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Abstract

We investigate the relationship between the Bardeen-Press and the Regge-Wheeler
equations for perturbations of the Schwarzschild geometry. We examine how tetrad
and coordinate gauge invariant Regge-Wheeler field quantities arise naturally from
the perturbed Bianchi identities in the modified Newman-Penrose (compacted spin-
coefficient) formalism. The integrability conditions for the Bianchi identities then pro-
vide the transformation identities relating these quantities to the Bardeen-Press quan-
tities. The relationships between the Bardeen-Press quantities of opposite spin-weight
also arise naturally in our approach.

1. Introduction

In his analysis of the nonspherical perturbations of the Schwarzschild black hole,
Price [8, 9] found that the imaginary part of the perturbed Newman-Penrose (NP)
Weyl scalar yr,p satisfies the Regge-Wheeler [10] (RW) equation. (In this article we
denote perturbation quantities by a subscript B.) Subsequently, Lun and Fackerell [6]
and Lun [5] were able to show that, upon the adoption of a suitable gauge, v,5 itself
can be made to satisfy the RW equation.

More recently, Chandrasekhar [2] has investigated the perturbation equations ex-
tensively, and show how the Bardeen-Press [1] (BP) equations can be transformed to
the RW equation (see also Sasaki and Nakamura [11]). His analysis is based on the
transformations of differential operators. It is our aim to show that these results may
be derived from the perturbed Bianchi identities.

We use the modified Newman-Penrose (compacted spin-coefficient) formalism [7].
Since the perturbed Bianchi identities are gauge invariant, £,(R} ..}, = O (see
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[2] Transformations in Schwarzschild space-time 261

Lun [5]), the field quantities which arise naturally from our analysis are also gauge
invariant, that is, invariant under infinitesimal coordinate and infinitesimal Lorentz
transformations. We will show how the Bianchi identities give rise not only to the
BP equations, but also to two gauge independent RW equations. Consequently we
present gauge (and tetrad) invariant RW field quantities, which are related to y,5. We
will also show how the integrability conditions for the Bianchi identities provide, in
a natural way, the transformations between the BP and RW equations. The relation-
ships between the BP quantities of opposite spin-weight, commonly referred to as the
“Teukolsky-Starobinsky” identities, also arise naturally in our approach. Some of the
results presented here have also appeared elsewhere [4]. Here we extend the results
in Fernandes and Lun [4] and also provide some of the missing detail.

2. Gravitational perturbations

The Schwarzschild space-time may be described in the compacted spin-coefficient
formalism using the null tetrad:

. 1
lj = Z('J, A, o, 0)1
n = —1—(r2 —-A,0,0) (¢))]
2"2 ’ ? ’ i
. 1
m’ = ——=(0,0,1, icosec?),

r2
where A = r? — 2Mr. Then

k=o=A=v=e=a=1=Pu=yYo=Y1=Y3=9Y4 =0,

- 1 o Aa— p= cot "M'lf_ M
Q_Q_ rru'_”'— 2’_3, - == 2rﬁ7y—2r2’ 2= r3y
bo=0% bo=—ou—¥2 bu=ou+ v, bu=—u? (2)

0y, =0u =030 =0,
by: =30vyn, D'y = —3uyn.

For clarity, some of the technical detail of the present section will be deferred to the
appendices.

The fundamental equations for the gravitational perturbations are the (gauge in-
variant) perturbed Bianchi identities? which become, after linearization:

(b —40)¥18 = OYop — 3k, 3)

2We refer the reader to Penrose and Rindler [7] or Chandrasekhar [2] for a full description of the
Bianchi and Ricci identities.
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(b —30)¥25 + (bs — 308)¥2 = 8'Y15, 4)

(b —20)Yr35 = 0'Yap + (0 + 3mp) Y, 3

(b — @)¥us = O'Y3p — 3Ap ¥, (6)

(b’ + w)vos = 8Y15 + 305, )

(b’ +21)¥ 18 = BY2s + (05 — 315) ¥, (3

(b + 3u) V25 + (b + ) Y2 = B3, 9

(b’ + 4)¥3p = Oup + v (10)

Furthermore, the following (Ricci) identities relating to the spin coefficients will be
useful:

bos + bso — 'xz = 2003, (11)

bos — Okg = 2080 + Yos, (12)

big — g = oAp + nos, (13)

bus +bsu —0mp = pos + pso + Y28, (14)

P'Ag —8'vg = =2 — Vs, (15)

00 + 0gp — 00 = — V35, (16)

Orpg — Oy — ' = —Y3s, amn

Ovp — s — bpu = 2uus, (18)

Bts — pos = pnos + oks, (19)

bos +bso — 015 = —0its — @it — Y25. (20)

From the integrability conditions on the perturbed Bianchi identities we obtain four
wave equations as follows. Operating with (p — 3g) on (9) and with 8 on (5), and
using the appropriate NP commutation relation in conjunction with (2), we find

[(b —30)(b' + 3u) — 8T W25
+ [(b - 30) (s + 3up) — 0(Tp + 3mp) Y2 = 0. 1)

Now (14) and (2) allow the above to be cast into the more convenient form (with no
explicit derivatives of perturbed spin coefficients)

[(b—30)( + 3u) — 89 + 3v]¥2s
+ [(b — 30)b; — 88, — 3bsu + 3ous + 3udsly = 0. (22)

Likewise, we may derive from (4), (8) and (20)

(D' + 3u)(b — 30) — T3 + 3¢2)¥2s
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+ [(b' + 3u)bs — 835 + 3bse + 30sn + 30is]Y2 =0 (23)

and from (6), (10), (15) and (3), (7), (12), respectively: (Chandrasekhar [2])

(' +51)( — @) — 80 — 3¢21Yus =0, (24)
[(b—50)(p' + p) — 88" — 3v.1¥0s = 0. (25)

With the tetrad given in (1), (24) and (25) are the usual spin —2 and spin +2 BP
equations, respectively.

Using the technique outlined above, the perturbed Bianchi identities also give rise
to the following four (transformation) identities: (refer to the Appendix Al for a

worked example)
(b —30)(b — Q)¥ap = 8T Yrp + ('8 — 30rs — 310p)Yn, (26)
b+ 5P + 328 + [P + 5u)bp — 3bpulys = 80z, (27)
(b + 3wV + w)os = 8BYp + (385 — 3uos — 30ks)¥n, (28)
(b —50)(b — 30)¥25 + [(b — 50)bs + 3bsel¥2 = T Yos. (29)

The significance of these relations is two-fold. Firstly, they are gauge invariant
(that is, invariant under infinitesimal coordinate and infinitesimal tetrad transforma-
tions). Secondly, they provide the required transformations between the BP and RW
equations. To see this, we define the following quantities:

4r roer -
o 1= Y ES ) 88(8'0; — 30rs — 31Gp) ¥, (30)
, 4rt ot - -
& = A 2)6 (005 — 3uos — 30X )Y, = &, (31
o 12"41;02 ’ _
£, := T ES S (eb’ + ub — 2¥2) Vs, (32)
12r* .
£ VL (b — ol — 20a)os = £, (33)

T U-DIA+ DI +2)

(I = 2 for gravitational radiation). It is apparent that &, {,-'(;, &_, and &, are weighted
quantities (see Penrose and Rindler [7]) of (p, q) type (0,0), (0,0), (—4,0) and
(4, 0), respectively.

With these definitions it can be proved (refer to Appendix A1) that our transforma-
tion identities (26)—(29) become

(b —30)(b— 0)V¥4p = 0T (V25 + &), 34)
B+ 5u)(P' + 3u) (Y2 + £o) = 00(Yap + §_2), (35)
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(' +3w)® + Wos = 88(Y2s + &), (36)
(b—50)(b —30) (V25 + &) = TF (Yo + £42) (37
and the wave equations (22) and (23) simplify greatly to give (see Appendix A2)
[(b—3)}' + 3u) — 88 + 3v,1(¥25 + &) =0, (38)
[ +31)(b — 30) — TD + 392](Yas + &) = 0. (39)

We are justified in referring to (22) and (23) as wave equations in the light of
their amazing reduction to this form. In fact these equations are none other than the
RW equation, after expansion in coordinates. An important feature of (38) and (39)
(and also (34)—(37)) is that they are completely gauge invariant (refer to Appendix
A3). The (RW) operators associated with (38) and (39) can be seen to be identical by
making use of the commutators [p, p'] and [8, 3'], however the field quantities ¥,5+&o
and Y25 + &, are distinct, with & connected to Y45 via (34) and &, = &, connected
to Yop via (36). We emphasize their difference here, since this will be significant for
the identities relating BP quantities of opposite spin-weight later (see (54) and (55)).
Hence the integrability conditions naturally provide two RW equations.

It can be proved that the quantities £_, and &, satisfy the spin —2 and spin 4+2 BP
equations:

(" +5u)(b—0) — '3 - 3¢r)é. =0, (40)
(b —50)(p' +n) — 8T - 3ylés = 0. (41)

Indeed one can prove the following commutation relation for quantities of type
(—4,0):

[+ 5w)(b — 0) — 3 — 3y ] [r*¥a(ab + ub — 2v))
= [r*v2(eb + ub — 29 ][ + 5w (b — @) =TT - 3y].  (42)
This can be checked directly, making use of the appropriate NP commutators and the
relations (2), but is self-evident when &_, is written in coordinate form:
12M S

S aoDid+Da+2 3 (43)

-2

So the operator

1
r*va(eb’ + ub + S+ QY2)

corresponds to the 9y Killing vector of the background space-time, for a quantity of
type (p, q)-
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We have now achieved our primary aims. The (0,0) quantities

Vs = Yap + o, and (44)

Vis = Vs + & (45)

are gauge invariant, and satisfy the RW equation. Equations (34)—(37) act as transfor-
mations between the RW and BP quantities. In particular, taking (34), we have after
resolution into spin-weighted spherical harmonics,

- 4r
Vg = - DI+ DI+2) 90(b — 30)(b — @) ¥us- (46)

Applying the RW operator
[(b - 30)(}' +3u) — 3T + 3¢]

to this quantity, we derive (again by making repeated use of the NP commutation
relationships and Equations (2)) a commutation relation for quantities of (p, q) type
(—4,0):

[ —30)d' +31) — 8T + 34,][r*38(}b - 30)b - 0)]
= [r*38(p - 50)b - 3)][( + 5P - ) —~FF-3y,]. (7D

Hence assuming the spin —2 BP equation (24), we have the RW equation

[(b — 30)(b’ + 31) — 3 + 3¥,)(Y2s) = 0.
Conversely, from (35)

4r 1221 (1t / ™
Yap+E = - DA+ DA+ 2)55 B +5u)}P +3u)Y2s (48)

and we may derive the spin —2 BP equation for Y45 + §_, from the RW equation, by
operating on (48) with the BP operator

(' +51)(p — @) — T’ — 3]
and making use of the following commutation relation for quantities of type (0, 0):

[ + 5u)(b — @) ~ 38 — 3y [FTD (B’ + Sy’ + 3u)]
= [FITE +TwE +5w][0 - 30V +3w) -85 +3y,].  (49)

Similar results follow from (36) and (37), or alternatively, by applying the prime
operator (Penrose and Rindler [7]) to the above. They give the relationships between
the spin +2 BP equation (25) and the RW equation (39).
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Since ¥, is real, using (30) and (31), it can be seen that the two quantities

Vas — ¥y = 2ilm (&),  and (50)
Vas — (Ip) = 2iIm (¥25) (51)

are gauge invariant. These purely imaginary quantities also satisfy the RW equation.
This is reminiscent of Price’s [9] early result. Using the perturbed NP commutators
repeatedly, and (16), (17), (4) and (9), we can show that the quantity Im (&,) in (50)
reduces to the form

12"41//2

Im (%) = - DT DT D) (eb’ + ub)Im (Y2). (52)

We have seen the operator r*,(gp’ + ub) before — it corresponds to the 9; Killing
vector of the background space-time. It is interesting that the operator in (52) arises
so naturally over and over in our results. Expanding (52) in coordinates reveals

12M 3 1m (W) (53)
= DI0 T DU +2) a7 Was)- :

Now, the identities (34)—(37) also rclate Y4 and Yop. We may derive, from our
transformation identities, the following relationships in a straightforward way:

(b—T7e)b—50)(b —3)(b —)¥us

Im (&) = (

= BTV (Vo5 + £42) + (b — T0) (b — 50)TT (5o — &), (54)
B + 7w + 5@ +3w)} + 1) vos
= B33 (Yap + £_2) + (B + Tw) (b’ + 5w)FI(E, — &). (55)

These identities allow, say, Yoz to be determined if 1,45 is known. In this case,
using (52), the identity (34), the complex conjugate of (36) and the higher order equa-
tion

(b—72)b — 50)P' + 3w’ + w)Yos = 00T (Yoz + £.2) (56)

(from (36) and (37)), we may eliminate reference to the term (&, — {-'(;) from (54), to
get ’

(b—72)b—50)(b —30)b — 0)(Yap — §-2)
= 0'0'0'0' (Yos + £42) — 3v2(0b + ub + 2¥2) (Vo5 + £42). (57)

Now (57), together with its complex conjugate, imply, when expanded in coordi-
nates and using the time dependence e*’,

[(( = DIC+ DU +2))" + 144M*0 s
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[8] Transformations in Schwarzschild space-time 267

= .ff_*,%*.?’f.?{'%%%%(4r41,!r4s) + 12Mia%%%@o(4r“%§), (58)

where the differential operators .%,, £, 9, and 9 are as defined in Chandrasekhar
[2]. If certain assumptions are made about the complex conjugate of V3, it is not
difficult to show that (58) is in agreement with Chandrasekhar [2].

When written in coordinates, the identities (46) and (48) also agree (up to multipli-
cation by a constant) with the transformations which Chandrasekhar [2] and Sasaki
and Nakamura [11] derived through a consideration of the theory of differential equa-
tions. When expanded in coordinates, (46) becomes

-2)11-%1 DoDo(r*Yap), 59

Vi = TS DI+ DA+ 2)

while (48) becomes
. N A
[ = DIG+ DU +2) + 12Mic s = F.Sf’_l.%%% (r*yng).  (60)

It should be noted that the constant [(I — 1)I(I + 1)(I + 2) + 12Mio] occurs naturally
in our equation (60) or (48). (The radial part of the quantity >y, satisfies the RW
ordinary differential equation.)

3. Discussion

The coordinate approach to the theory of transformation between the BP and RW
equations provided by Chandrasekhar [2], and Sasaki and Nakamura [11], obscures
how natural their results really are. As we have shown, the gauge invariant RW equa-
tion is a natural consequence of the Bianchi identities. Furthermore, the integrability
conditions for the perturbed Bianchi identities also give rise to gauge invariant trans-
formation identities relating RW and BP field variables. In fact there are two RW
quantities which arise naturally in this way, one associated with ¥, and the other
with 5.

It is interesting to note the form of Im (§;) in (52). As remarked previously,
Im (yr;5) is gauge invariant. If we add some quantity to vy, so that the result is
gauge invariant, we want to affect the real part of v, only, which on its own fails to
be independent of gauge. As shown, Im (&) contains no new information and does
not interfere with the gauge invariance of Im (¥,5). So our ability to write Im (£p) in
the form of (52) agrees with our expectations.

The fact that Im (&) is nonzero in general means that the identities (54) and (55)
relating Y¥og and y4p are not as simple as one would infer from Chandrasekhar [2].
After some work, and interpretation of ¥,z and Vs, our identities agree with those
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of Chandrasekhar. Nevertheless, ¥yp is uniquely determined, given ¥,4p (and vice
versa), if we specify the time dependence.

The term &, — E(', which appears in our results, exits due to the lack of symmetry
between the identities (34)~(37). This is something one does not encounter when
treating the electromagnetic perturbations (see Teukolsky and Press [12], Fernandes
and Lun [3]).

One may wonder if a similar approach provides gauge invariant quantities of spin-
weight 1. In fact, the answer is yes, and these will appear in Fernandes and Lun [3].
Actually these quantities allow the work presented here to be simplified greatly.

Importantly, the analysis presented here is completely valid in the flat space-time
limit M = O (that is, ¥, = 0). Thus, in particular, the wave equations ((24), (25),
(38), (39)) and transformation identities ((34)—(37)) are the direct generalizations of
their flat space-time forms to the Schwarzschild space-time. We are prompted to
ask whether the approach outlined in this article can be further generalized to the
Kerr background or indeed to other vacuum Petrov type D background metrics. Our
preliminary results suggest that this is very likely, although the complexity of the NP
commutators makes this work quite difficult,

Appendices

Below we present some of the missing detail from Section 2. For conciseness,
when equations appear in pairs (related to each other by the prime operation — for
example (22) and (23)) only the first will be considered here. The second can then be
inferred.

Al. Derivation of the transformation identities from the Bianchi identities.
Allowing (p—3g) to act on (6) and &' to act on (5), using (2) and the NP commutators,
and then eliminating 55, we find

(b —30)b—0)us =00V + (6’03 + 30'ms — 3pAg) V.
Now from (13) this reduces to (26):
(b—30)(p—0)Vup =00 Y25 + (0T, — 30rp — 3udp)Yn.

The other identities (27)—(29) follow in a similar manner.
Now with the definition (30) for &, this equation may be expressed as (34):

(b —30) (b — ) Vas = TT (Y25 + &0)-
The verification of this is straightforward upon substitution, when we recall that

I-DId+1D(I+2)

d'9'00 = ™
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on a spin-weight —2 quantity, and &'r = 0 from (2).
After somewhat more work it can be shown that (27) and (35) are identical. To see
this it is sufficient to show

(B + 5} +31) (P28 + §o) = 00(Yas + §-2).

The proof of this statement requires the perturbed and unperturbed NP commutation
relations and Equations (2). Subsequently a term involving ¥ is introduced, and (6)
is used to write this in terms of v45. Derivatives of perturbed spin coefficients occur
in precisely the correct combinations so that (15) and (19) allow rapid reduction, and
the result follows.

A2. Reduction of (22) to the RW equation (38). The wave equation

[(b—30)(D + 3u) — 8 + 3v,1v.5
+ [(b — 30)b — 80, — 3bsp + 3ops + 3p0slY2 =0

may be written in the form

(b —30)(Pp' +3u) — 8T + 3¢,](Y25 + &) =0

by again using the perturbed and unperturbed NP commutators as well as (2), (19),
(15), (6), (13), (16) and (17). The reduction of (23) to the RW equation (39) follows
similarly.

A3. Gaugeinvariance. Since ¥z and 45 are (both coordinate and tetrad) gauge
invariant, the set of wave equations (24), (25), (38) and (39), together with the trans-
formation identities (34)—(37) will be seen to be gauge invariant as well when we
prove that the quantity

1’/’\23 = Yns + &

is gauge invariant. To prove that this is indeed true, consider a combined tetrad and
coordinate gauge transformation. Then (Lun [5])

Yap > Yp — (Xp + Yb/)¢2,
A’B = AB + 5'1),

Op > 05—6w
and

Iy 0+ @X+v)p+ @Y+ w)p

https://doi.org/10.1017/50334270000011206 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000011206

270

J. F. Q. Fernandes and A. W.-C. Lun [11]

when acting on Y, (using (2)). A quick calculation reveals that all coordinate gauge
terms (X, Y) and tetrad gauge terms (v, w) disappear. So 1?/\25 is gauge independent,
as is ¥, .

This technique can be repeated for the quantities

(1]
(2]

(3]
(4]

(5]
(6]

(71
(8]
(9]
(10
[11]

(12]

Vos—Gip=2iIm(E)  and  Tas — (Byp) = 2i Im (Y2p).
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