
Proceedings of the Edinburgh Mathematical Society (1989) 32, 363-370 :

ON THE "ZERO-TWO" LAW FOR POSITIVE CONTRACTIONS*

by RADU ZAHAROPOLf

(Received 9th October 1987)

0. Introduction

Let (X, I.,n) be a measure space (where /i is a positive a-additive measure) and let
IS(X,Z.,n), l^p^ + co be the usual real Banach lattices.

Let £ be a real Banach lattice (all the Banach lattices considered in this paper are
real). A linear bounded operator T:E-*E is called a positive contraction of E if T is a
positive operator (i.e., x e E, x ^ 0 => Tx ^ 0) and if 11 T\ | g 1.

In 1970 Ornstein and Sucheston obtained a result (Theorem 1.1 of [2]) which was the
first one in a row of several theorems, usually called "zero-two" laws.

Theorem 1.1 of [2] is called the "zero-two" law for positive contractions of L1-spaces.
Using its proof one obtains a second form of the "zero-two" law for positive
contractions of l! -spaces:

Theorem A. Let T be a positive contraction of Ll(X,Y.,n). If for some meNufO)
||Tm + 1 - r m | | < 2 , then limn_ + a)| |T'I+1-T'1|| = 0.

In this paper we study a property possessed by L1 and W-spaces. As an application,
we obtain a new proof of Theorem A.

The property in question (which will be discussed in Section 1) can be stated as
follows:

Theorem B. Let E be an L1 or an L?-space, and let S, T:E-*E be two positive
contractions of E such that S^T (i.e., T-S is a positive operator). 7/| |T—S||<1, then
\\Tn-S"\\<\ for every neN.

Using the duality of AM and AL-spaces (see Proposition 9.1, p. 121 of [3]), it is
obvious that in order to prove Theorem B, it is enough to prove it under the
assumption that E is an L1-space. If E is an L°°-space, Theorem B is proved directly. We
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will also show that Theorem B fails to be true if we assume that E is an Zf-space,
1 <p< +00 (the reason behind the construction made in Section 2 of [4]).

In Section 2 we will use Theorem B, the linear modulus of regular operators, and a
procedure due to Foguel in [1], in order to give a new proof of Theorem A.

Unless stated otherwise, in this paper we use the terminology of Schaefer's book [3].

1. Positive contractions in //-spaces, 1 ^p£ + 00

Theorem 1.1. Let E be an l}-space and let S,T:E-+E be two positive contractions of
E such that S^T. lf\\T-S\\< 1, thenfor every n e N | |T"-S"| |<1.

Proof. Let us assume that for some neN, ||T" —S"|| = 1 and let m be the first natural
number such that | | r m -S m | | = 1. Clearly, m^2.

Since Tm — Sm is a positive operator, there exists a sequence {x,)(eN such that xfeE,
x^O, |x,|| = l for every <feN, the sequence (||(rm — Sm)x,||),6N converges and

Since E is an L1-space, for every <feN ||(rm-Sm)x,|| = ||T'%||-||S'mx,,||. Hence,
| | | | | | J

The sequences (||Sm~1x^||)(,£N and (||TSm"1x^||)^6N are bounded; accordingly, we may
pick a subsequence (xJA e N of (x,),6N such that (||SBI~1x,(i||)fc6N converges and a
subsequence (x^) t 6 N of (xJheN such that (||rSI"-1x,J|)lk6N converges.

Set yk = x(h for every k e N.
Let

<x= lim ||5m"Vfc|| and
k-> + 00

= lim

Since | |Tm"1-Sm"1 | |< 1 and limt^ + 00 ||7""~ 1yJt|| = 1, it follows that a>0.
If a>0, then it is obvious that we may choose (y^keti such that Sm~lyk¥

iO for every
keN.

We note that for every k e N

Since lim(t.. + oo(||T'nyk||-||Tm"1yk||) = 0, we obtain that

lim ||TSm-V*||^ lim
k - +00 *—+ 00

that is, p^a.
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Clearly, 0ga, since for every fceN ||TSm-1.y*||^||Sm~1>'*||- Hence, <x = p.
For every k e N let

It follows that lim^ + 00 ||Tzt|| = l andlim^ + 00 ||Szt|| = 0. Hence, lim^ + 00 ||(T-S)Zk|| = l.
Since for every JteN ||zt|| = 1, we obtain that \\T — S|| = 1, that is, a contradiction. •

Using the duality of AM and XL-spaces (see, for example, Proposition 9.1, p. 121 of
[3]), one can readily see that Theorem 1.1 remains true if, instead of an L1-space, one
considers E to be an L"-space.

Under the assumption that E is an L^-space, we can prove Theorem 1.1 directly
(without using the duality of AM and XL-spaces). Since we think that the direct proof is
of interest in itself we will give it here.

Let E be an L^-space (hence, E is an XM-space with unit). By a classical result due to
S. Kakutani, M. Krein and S. Krein (see, for example, Corollary 1, p. 104 of [3]) there
exists a Hausdorff compact topological space K and an isometric lattice isomorphism of
E onto C{K) (where, as usual, we note by C{K) the Banach lattice of all continuous
functions f.K->R, the norm on C(K) being defined by ||/| | = sup(eK|y(0|). Accordingly,
in order to prove Theorem 1.1 under the assumption that E is an L^-space, it is enough
to prove that given a Hausdorff compact topological space K and two positive
contractions S, T of C(K) such that S g T and | | T - S | | ^ 1, one has that ||T"-Sn|f< 1 for
every n e N.

Let lK be the constant one function (i.e., 1K is the unit of C(K)).
Clearly, TlK;g 1K, since T is a positive contraction.
We will distinguish two cases:

(i) TlK = lK and
(ii) T1K*1K.

(i) Let a>0 be such that | |T-S | | = l - a . Since T-S is a positive contraction of C(K),
we obtain that | |T-S | | = ||(T-S)1X||. Using the fact that lK is the largest element of the
unit ball of C(K), we deduce that (T-S)1K^(1— <x)lK. Our assumption T1K=1X implies
that SlK^alK; therefore, S"lx^a"lx for every neN. Consequently, ||T" — S"\\ =
\\(T"-Sn)lK\\^ 1-a" for every neN.

(ii) If we assume that T1K# lK, then g=\K— T l x i s a positive element of C(K). Define
a positive contraction R of C(K) by Rf=gf for every feC(K).

Clearly, T + R and S + R are positive operators. Moreover, T + R and S + R are
positive contractions since (S + R)1JC^(T + /?)1X= lK.

Set C/
Clearly, \\V-U\\ =

accordingly, | |K"-[/n
T—S\\<1 and the positive contractions U, V are in the case (i);
< 1 for every neN.

For every neN 0gT< 1-S"g V-U" since
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X TllRJlTi2Rh...Ti"RJ"
it.12 "n.Jl.JZ JnefO.

ik+jk=l.k=l,2,....n

£ SilRJ'Si2Rh...Si"RJ"
i t . 1 2 , . . . , i n . j t . j i jne(0,1)

i k + h = l.k = l,2 n

and

S''RJ'ShRh... S'"RJ" ̂  T''RJ' TllRh... T"RJ"

for every

Accordingly, | |7"I-SB||<1.

We have therefore proved directly that Theorem 1.1 remains true if we replace the
1} -space E by an L°°-space.

Unfortunately, Theorem 1.1 does not remain true if one replaces the L1-space E by an
Z?-space, 1 <p< + oo.

Indeed, let IF(X, Z, fi), 1 ^ p < + oo be the 2-dimensional Lp-space defined as follows:
^ = {1,2}, S = ^'({1,2}) and the measure n is generated by /*({1}) = ̂ ({2})= 1/2. Accord-
ingly, we may think of L?(X, X, /i), 1 ^ p < + oo as the Banach lattice R2 endowed with
the norm

for every (a1)a2)eR2.
Let S, T:H(X,'L,n)-^H(X,'L,n) be two linear bounded operators defined as follows:

and

for every (a1,a2)eIf(X,'L,fi), l ^ p < +00.
Obviously, S, Tare positive operators and S^T.
The operator T is a contraction since for every (aj,a2)eR2, 0^02^
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for every 1 g p < + oo. Hence, S is a contraction as well.
An easy computation shows that

sup{al+a2:aua2eU; a

for every 1 ^ p < + oo.
Now let peU be such that l < p < + o o . If (aj,a2)elR2 is such that

then

(T-S)(aua2W = a, +a2 a2

= ( f l l +q 2 ) ' . l a j . l ^ ' . l . 2 . 1
2" 2 2" 2 ~ 2 ' 2 2" 2 "

We have therefore proved that T—S (as a positive contraction of Lp(X,S,/i)) has the
property that

Clearly, IIT
Accordingly, | | r 2 - S 2 | | = 1.

T-S\\<1.
= 1 since T(l, !)=(!, 1). It is also obvious that T2 = T and S2 = 0.

2. A new approach to the "zero-two" law in /.'-spaces

In this section our goal is to use Theorem 1.1 in order to obtain a new proof of
Theorem A of the Introduction.

Let E be an L1-space and let T be a positive contraction of E.
As in [4, §3], let ^eN, neNu{0} be given and let Vl/] and Qe be two positive

operators such that

For every deN, d^2 we define the operator Vf1 recursively by the formula

By induction one proves (see [4, § 3]) that

for every d e N.
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Proposition 2.1. For every deN\\Vl
f
d)\\^ 1 +1|V{P\\. .

Proof. Since for d = 1 the proposition is obviously true, we will assume that d ̂  2.
Formula (1) shows that

is a (positive) contraction for every deN, d^.2.
Let x e £ be such that x^.0 and ||x||gl. Since E is an L1 -space we obtain that for

every deN, d^.2

We have therefore proved that ||7V('I+1)^''-1)||g 1 for every d g N , d^2.
The operator Q( is a positive contraction (as a consequence of the way in which Qe

was defined).
Accordingly,

for every deN, d^

Proposition 3.1 of [4] and the proposition we have just proved are similar. In both
propositions we obtain upper bounds for the sequence (HV '̂l̂ eN- The similarity is
strengthened by the fact that

Hm

for every £ e N.
If we assume that Vy> is a positive contraction, then in the case of an I^-space

(Proposition 2.1) we obtain that ||K</)||^2 for every deN, while in the case of an
IS -space, 1 < p < + oo given in Proposition 3.1 of [4], the upper bound for the sequence
HIIXfeN depends on £ (tends to + oo as t tends to + oo).

The next proposition is similar to Proposition 4.2 of [4]. As expected, in the case of
an 1} -space the statement is stronger.
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Proposition 2.2. Let E be an 1}-space and let T be a positive contraction of E. If for
somemeNu{0} \\Tm + l-Tm\\<2, then \\Tm+1-(Tm+1 A Tm)||<l.

Proof. It is well known (see, for example, Theorem 1.5, pp. 232-233 of [3]) that if
| r m + i _ T m | = T m + i + Tm_2(7m+i A Tmj i s t h e i i n e a r m0(julus of Tm+l~Tm, then

' IT''"+ i Tm\\ = HlTm+' T"1!!!
Let n>0 be such that \\Tm+1- 1™]] = 2(1 -n) and let us assume that

||Tm+i_(rm+i A 7mj|| = 1_ I t fonows that there exists xeE, xgO, | |x||^l such that
||""+»._(7-"+i A Tm))x\\>l-n/4.

Accordingly, ||Tm+1x||> 1-///4 and ||(rm+1 A Tm)x||<f//4. Hence,

We have obtained a contradiction, since || |Tm+1 — T"1||| = 2(l — n). •

Proposition 2.3. Let E be an Ll-space and let T be a positive contraction of E. If for
jO} ||rm + i _ ( T m+i A Tm)\\<l, \ \ 1 \ \

Proof It is known (see the proof of Theorem B in Section 4 of [4]) that using
Stirling's formula, one can find a positive constant }>>0 such that for every Banach
lattice E, for every positive contraction T of £ and for every £ e N

Now let E be an L1-space, let T be a positive contraction of E and let m e N u {0} be
such that ||7"»+i_(7"»+i A Tm)||<l.

Let e>0 and let <feeN be such that
By Theorem 1.1 we obtain that

therefore,

* (<)
~ i O 2'*

2'*
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+ 1) _

and let us define a sequence (Vl/J)defi as follows: F^) = (Tm+1 A Tmfe and for every
<Z e N, d ̂  2 we define V(f} using the recursion formula

(0 = ()Q

Since ||Q,e||< 1 we may choose d,eN such that ||Q*||<6/4.
Set ne = d/e(m + 1). Using formula (1) as well as Proposition 2.1 we obtain

| |rn £ + 1-Tn £| | =

We have therefore proved that for every £>0 there exists n,eN such that
||T"£ + 1-T"£| |<£. Since the sequence (\\Tn + 1 -T"\\)aeNul0) is a decreasing one, we have
proved that limn^ + co | |T

n + 1 -T n | | = 0. •

The results obtained in this section enable us to arrive at a new proof of Theorem A.
Indeed, let T be a positive contraction of an L'-space E, and assume that

m + 1 - T m | | < 2 for some weNu{0}. Using Proposition 2.2, we obtain that
m + i_(Tm + i A T » ) | | < I ; therefore, by Proposition 2.3 limn^ + 00 ||T

71 + 1 - 7 n | | = 0.
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