”: this depends on a pre-F -frame s and is
called s-forking in Definition 2.17. This is defined for models of sizes in F .

• In the concrete sense of Definition 3.8. This is called �-forking and is only
defined for types over models of size �. Later this will be extended to models
of sizes at least � and we will get a (concrete) notion called (≥ �)-forking
(Definition 4.2).Of course, the two notionswill coincide overmodels of size�.

When we say that a typep explicitly does not�-fork over (M0,M ), we think ofM
as the base, andM0 as the explicit witness to the �-nonforking. It would be nice if
we could get rid of the witness entirely and get that �-nonforking satisfies extension
and uniqueness, but uniqueness seems to depend on the particular witness.
Transitivity is also problematic: although we manage to get a weak version
depending on the particular witnesses, we still do not know how to prove the
witness-free version. This was stated as [1, Exercise 12.9] but Baldwin later realized
[2] there was a mistake in his proof.
If instead we define “p does not �-fork∗ overM” to mean “for allM0 <univ M
both in K� there existsM ′

0 in K� withM0 ≤M ′
0 <univ M and p explicitly does not

�-fork over (M ′
0,M )” then extension and uniqueness (and thus transitivity) hold,

but local character (assuming local character of splitting) is problematic. Thus it
seems we have to carry along the witness in our definition of forking, and this makes
the resulting independence notion quiteweak (hence the name“skeletal”).However,
we will see in the next sections that (assuming some tameness and homogeneity) our
skeletal �-frame transfers to a much better-behaved frame above �. In particular,
full uniqueness and transitivity will hold there.
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Lemma 3.9 (Basic properties of �-forking). Below, all models are in K�.

(1) Monotonicity: If p ∈ S(N) explicitly does not �-fork over (M0,M ), M0 ≤
M ′
0 ≤M ≤M ′ ≤ N ′ ≤ N andM ′

0 <univ M
′, then p � N ′ explicitly does not

�-fork over (M ′
0,M

′). In particular, if p ∈ S(N) does not �-fork overM and
M ≤M ′ ≤ N ′ ≤ N , then p � N ′ does not �-fork overM ′.

(2) Extension: If p ∈ S(N) explicitly does not �-fork over (M0,M ) andN ′ ≥ N ,
then there is q ∈ S(N ′) extending p that explicitly does not �-fork over
(M0,M ). If p is nonalgebraic, then q is nonalgebraic.

(3) Uniqueness: If p� ∈ S(N) explicitly does not �-fork over (M0,M ), � = 1, 2,
and p1 �M = p2 �M , then p1 = p2.

(4) Transitivity: Let M1 ≤ M2 ≤ M3 and let p ∈ S(M3). If p � M2 explicitly
does not �-fork over (M0,M1) and p explicitly does not �-fork over (M ′

0,M2)
forM0 ≤M ′

0, then p explicitly does not �-fork over (M0,M1).
(5) Nonalgebraicity: If p ∈ S(N) does not �-fork over M and p � M is not
algebraic, then p is not algebraic.

Proof. Monotonicity follows directly from the definition (and Proposi-
tion 2.12.(2)), extension and uniqueness are just restatements of Fact 3.5, and
transitivity is a restatement of Proposition 3.7. For nonalgebraicity, assume p �M
is nonalgebraic. Then it has a nonalgebraic nonforking extension toN by extension,
and this extension must be p by uniqueness, so the result follows. 

Assuming some local character for splitting, we obtain weak versions of the local
character and continuity properties:

Definition 3.10. LetR be a binary relation onK�, and letκ be a regular cardinal.
We say that �-splitting has κ-local character for R-increasing chains if for any
R-increasing (Mi )i≤� with cf(�) ≥ κ,M� =

⋃
i<� Mi , and any p ∈ S(M�), there is

i < � so that p does not split overMi .

Remark 3.11. If K� is stable, then by [13, Fact 4.6] �-splitting has �+-local
character for ≤-increasing chains.
Lemma 3.12. Let � be an abstract universal ordering on K�, and let κ be a
regular cardinal. Assume splitting has κ-local character for �-increasing chains.
Then:

(1) κ-local character for �-increasing chains: If (Mi )i≤� is a �-increasing chain
in K� with cf(�) ≥ κ,M� =

⋃
i<� Mi and p ∈ S(M�), then there exists i < �

so that p explicitly does not �-fork over (Mi,Mi+1).
(2) κ-continuity for �-increasing chains: If (Mi)i≤� is a �-increasing chain in K�
with cf(�) ≥ κ, M� =

⋃
i<� Mi and p ∈ S(M�) such that p � Mi does not

�-fork over M0 for all i < �, then p does not �-fork over M0. Moreover, if
in addition p � Mi explicitly does not �-fork over (M ′

0,M0) for all i < �
(i.e., the witness is always the same), then p explicitly does not �-fork over
(M ′
0,M0).

(3) Existence over (≥ κ,�)-limits: If M ∈ K� is (�,�)-limit for some � with
cf(�) ≥ κ, then any p ∈ S(M ) does not �-fork over M . In fact, if
p0, . . . , pn−1 ∈ S(M ), n < �, then there exists M0 <univ M such that pi
explicitly does not �-fork over (M0,M ) for all i < n.
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Proof.

(1) Follows from κ-local character of splitting for �-increasing chains.
(2) By κ-local character, there exists i < � so that p explicitly does not �-fork
over (Mi,Mi+1). By assumption, there existsM ′

0 <univ M0 so that p � Mi+1
explicitly does not �-fork over (M ′

0,M0). Since M
′
0 ≤ Mi , we can apply

transitivity to obtain that p explicitly does not �-fork over (M ′
0,M0). The

proof of the moreover part is similar.
(3) By local character and monotonicity. 

Thus if splitting has ℵ0-local character for�-increasing chains for some abstract
universal ordering � and if all models in K� are �-limit (e.g., if K� is categorical),
then it seems we are very close to having a good−S �-frame, but the witnesses must
be carried along, which as observed above is rather annoying. Also, local character
and continuity only hold for �-chains.
In the next sections, we show that these problems disappear when we transfer
our skeletal frame above �. Note that Shelah’s construction of a good frame in [24,
Theorem II.3.7] already takes advantage of that phenomenon. A similar idea is also
exploited in the definition of a rooted minimal type in Grossberg and VanDieren’s
categoricity transfer from tameness [12, Definition 2.6].

§4. Going up without assuming tameness.
Hypothesis 4.1.

(1) K is an AEC. � ≥ LS(K) is a cardinal. K� �= ∅.
(2) � is an abstract universal ordering on K�. In particular (by Remark 2.14), K�
has amalgamation, no maximal models, and is stable.

In [24, Section II.2], Shelah showed how to extend a good �-frame to all models
in K≥�. The resulting object will in general not be a good (≥ �)-frame, but several
of the properties are nevertheless preserved. In this section, we apply the same
procedure on our skeletal �-frame (induced by �-forking defined in the previous
section) and show Shelah’s arguments still go through, assuming the base models
are �+-homogeneous. In the next section, we will assume tameness to prove more
properties of (≥ �)-forking.
We define (≥ �)-forking from �-forking in exactly the same way Shelah extends
a good �-frame to a (≥ �)-frame:
Definition 4.2. AssumeM,N ∈ K≥� and p ∈ Sna(N). We say that p does not
(≥ �)-fork overM ifM ≤ N and there existsM ′ inK� withM ′ ≤M such that for
all N ′ ∈ K� withM ′ ≤ N ′ ≤ N , p � N ′ does not �-fork overM ′.

For technical reasons, we also need to define explicit (≥ �)-forking over a model
of size �:

Definition 4.3 (Explicit (≥ �)-forking in K≥�). Assume N ∈ K≥�, M0 ≤ M
are in K�, and p ∈ Sna(N). We say that p explicitly does not (≥ �)-fork over
(M0,M ) if p does not �-split over M0 and M0 <univ M ≤ N . Equivalently, for
all N ′ ∈ K� with M ≤ N ′ ≤ N , we have p � N ′ explicitly does not �-fork over
(M0,M ) (see Definition 3.8).
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Remark 4.4. The following easy propositions follow from the definitions.Wewill
use them without further comments in the rest of this paper.

(1) The definitions of (≥ �)-forking and �-forking coincide over models of size
�. That is, ifM0,M,N ∈ K� and p ∈ Sna(N), then p does not �-fork over
M if and only if p does not (≥ �)-fork over M and p explicitly does not
(≥ �)-fork over (M0,M ) if and only if p explicitly does not �-fork over
(M0,M ).

(2) For M ≤ N both in K≥�, p ∈ Sna(N) does not (≥ �)-fork over M if and
only if there existsM0 ≤M in K� such that p does not (≥ �)-fork overM0.

(3) For M ≤ N with M ∈ K�, N ∈ K≥�, p ∈ Sna(N) does not (≥ �)-fork
overM if and only if for all N ′ ≤ N withM ≤ N ′, p � N ′ does not �-fork
overM .

Definition 4.5. We define a nonforking relation  on K≥� by a
N̂


M
N if and

only ifM,N, N̂ ∈ K≥�, a ∈ N̂ , and tp(a/N ; N̂ ) does not (≥ �)-fork overM .
Proposition 4.6. s0 := (K,,Sna) is a type-full pre-[�,∞)-frame.
Proof. The properties to check follow directly from the definition of (≥ �)-
nonforking. s0 is type-full since we defined the basic types to be all the nonalgebraic
types. 

In K� we had by definition that a type which does not �-fork over M also
explicitly does not �-fork over (M0,M ) for some witnessM0. This is not necessarily
the case for (≥ �)-nonforking: take for exampleN ∈ K>� andM ∈ K� and assume
p ∈ S(N) does not (≥ �)-fork overM . Then for all N ′ ∈ K� withM ≤ N ′ ≤ N ,
p � N ′ does not �-fork over M , i.e., there is a witness M ′

0 such that p � N ′

explicitly does not �-fork over (M ′
0,M ), but there could be different witnessesM

′
0

for different N ′.
The next lemma shows that this can be avoided if we have enough homogeneity.
This is crucial to our proofs of transitivity, uniqueness, and extension.

Lemma 4.7. AssumeM ≤ N are both in K≥�+ andM is �+-model-homogeneous.
Assume p ∈ S(N) does not (≥ �)-fork over M . Then there exists M ′

0,M
′ ∈ K�

withM ′
0 ≤ M ′ ≤ M such that p explicitly does not (≥ �)-fork over (M ′

0,M
′) (i.e.,

(≥ �)-nonforking overM ′ is witnessed by the sameM ′
0 uniformly, see the discussion

above).

Proof. By definition, there isM ′
0 inK� withM

′
0 ≤M such thatp does not (≥ �)-

fork overM ′
0. SinceM is �

+-model-homogeneous, one can pickM ′ >univ M ′
0 inK�

withM ′ ≤M . By monotonicity (Lemma 3.9.(1)), p explicitly does not (≥ �)-fork
over (M ′

0,M
′). 


Using Lemma 4.7, we can give a simpler definition of (≥ �)-forking. This will
not be used but shows that our forking is the same as that defined in [24, Definition
III.9.5.2].

Proposition 4.8. Assume M ≤ N are both in K≥�+ and M is �+-model-
homogeneous. Let p ∈ Sna(N). Then p does not (≥ �)-fork over M if and only
if there existsM0 ∈ K� such thatM0 ≤M and p does not �-split overM0.
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Proof. If p does not (≥ �)-fork over M , use Lemma 4.7 to get M ′
0,M

′ ∈ K�
withM0 ≤ M ′ ≤M such that p explicitly does not (≥ �)-fork over (M0,M ′). By
definition, this means that p does not �-split overM0. Conversely, assumeM0 ∈ K�
is such that M0 ≤ M and p does not �-split over M0. Since M is �+-model-
homogeneous, there existsM ′ ∈ K� such thatM0 <univ M ′ ≤M . Thus p explicitly
does not (≥ �)-fork over (M0,M ′), so it does not (≥ �)-fork overM . 

Lemma 4.9 (Existence). Let M ∈ K≥�+ be �+-model-homogeneous. Then p ∈
Sna(M ) if and only if p does not (≥ �)-fork overM .
Proof. If p does not fork over M , then p is nonalgebraic by definition. Now
assume p is nonalgebraic. By [13, Fact 4.6], there is M ′

0 ∈ K� with M ′
0 ≤ M

such that p does not �-split over M0. Pick M ′ ∈ K� with M ′ >univ M ′
0 so that

M ′ ≤M . This is possible by �+-model-homogeneity. We have that p explicitly does
not (≥ �)-fork over (M ′

0,M
′), so does not (≥ �)-fork overM ′, as needed. 


Lemma 4.10 (Transitivity). IfM0 ≤ M1 ≤ M2 are all in K≥�,M1 is �+-model-
homogeneous, p ∈ Sna(M2) is such that p � M1 does not (≥ �)-fork overM0 and p
does not (≥ �)-fork overM1, then p does not (≥ �)-fork overM0.
Proof. Find M ′

0 ∈ K� with M ′
0 ≤ M0 such that p � M1 does not (≥ �)-fork

over M ′
0. Using monotonicity and Lemma 4.7, we can also find M

′
1,M

′′
1 ∈ K�

with M ′
0 ≤ M ′

1 <univ M
′′
1 ≤ M1 such that p explicitly does not (≥ �)-fork over

(M ′
1,M

′′
1 ). By transitivity in K� (Lemma 3.9.(4)), p does not (≥ �)-fork overM ′

0,
and hence overM0. 

Lemma 4.11 (Local character). Assume splitting has κ-local character for �-
increasing chains. If cf(�) ≥ κ, (Mi)i≤� is an increasing chain in K≥�+ with M� =⋃
i<� Mi , Mi is �

+-model-homogeneous for i < �, and p ∈ Sna(M�), then there is
i < � such that p does not (≥ �)-fork overMi .
Proof. Without loss of generality, � is regular. If � ≥ �+, then M� is also �+-
model-homogeneous so one can pick N∗ ∈ K� withN∗ ≤M� witnessing existence
(use Lemma 4.9) and find i < � with N∗ ≤ Mi , so p does not (≥ �)-fork over
Mi as needed. Now assume � < �+. We imitate the proof of [24, Claim II.2.11.5].
Assume the conclusion fails. Build (Ni )i≤� �-increasing continuous in K�, (N ′

i )i≤�
≤-increasing continuous in K� such that for all i < �:
(1) Ni ≤Mi .
(2) Ni ≤ N ′

i ≤M� .
(3) p � N ′

i+1 explicitly �-forks over (Ni,Ni+1).
(4)

⋃
j≤i(N

′
j ∩Mi+1) ⊆ |Ni+1|.

This is possible. For i = 0, let N0 ∈ K� be any model with N0 ≤ M0, and let
N ′
0 := N0. For i limit, take unions. For the successor case, assume i = j + 1.
Choose Ni ≤ Mi satisfying (4) with Ni � Nj (possible since Mi is �+-model-
homogeneous). By assumption, p (≥ �)-forks overMi , hence explicitly (≥ �)-forks
over (Nj,Ni ), and so by definition of forking andmonotonicity there existsN ′

i ∈ K�
withM� ≥ N ′

i ≥ Ni , N ′
i ≥ N ′

j , and p � N ′
i explicitly �-forking over (Nj,Ni). It is

as required.
This is enough. By local character in K�, there is i < � such that p � N� explicitly
does not �-fork over (Ni,Ni+1). By (4) and (4), N ′

� ≤ N� . Thus p � N ′
i+1 explicitly

does not �-fork over (Ni,Ni+1), contradicting (4). 
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Lemma 4.12 (Continuity). Assume splitting hasκ-local character for�-increasing
chains. If cf(�) ≥ κ, (Mi)i≤� is an increasing chain in K≥�+ with M� =

⋃
i<� Mi ,

Mi �
+-model-homogeneous for i < �, and p ∈ S(M�) is so that p � Mi does not

(≥ �)-fork overM0 for all i < �, then p� does not (≥ �)-fork overM0.
Proof. In a type-full frame such as ours, this follows directly from κ-local
character and transitivity, see [24, Claim II.2.17.3]. 

Remark 4.13. In the statements of local character and continuity, we assumed
thatMi was �+-model-homogeneous for all i < �, but not that their unionM� was
�+-model-homogeneous.

§5. A tame good−S frame. Boney showed in [6] that given a good �-frame,
tameness implies that Shelah’s extension of the frame to ≥ � is actually a good
(≥ �)-frame. In this section, we apply the ideas of his proof (assuming the base
models are �+-model-homogeneous) to our skeletal �-frame.
More precisely, we fix a cardinal � > �, assume enough tameness, and build a
good−S �-frame (i.e., we have all the properties of a good �-frame except perhaps
symmetry). We will prove symmetry in the next section.

Hypothesis 5.1.

(1) K is an AEC. � ≥ LS(K) is a cardinal. K� �= ∅.
(2) � is an abstract universal ordering on K�. In particular (by Remark 2.14), K�
has amalgamation, no maximal models, and is stable.

(3) κ is the least regular cardinal such that splitting has κ-local character for
�-increasing chains in K�.

(4) � > � is such that:
(a) K is (�, �)-tame7.
(b) K[�,�] has amalgamation.
(c) K[�,�) has no maximal models.

Remark 5.2. κ plays a similar role as the cardinal κ(T ) in the first-order context.
ByRemark 3.11 andHypothesis 5.1.(2),κ ≤ �+. In the end,wewill be able to obtain
a good frame only when κ = ℵ0, but studying the general case leads to results on
the stability spectrum.

Note that uniqueness is actually equivalent to (�, �)-tameness by [6, Theorem 3.2].
The easiest case is when � = �+. Then we know amodel-homogeneous model exists
in K�, and this simplifies some of the proofs.

Lemma 5.3 (Uniqueness). Let M ≤ N be models in K[�,�]. Let p, q ∈ S(N).
Assume p �M = q �M .
(1) If M ∈ K� and p, q explicitly do not (≥ �)-fork over (M0,M ) for some
M0 <univ M , then p = q.

(2) IfM ∈ K[�+,�] is �+-model-homogeneous and p, q do not (≥ �)-fork overM ,
then p = q.

7Recall (Definition 2.4) that this means that the Galois types over models of size at most � are
determined by their restrictions to submodels of size �.
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Proof. (1) follows from uniqueness in K� (Lemma 3.9.(3)) and tameness. To
see (2), use monotonicity and Lemma 4.7, to find M ′

0,M
′ ∈ K� with M ′

0 <univ
M ′ ≤M such that both p and q explicitly do not (≥ �)-fork over (M ′

0,M
′). Now

apply (1). 

Interestingly, we already have enough machinery to obtain a stability transfer
theorem. First recall:

Fact 5.4. K�+ is stable.
Proof. This could be done using the method of proof of Theorem 5.6, but this is
also [5, Theorem 1]. 

Recall that κ is the local character cardinal, see Hypothesis 5.1.(3).

Lemma 5.5. Assume that � > �+, cf(�) ≥ κ, and there are unboundedly (in the
same sense as in the statement of Lemma 2.15) many � ≤ �′ < � such that K�′ is
stable. Then K� is stable.
Proof. LetM ∈ K�. By Lemma 2.15,M can be embedded inside some M̂ ∈ K�
which can be written as

⋃
i<� Mi , with (Mi )i<� an increasing chain

8 of �+-model-
homogeneous models in K[�+,�). From amalgamation, we know that Galois types

can be extended, so |S(M )| ≤ |S(M̂ )|, and so we can assume without loss of
generality thatM = M̂ . Let (pj)j<�+ be types in S(M ). By κ-local character, for
each j < �+ there is ij < � such that pj does not (≥ �)-fork over Mij . By the
pigeonhole principle, we may assume ij = i0 for all j < �+. Taking i0 bigger if
necessary, we may assume that K‖Mi0‖ is stable. Thus |S(Mi0 )| ≤ ‖Mi0‖ ≤ �, so by
the pigeonhole principle again, we can assume that there is q ∈ S(Mi0 ) such that
pj � Mi0 = q for all j < �+. By uniqueness, pj = pj′ for each j, j′ < �+, so the
result follows. 

We can now prove that stability transfers up if the locality cardinal κ of Hypoth-
esis 5.1.(3) is ℵ0. Recall that � is the cardinal above � fixed in Hypothesis 5.1.(4).
Recall also that we already have stability in � by Hypothesis 5.1.(2).

Theorem 5.6 (The superstability theorem). If κ = ℵ0, then K� is stable.
Proof. We work by induction on �. If � = �+, this is Fact 5.4 and if � > �+ this
is given by Lemma 5.5 and the induction hypothesis. 

Assuming the GCH, we can also say something for arbitrary κ (this will not
be used):

Theorem 5.7. Assume GCH. If �<κ = �, then K� is stable.
Proof. By induction on �. If � = �+, this is Fact 5.4, so assume � > �+. By
König’s theorem, cf(�) ≥ κ. If � is successor, then �� = � by GCH, so by [13,
Corollary 6.4], K is stable in �. If � is limit there exists a sequence of successor
cardinals (�i)i<cf(�) increasing cofinal in � with �0 ≥ �+. Since without loss of
generality κ ≤ �+ (Remark 3.11), GCH implies that �<κi = �i , so by the induction
hypothesis, K is stable in �i for all i < cf(�). Apply Lemma 5.5 to conclude. 

We now prove extension. This follows from compactness in the first-order case,
but we make crucial use of the superstability hypothesis κ = ℵ0 in the general case
8Explicitly, we take (Ni )i<� as given by Lemma 2.15 for some N0 ≤ M in K�+ , and letMi := Ni+1.

Note that the chain (Mi )i<� will not be continuous.

https://doi.org/10.1017/jsl.2015.51 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.51


374 SEBASTIEN VASEY

(recall from the hypotheses of this section that κ is the local character cardinal for
�-splitting).

Lemma 5.8. Assume κ = ℵ0. Let � < �+ be a limit ordinal. Assume (Mi )i≤� is an
increasing continuous sequence in K[�,�) withM0 ∈ K�. Let (pi)i<� be an increasing
continuous sequence of types with pi ∈ S(Mi ) for all i < �, and pi explicitly does not
(≥ �)-fork over (M ′

0,M0). Assume that one of the following holds:

(1) (Mi)i<� is �-increasing in K�.
(2) For all i < �,Mi+1 is �+-model-homogeneous.

Then there exists a unique p� ∈ S(M�) extending each pi and explicitly not
(≥ �)-forking over (M ′

0,M0).

Proof. This is similar to the argument in [12, Corollary 2.22], but we give some
details. We focus on (1) (the proof of the other case is completely similar). Build
by induction (fi,j)i<j<� , (ai)i<� , and increasing continuous (Ni )i<� such that for all
i < j < �:

(1) Mi ≤ Ni , ai ∈ Ni .
(2) fi,j : Ni → Nj .
(3) For j < k < �, fj,k ◦ fi,j = fi,k .
(4) fi,j fixesMi .
(5) fi,j(ai) = aj .
(6) pi = tp(ai/Mi ;Ni ).

This is enough. Let (N�, (fi,�))i<� be the direct limit of the system (Ni,fi,j)i<j<� ,
and let a� := f0,�(a0), p� := tp(a�/M� ;N�). One easily checks that p� extends
each pi , i < �, and so using continuity for �-increasing chains (Lemma 3.12.(2)),
explicitly does not (≥ �)-fork over (M ′

0,M0). Finally, p� is unique by Lemma 5.3.
This is possible. For i = 0, we take a0 and N0 so that tp(a0/M0;N0) = p0. For i
limit, we let (Ni ,fi0,i)i0<i be the direct limit of the system (Ni0 , fi0,j0 )i0<j0<i , and let
ai := f0,i(a0). By continuity for �-increasing chains, tp(ai/Mi ;Ni) explicitly does
not (≥ �)-fork over (M ′

0,M0), and so by uniqueness, it must equal pi . For i = i0+1
successor, find ai andN ′

i ≥Mi such that pi = tp(ai/Mi ;N ′
i ). Since pi �Mi0 = pi0 ,

we can use the definition of types to amalgamate Ni0 and N
′
i overMi0 : there exists

Ni ≥ N ′
i and fi0,i : Ni0 −−→

Mi0

Ni so that fi0,i(ai0 ) = ai . Define fi′0 ,i := fi0,i ◦ fi′0 ,i0
for all i ′0 < i0. 

Lemma 5.9 (Extension). Assume κ = ℵ0. Let M ≤ N both be in K[�+,�] with
M and N �+-model-homogeneous, and let p ∈ Sna(M ). Then there is q ∈ S(N)
extending p that does not fork overM .

Proof. We imitate the proof of [6, Theorem 5.3]. By existence and Lemma 4.7,
there existsM ′

0,M0 ∈ K�withM ′
0 <univ M0 ≤M andp explicitly (≥ �)-nonforking

over (M ′
0,M0). Work by induction on �. If N ∈ K<�, use the induction hypothesis,

so assume N ∈ K�. There are two cases: either � = �+ or � > �+.
Assume first � > �+. By transitivity and Lemma 2.15, we can assume without
loss of generality that N =

⋃
i<� Ni , where (Ni)i≤� is a <univ-increasing contin-

uous chain in K[�+,�), each Ni+1 is �+-model-homogeneous, and N0 extends M0.
Now inductively build a ≤-increasing continuous (Mi )i≤� with M� = M so that
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M0 ≤Mi ≤ Ni for all i < � (we allow repetitions). Set pi := p �Mi and note that
by monotonicity, pi explicitly does not (≥ �)-fork over (M ′

0,M0).
We inductively build an increasing (qi)i≤� with qi ∈ S(Ni ), pi ≤ qi , and qi
explicitly does not (≥ �)-fork over (M ′

0,M0). For i = 0, use extension in K<� to
find q0 as needed. For i = j+1, use extension to find a (≥ �)-nonforking extension
qi ∈ S(Ni ) of qj that explicitly does not (≥ �)-fork over (M ′

0,M0). By uniqueness,
qi ≥ pi . At limits, use Lemma 5.8 and uniqueness. q := q� is as desired.
If � = �+, the construction is exactly the same except we use extension in K�
at successor steps and the first case of Lemma 5.8 at limit steps. Note that since
N is �+-model-homogeneous, N =

⋃
i<�+ Ni , where (Ni )i<�+ is a �-increasing

continuous chain in K�. 


Definition 5.10. Let s := s0 � �, where s0 is the pre-frame from Proposition 4.6.

Corollary 5.11. Assume:

(1) κ = ℵ0.
(2) K� has joint embedding.
(3) K� has no maximal models.
(4) All the models in K� are �+-model-homogeneous.

Then s is a type-full good−S �-frame.

Proof. It is easy to see s is a type-full pre-�-frame. K� has amalgamation
and no maximal models by hypothesis. It has joint embedding since K� has
joint embedding and K[�,�] has amalgamation (see Lemma 2.3). Stability holds
by Theorem 5.6. Density of basic types is always true in a type-full frame. For
the other properties, see Lemmas 4.9, 4.10, 4.11, 4.12, 5.3, and 5.9 (note that the
original statement of extension in Definition 2.21 follows from Lemma 5.9 and
transitivity). 

Lemma 5.12. Assume K is categorical in � and κ = ℵ0. Then:
(1) K[�,�] has joint embedding and K� (and hence K[�,�]) has no maximal models.
(2) All the models in K� are �+-model-homogeneous.

Proof. To see (2), assume first that K� has no maximal models. Use stability to
build (Mi )i≤�+ <univ-increasing continuous withMi ∈ K� for all i < �+. ThenM�+
is �+-model-homogeneous. If K� has a maximal model, then it is easy to check
directly that the maximal model is �+-model-homogeneous.
For (1),K� has joint embedding by categoricity. Now sinceK[�,�) has nomaximal
models, any M ∈ K[�,�) embeds into an element of K�, so joint embedding for
K[�,�] follows . To see K� has no maximal model, let N ∈ K� be given. First assume
� = �+. Build a �-increasing continuous chain (Mi )i≤�+ , and a ∈ N such that for
all i < �+:

(1) Mi ∈ K�,Mi ≤ N .
(2) a /∈M0.
(3) tp(a/Mi ;N) does not �-fork overM0.

This is enough.M�+ ∈ K�+. Moreover by Lemma 3.9.(5), a /∈Mi for all i < �+,
so a /∈M�+ . ThusM�+ < N . By categoricity, the result follows.
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This is possible. Pick a �-limit M0 ∈ K� with M0 ≤ N (this is possible by
model-homogeneity ofN), and pick any a ∈ N\M0. At limits, take unions and use
continuity (Lemma3.12.(2)) to see the requirements aremaintained. For a successor
i = j+1, use extension and some renaming. In details, pick an arbitraryM ′

i �Mj
with M ′

i ≤ N (possible by model-homogeneity). By extension (Lemma 3.9.(2)),
there is q ∈ S(M ′

i ) that does not �-fork overM0 and extends pj := tp(a/Mj ;N).
Since N is saturated, there is a′ ∈ N realizing q. Pick N ≥ Ni ≥M ′

i containing a
′

and a. By assumption, tp(a′/Mj ;Ni ) = pj = tp(a/Mj ;Ni ). Thus there isN ′
i ≥ Ni

and f : Ni −−→
Mj
N ′
i such that f(a

′) = a and without loss of generality N ′
i ≤ N .

LetMi := f[M ′
i ] and use invariance to see it is as desired.

If � > �+, the proof is completely similar: if there is N1 > N , we are done, so
assume not. Then amalgamation implies N must be model-homogeneous. Build a
<univ-increasing continuous (Mi)i≤� and a ∈ N such that for all i < �:
(1) Mi ∈ K[�+,�),Mi ≤ N .
(2) Mi+1 is �+-model-homogeneous.
(3) tp(a/Mi ;N) does not (≥ �)-fork overM0.
As before, this is possible and the result follows. 

Corollary 5.13. If K is categorical in � and κ = ℵ0, then s is a type-full good−S
�-frame.

Proof. Lemma 5.12 tells us all the hypotheses of Corollary 5.11 are satisfied. 

Note that categoricity in � is not the only hypothesis giving that all models in K�
are �+-model-homogeneous. For example:

Fact 5.14 (Theorem 5.4 in [3]). Assume K has amalgamation, is categori-
cal in a cardinal � so that K� has a �+-model-homogeneous model (this holds
if e.g., �� = �). Then every member of K≥� is �+-model-homogeneous, where
� := min(�, sup
<� �(2
 )+).

§6. Getting symmetry. FromCorollary 5.11, we obtain from reasonable assump-
tions a forking notion that satisfies all the properties of a good �-frame except
perhaps symmetry. Note that assuming more tameness, the frame can also be
extended (see Fact 6.12) to models of size above �:

Fact 6.1. Let s = (K,,Sbs) be a good
−S �-frame. Let � > � and letF := [�, �).

AssumeKF has amalgamation and no maximal models, andK is (�,< �)-tame. Then
s can be extended to a good−S F -frame. If s is type-full, then the extended frame will
also be type-full.

Proof. Apply [6, Theorem 1.1]: its proof only uses the tameness for 2-types
hypothesis to obtain symmetry. Note that if (as there) we start with a good �-frame,
then no maximal models follows. Here we do not have symmetry, so we assume it
as an additional hypothesis. The proof of Lemma 4.11 gives us that the extended
frame is type-full if s is. 

We have justified:

Hypothesis 6.2. s = (K,,Sbs) is a good
− F -frame, where F is an interval of

cardinals of the form [�, �) for � a cardinal and � > � either a cardinal or∞.
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In this section, we will prove that s also satisfies symmetry if � is big-enough.
Note that we do not need to assume tameness since enough tameness for what we
want follows from the uniqueness and local character properties of s-forking, see
[6, Theorem 3.2].
Note that (see the definition of good− in 2.21) we do not assume s satisfies bs-
stability. It will hold in the setup of the previous sections, but the arguments of this
section work just as well without it. Note in passing that bs-stability and stability
are equivalent:

Fact 6.3 ([24], Claim II.4.2.1). For any �′ ∈ F , s � �′ satisfies bs-stability if and
only if K is stable in �′.

Moreover, eventual stability will follow from the structural properties of forking:

Proposition 6.4.

(1) If 2� ∈ F , then K is stable in 2�.
(2) Assume �0 ∈ F and K is stable in �0. Then K is stable in every � ≥ �0 with
� ∈ F .

In particular, if � is a cardinal with 2� ≤ � < �, then K is stable in �.
Proof.

(1) Let � := 2�. By Fact 6.3, it is enough to show that s � � satisfies bs-stability.
Let M ∈ K� , and let (pi)i<�+ be elements of Sbs(M ). Let (Mi)i<� be a
resolution ofM . For each i < �+, local character implies there exists ji < �
such that pi does not s-fork over Mji . By the pigeonhole principle, we can
assume without loss of generality that ji = j0 for all i < �+. By Proposition
2.23 and transitivity, there existsM ′ ∈ K� such thatM ′ ≤ Mj0 and pi does
not s-fork overM ′ for all i < �+. We know that |S(M ′)| ≤ 2� = �, so by the
pigeonhole principle again, we can assume that there is q ∈ S(M ′) such that
pi �M ′ = q for all i < �+. By uniqueness, pi = pi′ for all i, i ′ < �+, and the
result follows.

(2) By the proof of stability in Fact 6.1. 

We would like to give conditions under which s has symmetry. A useful fact9 is
that it is enough to look at s � �:
Fact 6.5 (Theorem 6.8 in [10]). s has symmetry if and only if s � � has symmetry.
Since we are not assuming anything about how s is defined, we will work by
contradiction: We will show that if � is big enough and symmetry fails, then we get
the order property, a nonstructure property which implies unstability. This is how
the symmetry property of forking was originally proven in the first-order context,
see [21, Theorem III.4.13]. The same approach was later used in a nonelementary
setup in [20, Theorem 5.1], and generalized in [4, Theorem 5.14]. We will rely on
the proof of the latter.
The definitions and fact below do not need Hypothesis 6.2.

Definition 6.6. Let α, �, and 
 be cardinals. A model N has the (α, �)-order
property of length 
 if there exists M ∈ K≤� with M ≤ N (we also allow M to
9This is not crucial to our argument, but enables us to obtain an explicit upper bound on the amount

of tameness needed.
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be empty) and (āi)i<
 , āi ∈ αN so that for any i0 < i1 < 
 and j0 < j1 < 
,
tp(āi0 āi1/M ;N) �= tp(āj1 āj0/M ;N). If � = 0, we omit it.
K has the (α, �)-order property of length 
 if someN ∈ K has it.K has the (α, �)-
order property if it has the (α, �)-order property for all lengths (we sometimes also
say K has the (α, �)-order property of length∞). K has the order property if it has
the α-order property for some α.

Remark 6.7. If N has the (α, �)-order property of length 
, then it has the
(α + �)-order property of length 
.

Definition 6.8. Given a cardinal �, define h(�) := �(2� )+ .

Fact 6.9.

(1) IfK has the (α, �)-order property of length h(α+�+LS(K)), thenK has the
(α, �)-order property.

(2) If K has the (α, �)-order property, then it is α-unstable in �′ for all �′ ≥ �.
Proof. The statements essentially appear in [22, Claim 4.5.3, Claim 4.7.2].
The proof of (1) is an application of Morley’s method together with Shelah’s pre-
sentation theorem, and a proof of a statement similar to (2) is sketched in [4, Fact
5.13]. 

Fact 6.10. If s does not have symmetry, then K has the (2, �)-order property of
length �.

Proof. By Fact 6.5, s � � does not have symmetry. The result now follows by
exactly the same proof as [4, Theorem 5.14]. 

Corollary 6.11. If � ≥ h(�), then s has symmetry.
Proof. If s does not have symmetry, then by Fact 6.10 and Fact 6.9.(1), K
has the (2, �)-order property and hence by Fact 6.9.(2) is 2-unstable in 2�. By
Theorem 2.7, K is unstable in 2�, contradicting Proposition 6.4 (note that 2� <
h(�) ≤ �). 

Thus it seems quite a big gap between � and � is needed. On the other hand the
proof of Fact 6.1 tells us that with enough tameness we can make F bigger:
Fact 6.12. Let � ′ ≥ � and let F ′ := [�, � ′). Assume KF ′ has amalgamation
and no maximal models, and K is (�, � ′)-tame. Then s can be extended to a good−

[�, � ′)-frame. If s has bs-stability, the extended frame will also have bs-stability. If s
is type-full, then the extended frame will also be type-full.

Proof. By Remark 2.22, s is determined by s � �. Now apply Fact 6.1. 

Remark 6.13. We could replace (�, � ′)-tameness by (�′, � ′)-tameness in the
above, where �′ ∈ F . This turns out to be equivalent (at least if we consider tame-
ness for basic types) since the uniqueness property of s gives us (�, �′)-tameness for
basic types.

Corollary 6.14. Let F ′ := [�, h(�)). Assume KF ′ has amalgamation and no
maximal models, and K is (�,< h(�))-tame. Then s has symmetry.

Proof. Using Fact 6.12, we can extend s to assume without loss of generality
that � ≥ h(�). Now use Corollary 6.11. 
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§7. The main theorems. We finally have our promised good frame:
Theorem 7.1. Assume:

(1) K is an AEC. � ≥ LS(K) is a cardinal.
(2) K� �= ∅ has joint embedding.
(3) � is an abstract universal ordering on K�. In particular (by Remark 2.14), K�
has amalgamation, no maximal models, and is stable.

(4) Splitting has ℵ0-local character for �-increasing chains in K�.
(5) � > � is such that:
(a) K is (�,< h(�))-tame.
(b) K[�,h(�)) has amalgamation and no maximal models.
(c) All the models in K� are �+-model-homogeneous.

Then K has a type-full good [�, h(�))-frame.

Proof. Corollary 5.11, gives us a good−S �-frame s. By Corollary 6.14, s also
has symmetry. 

We can use categoricity to derive some of the hypotheses above. We will use:

Fact 7.2. Assume K has amalgamation and no maximal models. Assume K is
categorical in �. Then:

(1) K is stable in all LS(K) ≤ � < �.
(2) For any LS(K) ≤ � < cf(�) and any limit � < �+, �-splitting has ℵ0-local
character for �-chains, where �:=<�,� .

(3) Let h2 := h(h(LS(K))). Assume � is a successor cardinal and � > �0 ≥ h2.
Then K is (h2, �0)-tame and categorical in �0. In addition, the model of size �0
is saturated.

Proof. (1) is [22, Claim 1.7]. (2) is [22, Lemma 6.3], and (3) were originally
stated (with a lower Hanf number) in [22, Main Claim II.2.3] and [22, Theorem
II.2.7]. A full proof (with discussion on whether it is possible to lower the h2 bound)
can be found in [1, Chapter 14]. 

Theorem 7.3. Let K be an AEC and let � be a cardinal such that cf(�) > � ≥
LS(K). Let F := [�, h(�)), F ′ := [�, h(�)). Assume:

(1) KF ′ has amalgamation and no maximal models.
(2) K� is categorical.
(3) K is (�,< h(�))-tame.

Then K has a type-full good F -frame.
Proof. First, K� �= ∅ by categoricity. By Lemma 5.12, KF ′ has joint embedding
and all models in K� are �+-model-homogeneous. By Fact 7.2, �-splitting has
ℵ0-local character for �-chains, where �:=<�,�. This shows all the hypotheses of
Theorem 7.1 are satisfied. 

Assuming categoricity in a high-enough successor, we obtain the tameness
assumption:

Theorem 7.4. Let K be an AEC. Let � := h2 := h(h(LS(K))). Let � := �+.
Assume K has amalgamation, joint embedding, and is categorical in some successor
� ≥ h(�).
Let F := [�, �). Then there is a type-full good F -frame with underlying AEC K .
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Proof. Since � ≥ h(LS(K)), K has arbitrarily large models and so using joint
embedding K has no maximal models. By Fact 7.2, K is categorical in � and K is
(�,< h(�))-tame. Apply Theorem 7.3. 

Notice that one also obtains that categoricity (at a cardinal of high-enough
cofinality) and tameness implies stability everywhere. This improves on [5, Corollary
4.7]:

Theorem 7.5. Let K be an AEC with amalgamation and no maximal models.
Assume K is categorical in some � such that cf(�) > � ≥ LS(K) and K is (�,�′)-
tame. Then K is stable in all � ∈ [LS(K), �′]. In particular, if �′ = ∞, then K is
stable everywhere.

Proof. By Fact 7.2, �-splitting has ℵ0-local character for �-chains, where
�:=<�,� and K is stable everywhere below and at �. Apply Theorem 5.6 to see
K is stable everywhere in (�,�′]. 

This result is much more local than the other results of this section. For example,
we do not need to assume that �′ ≥ h(�). Moreover, as Theorem 5.6 shows, the
categoricity hypothesis can be replaced by �-splitting having ℵ0-local character for
�-chains, for some abstract universal ordering � on K�.
Assuming the GCH, we obtain a more general stability spectrum theorem:

Theorem 7.6. Assume GCH. Let K be an AEC with amalgamation and no maxi-
mal models. Assume K is �-tame for � ≥ LS(K), � is an abstract universal ordering
onK�, and �-splitting has κ-local character for�-increasing chains. Then K is stable
in all � ≥ � with � = �<κ.
Proof. K is stable in � since we have an abstract universal ordering on K�.
If � > �, the result follows from Theorem 5.7. 

Remark 7.7. If K is the class of models of a complete first-order theory, the
conditions for stability given by Corollary 7.6 are very close10 to optimal (see [21,
Corollary III.3.8]).

Remark 7.8. Let K be an AEC with amalgamation and no maximal models.
Assume K is �-tame and stable in some � ≥ h(�). Then [13, Theorem 4.13] shows
that for some κ < h(�), �-splitting has κ-local character. Thus we have:

Corollary 7.9. Assume GCH. Let K be an AEC with amalgamation and no
maximal models. Assume K is �-tame and stable in some � ≥ LS(K). Then there is
κ < h(�) such thatK is stable in all � ≥ � with �<κ = �.
Proof. If � < h(�), then by [13, Corollary 6.4] one can take κ := �+, so assume
� ≥ h(�). By the previous remark, there is κ < h(�) such that �-splitting has
κ-local character. The result now follows from Theorem 7.6. 

Remark 7.10. In [32], we use different methods to prove Corollary 7.9 in ZFC.
We do not know whether Corollary 7.6 also holds in ZFC (although it is clear from
the proof that much less than GCH is needed).

10The least regular cardinal κ such that splitting has κ-local character will be at most the successor of
κ(T ).
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We can also apply our good frame to the question of uniqueness of limit models:

Theorem 7.11 (Uniqueness of limit models). Assume the hypotheses of Theorem
7.3 hold. Then K has a unique limit model in any �′ ∈ F . In fact, if M0 ∈ K�′ and
M� is (�′, �l )-limit overM0 for � = 1, 2 and �l a limit ordinal, thenM1 ∼=M0 M2.
In particular, if K has amalgamation and no maximal models, is categorical in �
and is �-tame for some � < cf(�), then K has a unique limit model in any �′ ≥ �.
Proof. By Theorem 7.3,K has a goodF -frame s. In particular,K is stable in �′,
so one can iterate Fact 2.10 to build a (�′, �)-limit model for any desired � < (�′)+.
To see uniqueness, apply [24, Lemma II.4.8] (see [6, Theorem 9.2] for a detailed
proof of that result). 

We see this theorem as an encouraging approximation to generalizing the upward
categoricity transfer result of [12] (which assumes categoricity in a successor
cardinal) to categoricity in a limit cardinal.

Remark 7.12. Uniqueness of limit models of cardinality � was asserted to fol-
low from categoricity in some �+ > � already in [27]. However, an error was found
by VanDieren in 1999. VanDieren [29, 30] proves uniqueness with the additional
assumption that unions of amalgamation bases are amalgamation bases (but does
not use tameness). It is still open whether uniqueness of limit models follows from
categoricity only. In [14], it is shown that uniqueness of limit models follows from
a superstability-like assumption akin to ℵ0-local character of �-splitting, amalga-
mation, and a unidimensionality assumption (the authors initially claimed to prove
the result without unidimensionality but the claim was later retracted).

Remark 7.13. A variation on Theorem 7.11 is [3, Corollary 6.10], which uses
stronger locality assumptions but manages to obtain uniqueness of limit models
below the categoricity cardinal without any cofinality restriction.

§8. Conclusion and further work. Assuming amalgamation, joint embedding, no
maximal models, and tameness, we have given superstability-like conditions under
which an AEC has a type-full good frame s, i.e., a forking-like notion for 1-types.
These arguments would work just as well to get a notion of independence for all
n-types, with n < �. The proof of extension breaks down, however, for types of
infinite length (difficulties in obtaining the extension property in the absence of
compactness is one of the reasons11 it was assumed as an axiom in [3]).
Shelah’s approach around this in [24, Chapter II] is to show that if the frame
is weakly successful (a uniqueness condition for certain kinds of amalgamations),
then it has a notion of forking for types of models. In [24, Chapter III], Shelah has
several hundreds of pages of approximations on when weak successfulness can be
transferred across cardinals (many of his difficulties come from the fact he is not
assuming amalgamation or no maximal models), but even assuming s � � is weakly
successful for every �, it is not clear howwe can get a good forking notion formodels
of different sizes. This is one direction further work could focus on.

11Another reason was Shelah’s example (see [15, Section 4]) of an ℵ0-stable nonsimple diagram, but
we have shown that we do not get into trouble as long as we restrict the base of our types to be sufficiently
saturated models.
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Another (nonorthogonal) direction would be to find applications for such a fork-
ing notion. As mentioned in the previous section, we believe it could be useful in
proving categoricity transfer theorems. Moreover, the frame built in Section 5 is
only well-behaved for �+-saturated models, and it would be interesting to know
when the class of �+-saturated models is an AEC. This calls for tools to deal with
unions of saturated models and we plan to explore this further in future work12.
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