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Abstract

This paper presents an application of functional programming: searching a domain for
elements which satisfy certain constraints. We give a very general formulation of the problem
and describe * generate and test’, ‘backtracking’ and ‘forward checking’ algorithms. We then
introduce the concept of domain generating functions to capture a common optimization
during the search process: using partial solutions to reduce the size of the search space. We
compare the efficiency of the original algorithms and those using domain generating functions
first with the ‘classical’ n-queens example, and then with a problem having larger domains to
search which was inspired by an application in macromolecular structure determination. Using
algorithms coded in Miranda, Haskell and Common Lisp, we show that a high order (lazy)
functional language is a useful and efficient tool for prototyping search methods in large
complex domains.

Capsule review

One of the powers of higher-order functional programming is the ease with which one can
abstract common behaviors. This paper provides an example of abstraction principles applied
to a fairly general class of problems, which the authors call constraint satisfaction problems.
Simply put, such problems involve a search for "assignments’ to a set of variables so as to
satisfy a given set of constraints. The authors present three general search strategies for this
problem, but in addition introduce the idea of a domain generating function which utilizes
problem-specific information to narrow the search space dynamically. The solutions are
presented in a parameterized way using higher-order functions and polymorphic data
structures, thus allowing the same strategies to be used in many different specific applications.
After demonstrating the ideas using the classical n-queens problem, the authors tackle a more
realistic problem from the field of molecular biology: the protein folding problem. Timing
results are given for specific implementations of Miranda, Haskell, and Common Lisp, and
observations are made concerning the utility of lazy evaluation.

1 Introduction

This paper presents a functional approach to solving combinatorial problems
searching a domain for elements which satisfy certain constraints, i.., a Constraint
Satisfaction Problem (CSP). When such problems can be modeled using continuous
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real variables, they can be dealt with using classical operations research techniques
such as the simplex method. However, when discrete solutions are sought, we have
to resort to enumeration techniques such as backtracking (Knuth, 1975) or forward
checking (Haralick, 1980). This problem has also attracted much interest in the logic
programming community (Jaffar and Michaylov, 1987; Hentenryck, 1989), where the
emphasis is put on solving problems in restricted domains.

This paper gives a very general formulation of this problem. Section 2 describes the
‘generate and test’, ‘backtracking’ and ‘forward checking’ algorithms, it illustrates
their use and it compares their efficiency by solving the classical n-queens problem.
Section 3 then introduces the notion of the domain generating function which uses the
information gained in a partial solution to reduce the size of domains to be searched ;
the technique is also used in solving the n-queens problem. Section 4 then applies this
approach in a more complicated setting using a problem inspired by a real application
encountered in the field of molecular biology, which first prompted this work. Finally,
we compare these approaches and show that domain generating functions are very
powerful tools for solving constraint satisfaction problems. We also argue that lazy
evaluation is useful in this case; the forward checking methods can be implemented
in a straightforward way (even with domain reducing functions) without losing
efficiency.

2 Solving a constraint satisfaction problem
2.1 Definitions

Given X a set of variables {x,, x, ... x,}, D a set of domains of values for each variable
{d,, d,...d,} and C a set of binary constraints {c,,|pe{l...n}, ge{l...p—1}}.
Constraint ¢, , indicates the values of domain d,, that are compatible with d,. These
subsets are not usually given extensionally, but are defined as equations, inequalities
or predicates. A variable assignment 6 = {v,, v,...v,} is the assignment of value v, to
x;, v, €d, iel...n. Solving a CSP involves finding all value assignments such that all
constraints ¢, , are satisfied. We present here the case of binary constraints, but the
functions we describe can also handle n-ary constraints.

A classical problem for the comparison of CSP solving methods is the n-queens
problem, which consists of finding a way of placing n queens on a n x n chess board
such that no queen can attack another. The position for a queen is given by its row
and column number. [This is not the most efficient way of representing a solution to
this problem, but it is very straightforward and it serves only as an illustration of our
technique which is expanded upon later.] So here X is {x,...x,} and D is {d,...d,}
where each d,is {(1 ...n, 1...n)}. Two queens attack each other if they are on the same
line, column or on the same diagonal

{Conawpm SIFIANJFFAI=TF1j=) |, ie{l...n}, je{l ...i—1}}

We now formulate the solution to a CSP using three standard approaches: generate
and test; backtracking; and forward checking. This shows the close relations between
these approaches when a functional language is used for implementation. We use
Miranda (Turner, 1985) to express our algorithms (we only use the subset of Miranda
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used by Bird and Wadler (1988)), but the same technique could easily be applied using
other lazy functional languages such as LML (Augustsson and Johnson, 1989) or
Haskell (Hudak and Wadler, 1990). [Miranda is a registered trademark of Research
Software Ltd.] In fact, we have translated our algorithms into Haskell and tested
them using the Haskell-B compiler for Chalmers University, Gothenburg, Sweden. A
Common Lisp version of the functions has also been tested using Allegro Common
Lisp for Franz Inc. We see that lazy evaluation is basically not essential to this
method, but in some cases it makes it possible to solve problems that would require
too much memory using an applicative order of evaluation.

2.2 Generate and test

A constraint-satisfaction problem can be solved using a function that generates the
exhaustive set of assignments, and another that checks the constraints for each
assignment. Given the following types

domain* = =[¥]

solution* = =[*

generator* = = [domain *]— [solution *]
test * = = solution * - bool
constraint * = = solution * - * — bool

where domains and solutions are lists of values; a generator is a function that, starting
from a list of domains, gives a list of potential solutions; a test verifies if a solution
is acceptable or not; and a constraint verifies if a new value is compatible with a list
of previously assigned variables (i.e., a partial solution). We can define the ‘generate
and test’ paradigm as

generate .. generator *

generate[]=[[]]
generate (domain:domains)
= concat [map(value :)(generate domains)|value < domain]

generate_test :: generator * < test * - [domain *] - [solution *]
generate_test gen test domains = filter test (gen domains)

For the n-queens problem, two queens attack each other if they are on the same
column or on the same diagonal (we generate potential solutions that ensure that

i>) S o e i .
safe (i, j) (0, J) =j* =] & (i—i) + abs (j=J)
For checking if all elements of a solution are consistent with respect to each other
tst [x, y] = safe x y
tst (x:xs) = and [safe x x"| x" < xs] & tst xs
Solving the n-queens problem is only a matter of calling the generate_test function
with the appropriate parameters

solve n=generate_test generate tst [[(i, /)| j<[1..n]]|i< [n, n—1..1]]
9-2
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2.3 Backtracking

The previous method is easily implemented but is inefficient because the algorithm
generates many complete assignments which are rejected by the test filter. One way
to help alleviate this problem is to verify the constraints between the ‘current’
variable and the previously assigned values. This approach not only reduces the
number of assignments but also insures that a complete assignment (a compatible
value is given for each variable) is a solution to the problem.

This approach can be implemented using ‘backtracking’ which constructs partial
assignments o,{v,,,...v,} such that o,,,=0,,1 <k < n; this means that a partial
assignment which does not satisfy the constraints between the first k variables cannot
be part of a full solution.

The algorithm is implemented by building partial solutions incrementally such that
at iteration k£ we only generate values in the domain d, that satisfy the constraints
Cpy---Cri_1- A partial solution is represented as two parameters {v,,v,...v,} and
{d11,044s---d,}, 1 < k < n where the first is the set of values assigned to the first k
variables, and the second is the set of domains for the yet unassigned variables. At
iteration k, only values of d, satisfying c, , ... ¢, ,_, (in the case of binary constraints)
will be tentatively assigned to x,. This process can be seen as narrowing the domain
d,. cst can deal with r-ary constraints, and not only binary ones. So, constraints of
any arity are implemented ‘transparently . In this text, we simplify the formulas using
binary constraints of the form ¢, ,, but they could be extended to functions of any
arity.

narrow :: solution ™ — constraint * — domain * - domain *
narrow[] cst dom = dom
narrow sol cst dom = filter (cst sol) dom

backtrack :: solution * — [domain *]— constraint * — [solution *]
backtrack sol[]cst = [sol]
backtrack sol(dom:doms) cst
= concat [backtrack (sol+t[value]) doms cst|value < narrow sol cst dom]

This implementation of backtracking uses the ‘list of successes’ technique advocated
by Wadler (1985): computing the list of all solutions is conceptually simpler than
having to go back to a previous point in case of a failure. Thanks to the lazy
evaluation, this approach is not too costly in terms of space because only the elements
of the list of results needed for finding a solution are computed.

For the n-queens problem, the constraint function is applied when a new variable
is assigned. It receives a partial solution as well as the new value. We then verify that
the new queen will not be attacked by a previously assigned one

¢st s x = and (map (safe x)s)

Now solving the problem for n queens is only a matter of calling the backtrack
function with the appropriate parameters

solve n = backtrack [1[[(i, ))|j~[1..n]]| i<[l..n]] st
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Table 1 gives the results with these functions. For each number of queens, the table
gives the execution time (in CPU seconds computed by the Miranda (version 2.015)
interpreter on a Sun Sparc Station 1), and the number of reductions as given by the
Miranda interpreter. We also give the execution times for the Haskell and Lisp
versions. We see that the Haskell compiler generates code that executes four times
faster than the Miranda interpreter; however, the Haskell compiler we currently use
is very slow and error messages are cryptic, so we were grateful that we had a running
Miranda version before using Haskell. We also did a very straightforward translation
into Common Lisp, and were surprised at the speed of the resulting code; it appears
that this high-level approach to the specification of search algorithms is also useful in
a functional language that uses an applicative order.

Table 1. Results for the n-queens problem.

Backtracking Forward checking
n Language CPU time # reductions ~ CPU time # reductions
6 Miranda 1-03 68,672 0-62 41,192
Haskell 0-20 0-10
Lisp 0-05 0-07
8 Miranda 2392 1,498,888 945 594,539
Haskell 5-80 2-00
Lisp 117 0-87
9 Miranda 120-90 7,627,205 3687 2,470,079
Haskell 3320 9-80
Lisp 5-38 320

We also carried out an experiment in Miranda where this high-level specification
of search control was compared with the ad hoc solution given by Bird and Wadler
(1988) which uses backtracking. Our general version runs a little faster than the ad hoc
solution. This is a very convincing example that higher-order functional style does not
necessarily imply an execution time cost. The same kind of results were observed in
the solution of the ‘instant insanity’ cube problem, also described by Bird and Wadler
(1988).

2.4 Forward checking

Although backtracking is more efficient than ‘generate and test’, it often has to
‘rediscover’ that one value is incompatible with another. This is because after
backtracking from an impossible solution, the work done to discover that an
assignment is not good is deleted. The fact that a value of d, is incompatible with one
value of d,,k > i has to be ‘rediscovered”’ at each narrowing of d,. Even worse, if no
value of d, is compatible with a value of d,, a whole subtree search has to be expanded
uselessly until level k. For these reasons, forward checking algorithms are often used
instead of backtracking (Haralick, 1980; Hentenryck, 1989).
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In both methods, the solution is generated by building partial assignments
'6,{V,,V, ... v;} such that c,,, = 0,,1 <k < n. Forward checking incrementally builds
valid solutions such that at iteration k only the values satisfying c,, ,...c; ;_, Will be
assigned to x,, but also the domains {d,,, ...d,} will be narrowed by checking the
constraints {c,,|lpe{k+1...n}qe{l...k—1}}. This a priori narrowing of the
dimension of these domains reduces the work to be done in subsequent steps, and can
thus more quickly determine whether a partial solution is a dead-end or not. The
number of variable assignments and constraint checkings is reduced, resulting in a
method often more efficient than backtracking (Haralick, 1980). This paradigm is
expressed as follows

forward_check :: solution * — [domain *] - constraint * — [solution *]
forward_check sol[]cst = [sol]
forward_check sol domains cst
=[], member doms []
= concat [ forward_check (sol++-[value]) doms cst|value < domk], otherwise
where (domk : doms) = map (narrow sol cst) domains

For the forward-checking, domains are narrowed at each iteration depending on the
last variable assignment, so constraints do not have to be reverified when a new
variable is assigned. In the n-queens problem, we only need to check the last variable

cst sol x = safe x (last sol)
When solving, we only change the name of the algorithm
solve n = forward_check [1[[(Z, ) |j<[1..n]]|i<[1..n]] cst

Table 1 gives the results for the forward-checking algorithm where we see that
forward-checking is a great improvement over backtracking, execution times being
typically three times faster. As forward checking can be implemented quite directly in
a higher order functional language and is not much more complicated than
backtracking, it should always be considered in solving a CSP. The same remarks
made in the previous section also apply for the Haskell and Lisp versions.

3 Domain generating functions

In order to solve a specific problem and to improve the performance of an algorithm,
we can often use additional information specific to the particular problem. Since this
type of ‘help’ is problem-dependent, it should not be integrated in the general solving
methods discussed previously but as we show in this section, it can be parameterized
using functions that here we call either help or domain generating functions.

In the algorithms for CSP solving, we introduce a parameter which is a function
that allows the generation of values for a given variable. The parameters of the
function are the partial solution constructed up until then and the current domain of
the variable. So, the idea is as follows: before reducing a domain using the constraints
(as we do for backtracking and forward-checking), we use the additional information
to generate a (smaller) subdomain of possible compatible values with the variables
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already assigned ; the rest of the algorithm will then do less work because the domain
of ‘interesting” values can be greatly reduced.

More formally, for domain d, we define ™" as the set of values that will be used
in at least one solution of the problem. So, one way to evaluate the help given by the
function is to compare the generated domain @7 with ™. Finding a function that
generates a domain such that di*" < d < d, should help the algorithm.

3.1 Backtracking with help

To implement this paradigm in backtracking, we use the help function to generate the
domain df € d, before verifying the constraints. Help is defined as a function that
transforms the domain given a partial solution

help * = =solution * - domain * - domain *

narrow’:: solution * — constraint * - help * - domain * - domain *
narrow’[]cst hlp dom = dom
narrow’ sol cst hlp dom = filter (cst sol) (hlp sol dom)

backtrack’:: solution * - [domain *] — constraint * - help * — [solution *]
backtrack’ sol[] cst hip = [sol]
backtrack’ sol (dom:doms) cst hip
= concat[backtrack’(sol + [value])doms cst hip|value < narrow’ sol cst hlp dom)

Now we define a help function for the n-queens problem that removes from the
domain the positions that are on the same column as another queen. Only the
diagonals have to be verified because gen guarantees that this attack will never occur,
so safe can be simplified. This gives the following backtracking algorithm with a
help function

safe (i, D', j) = i—i + abs(j—J)
gen s d =d——[(fst (hd d), snd x)|x<s]
solve n = backtrack’ [1[[(i,))|j<[1..n]]|i<[1..n]] cst gen

Table 2 gives the results for these ‘better informed’ algorithms. Comparing these
results with the ones for backtracking in Table 1, we can see that the domain
generating functions are not really useful in this example, execution times and the
number of reductions being roughly the same.

3.2 Forward-checking with help

The same idea can be implemented in forward-checking where the domains d,...d,
have to be narrowed

forward_check’ :: solution * - [domain *]) — constraint * — help * — [solution *)
Sforward_check’ sol[]cst hlp = [sol]
forward_check’ sol domains cst hip

=[], member doms|]
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Table 2. Results for the n-queens problem with help functions.

Backtracking Forward checking
n Language CPU time # reductions  CPU time # reductions
6 Miranda 1-08 68,822 0-78 52,675
Haskell 0-30 0-20
Lisp 0-05 0-02
8  Miranda 2410 1,447,596 1227 761,298
Haskell 840 320
Lisp 1-27 1-15
9  Miranda 122.17 7,180,211 54-12 3,240,573
Haskell 46-80 15-00
Lisp 6-02 512

= concat| forward_check’ (solH-[value]) doms cst hip|value < domk],
otherwise
where (domk : doms) = map (narrow’ sol cst hip) domains

In the case of the n-queens problem, the help function only removes the last assigned
value

safe (i, ) (', J) = i—1 + abs(j—J)
gen s d = d——[(fst(hd d), snd(last d))]
solve n = forward_check’ [][[(i, j)|j<[1..n]]| i <[1..n]] cst gen

Table 2 gives the results for the forward-checking using help functions. However, the
CPU time does not decrease as expected. This is mainly due to the poor efficiency of
the list difference operator(— —) used in the help function. In this case, the help
functions for forward_checking imply more work than that which is saved in the
reduction of domains. The goal of this section was only to illustrate the formulation
of a domain generation function using the same classical problem. Domain generating
functions will prove useful in a problem where the domains are much larger than this
simple example.

3.3 Properties of ‘helped’ algorithms

Given d, the domain of values for variable k at iteration k, &™" the domain of values
for variable k once d, is narrowed by the constraints, and d¢ the domain generated
by the help function, we have the following properties

1. If df = d'™ then no constraint needs to be checked; this property is not very

“practical’, though, because it would imply that constraints were not useful in the
formulation of the problem.

2. If the help function is such that ™" = d < d,, then backtrack’ and Sforward check’

keep the induction property: o,,, =, and guarantee that all solutions will be
generated.
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3. The efficiency ratio between a ‘helped’ algorithm and the original one is given by
the cost of applying, at each domain narrowing, the help function, and the cost for
making d¢ equal to di'" compared with the cost of narrowing d, to get d'".

The evaluation of the efficiency of algorithms derived from backtracking can be
quite complex (Knuth, 1975). The usual criterion is the number of constraint checks.
To simplify, consider the n(n—1)/2 binary constraints between n variables: if each
domain has dimension m, the maximal number of constraint verifications to be made
by the generate and test algorithm is (n(n—1)/2)m".

Haralick (1980) describes a probabilistic analysis for backtracking and forward-
checking given that the dimension of the domains is constant (m) and the probability
p that a constraint between two variables is satisfied is independent of the » variables
and of the preceding computations.

The efficiency ratio between a helped and a conventional algorithm is given by the
cost of applying the help function plus the cost for making &% equal to d;'™" against
the cost for removing the | d?|—|d™"| supplementary values of d,. So, in some cases,
the use of the help function in forward-checking can be more costly than simply
narrowing d, with the constraints. This explains that for the n-queens problem, help
functions did not reduce execution times compared to the *original’ versions.

4 Blocks topology generation

This work considers research in the field of molecular biology. A fundamental
problem in molecular biology is to predict the native structure of a protein from its
amino acid sequence. This problem is often called ‘the protein folding problem’
(Kolata, 1986; Fasman, 1989), and it can be defined as a CSP. It consists of finding
the spatial arrangement of all atoms consistent with known constraints. For this more
realistic problem, ‘domain generating functions” appear more useful. (Details of the
model and the implementation can be found in Major et al. (1990).)

This application can be abstracted somewhat by using a simplified model consisting
of blocks in 3D space which have similar properties to the ones of the ‘real” protein
model: the 3D-blocks world. In this representation, unit-size blocks are used to
represent groups of atoms and the space is represented by a simple 3D lattice (Major
et al., 1988) whose coordinates vary between values given for xmin, ymin, zmin,
xmax, ymax and zmax

block = = (name, position)
name:.= A|B|C|D
position = = [num]

block = = (name, position)

block_name (n,p) = n
block_pos(n,p) =p

We first define a function to build blocks according to a domain of positions and a
block name

block_make :: [ position) - name — [block]

block_make dom n = [(n, p)| p < dom]
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The default block value domains, for a specific block, is the entire lattice

block_default :: name — [block]
block_default = block_make lattice
where
lattice = [[x, y, Z] | x < [xmin..xmax];
y < [ymin..ymax];
z < [zmin..zmax])

Now, spatial relationships among the 3D-blocks can be introduced. The distance
between two blocks is the square of the Euclidean distance. Two adjacent blocks are
those that are separated by adistance of 1. A collision occurs when two blocks have
the same position

distance :: position — position - num
distance[x, y, Z][x', ¥, 2] = (x—x)" 2+ (y—y)"2+(z—2)"2

adjacent, collision :: position — position - bool
adjacent x y = distance x y = 1
collision x y = x=y

Where atomic distance constraints are used to generate protein topologies in the
‘real’ model, block distances are used in this simplified model. So, more precisely,
searching for the topology of a set of blocks consists of finding their positions in
3D-space such that a set of distance constraints are satisfied.

4.1 Implementing the constraints

The goal of such a system is to reproduce all possible structures where only some
topological constraints are known. In molecular biology, such constraints can be
determined in the laboratory. Here, however, we use only examples of constraints in
the 3D-blocks world. Suppose we wish to find the block topology of a complex
composed of four single blocks: 4, B, C and D. The constraints are: A4 is adjacent to
B; B is adjacent to C; C is adjacent to D; and A is at distance 3 from D. These
constraints have been chosen to resemble a set of constraints for the yeast transfer
RNA molecule (Rich and RajBhandary, 1976).
The following function implements these constraints

st block — block — bool
est (n, p)(n', p)
= distance p p’ = 3, case = (A, D)
= adjacent p p’, case = (A, B)\/ case = (B, C)\/ case = (C, D)
= "~collision p p’,  otherwise
where
case = (n, n')
In the case of backtracking, these constraints have to be satisfied for each block in the

partial solution
check s x = and [cst y x|y <s]
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We fix the first block at [0,0,0] so that situations which differ only by a translation
of A are not uselessly calculated. We define the domains of values for the other blocks
as the default domains

solve = backtrack [(A.[0,0,01)] [block_default n|n<[B,C,D]] check
In the case of forward-checking, we only have to check the last assigned value

check s x = cst (last 5) x
solve = forward_check [(A,[0,0,0])] [block_default n|n < [B,C,D]] check

We defined two sets of volume coordinates, one with m = 343(7°) (seven positions in
each dimension) and the other with m = 1,331(11%) such that p, the probability of
randomly placing a block adjacent to another are approximatively, and respectively,
0-017 and 0-0045; this is more than 30 and 130 times smaller than in the 8-queens
problem where the probability of placing a queen on a chessboard randomly such that
the queen is safe is approximately p = 0-65. Table 3 shows that forward-checking is
about six times faster than backtracking. Given the time required in the n-queens
problems described in the previous section, it is a surprise that the execution times for
Haskell are now slower than the Miranda version. The Lisp version is still much faster
than Miranda.

Table 3. Results for the 3D-blocks topology problem.

Block D with DGF Block D without DGF
Algorithm Language P=0017 P=00045 P=0017 P=00045
Backtracking Miranda 20-48 81:55
Haskell 32-10 117-60
Lisp 2-05 823
Forward-checking Miranda 3-47 13-22
Haskell 6-90 26-60
Lisp 0-67 225
Backtracking’ Miranda 1-18 1-18 15-37 57-88
Haskell 2-80 2-80 2440 94-50
Lisp 013 0-25 1-15 615
Forward-checking’ Miranda 1-13 1-63 0-87 1-87
Haskell 320 410 1-70 420
Lisp 022 0-60 0-22 0-62

4.2 Using the domain generating functions

To generate the domains as needed, we define functions that generate the allowed
positions of blocks so that they are adjacent or at a precise distance. The function
gen_dist takes a distance and a position, and returns the domains of adjacent
positions subject to the distance constraint. Then, gen_dist can be used to define
gen_adj, a function that returns the adjacent position to its position argument
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gen_dist :: num — position — [ position]
gen_dist d [x,y,z]
= [[x,y,2] | dx < [—d'..d];
X <[x4dx]; X' >= xmin; X’ <= xmax; adx<—[abs dx];
dy < [—d +adx..d —adx];
VY < [y+dyl; ¥y >= ymin; y <= ymax; ady < [abs dy];
dz<[—d +adx+ady..d —adx—ady];
Z <« [z+dz]; z >= zmin; 2 >= zmax;
(x=x)"24+@—=y)"24+(z—2)"2=d1]
where
d = ceiling d

gen_adj = gen_dist 1
Now, the help function gen for backtracking can easily be written as follows

gen sol dom = block_make (gen_adj (block_pos blockA))n, n = B

= block_make (gen_adj (block_pos blockB))n, n = C
= block_make (gen_adj (block_pos blockC))n, n = D
where

n = block_name (hd dom)

blockA = get_block 1 sol

blockB = get_block 2 sol

blockC = get_block 3 sol

get_block i = (1(i—1))

The cst and check functions are the same as before.

The gen function for forward_check’ cannot be implemented as easily as gen for
backtrack’. In forward_check, check verifies the values of a domain only with the last
assigned value. The new values of the narrowed domain are compatible with the other
assigned variables, since they were verified at each iteration when the variables were
assigned. gen generates a domain in terms of all previously assigned variables.
However in forward_check’, where a help function is a generation, not a limitation
function, a problem occurs when gen is applied to generate a previously narrowed
domain: the work previously carried out during constraint verification can be lost. If
it is not possible to write such a function which considers all previously defined
variables, two corrective measures can be implemented using either intersection of
domains or additional constraint verifications.

A first method would consist of performing an intersection between the generated
domain, 49, and the previously narrowed domain d,. Its disadvantage is that the
efficiency of gen is dependent on the dimensions of domains. Moreover, an
intersection could completely cancel the lazy evaluation.

The other method applies cst between the values of df and every affected variable
which did not serve for the generation of the new domain as in backtracking. So, here
we must pay the cost associated with the supplementary constraint verifications.

We choose the latter method, which has the further advantage that the cost of
solving the problem is independent of m, the dimension of the initial domains. The
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following is the definition of the domain generating function using supplementary
constraint checks

gen sol dom
= block_make (gen_adj (block_pos blockA))n, n= B
= [x| x < block_make (gen_adj (block_pos blockB))n;
cest blockA x], n=C& #sol>1
= [x| x < block_make (gen_adj (block_pos blockC))n;
cst blockA x;

cst blockB x], n=D & #so0l>2
= dom, otherwise
where

n = block_name (hd dom)
blockA = get_block 1 sol
blockB = get_block 2 sol
blockC = get_block 3 sol
get_block i = (1(i—1))

Here, the tests on the length of sol are used to delay the evaluation of the help
function until all previous variables are assigned in order to limit useless work. For
the other approach, using domain intersection, we would only replace the cst
blockX x expressions by one member d x.

Table 3 compares the CPU times, and it can be seen that the efficiency for solving
topological constraints is improved by one order of magnitude using domain
generating functions. It is clear that problems with a small p value can benefit from
the use of domain generating functions, such as the case for protein structure
prediction where an atom can be positioned anywhere in the Euclidean space.
However, our knowledge of many regular motifs adopted by the atoms considerably
reduces the search space. The numbers in Table 3 are given only as examples, and
more experimentation would be necessary to produce more convincing statistics.

For example, it is not clear that ‘help’ forward-checking is always less efficient than
‘help’ backtracking. If a domain generation function is used for every variable of the
problem, forward-checking with help is less efficient than backtracking with help.
This is because forward-checking is uselessly filtering the domains of variables
k+1...n at iteration k. One might say that having lazy evaluation, we should not see
any difference between both algorithms because the filtering of a domain should be
delayed until required, until iteration k— 1. However, the member dom [] expression
that ensures the problem is still feasible forces the forward-checking to find at least
one satisfying value in the default domain d, at any iteration in {1 ... k}. The cost may
be very low when no constraint has to be satisfied (in such a case the first domain’s
value is fine) or may cost more if a constraint occurs between variables i and
J» j—i>1. In any case, the work that has to be done to ensure consistency in
forward-checking is paid and explains the difference in efficiency. For these reasons,
the choice between backtracking and forward-checking with help can be difficult, and
strongly dependent on the problem and constraints within the application.

In our examples, Lisp compiled code is much faster than both Miranda interpreted
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code and Haskell compiled code. This can surely be attributed to the lazy evaluation
mechanism. We also did some experiments by increasing the domains of variation of
variables; the largest values we could test before running out of memory in Lisp were
between —9 and 9. On the other hand, the number of reductions for backtracking
with help in Miranda (with a domain generating function for each variable) stayed the
same. The other algorithms take longer to execute, but they always manage to
terminate.

Of course, we can always simulate lazy evaluation in Lisp by writing a generator
or by using the ones defined by Steele (1990), but then the algorithm is cluttered with
explicit calls to an application-dependent generator. We are still convinced the lazy
evaluation is useful in this case for prototyping, especially given that, in this kind of
application, ease of change may be more important than raw speed.

5 Conclusion

The usefulness of \domain generating functions for solving CSP problems is
illustrated. Having functions to dynamically generate domains is very general, and
can be adapted to many contexts. We have given a simple and a more complex
example where ‘symbolic constraints’ can easily be specified. This approach could
also be used to deal with ‘numeric’ constraints, and it is reminiscent of the ‘column
generation’ technique used to solve large linear programming problems. An
important benefit of a lazy functional language is the fact that quite often large areas
of domains are never generated, because they are never needed. This approach,
although powerful, requires some expertise in defining the right ‘helps’ for a given
CSP. It would be interesting to develop a way to deduce these help functions directly
from the expressions defining the constraints.
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