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ON THE BEHAVIOUR OF THE BACKWARD
INTERPRETATION OF FEYNMAN–KAC
FORMULAE UNDER VERIFIABLE CONDITIONS

AJAY JASRA,∗ National University of Singapore

Abstract

We consider the time behaviour associated to the sequential Monte Carlo estimate of the
backward interpretation of Feynman–Kac formulae. This is particularly of interest in the
context of performing smoothing for hidden Markov models. We prove a central limit
theorem under weaker assumptions than adopted in the literature. We then show that the
associated asymptotic variance expression for additive functionals grows at most linearly
in time under hypotheses that are weaker than those currently existing in the literature.
The assumptions are verified for some hidden Markov models.
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1. Introduction

Feynman–Kac formulae provide a very general description of several models, such as hidden
Markov models (HMMs), used in statistics, physics, and many other fields; see [1]. For a
measurable space (X, B(X)), f : X → R (bounded for now), the Feynman–Kac formula
associated to the n-time marginal, n ≥ 1 is: ηn(f ) := γn(f )/γn(1) with, for μ a probability
measure on X, Gn : X → R+ (bounded), n ≥ 0, Mn : X × B(X) → [0, 1], n ≥ 1,

γn(f ) :=
∫

Xn+1
f (xn)

[n−1∏
p=0

Gp(xp)

]
μ(dx0)

n∏
p=1

Mp(xp−1, dxp). (1)

We take η0 = μ. In the context of HMMs, ηn represents the predictor, equivalently, the
conditional distribution of the signal given the observations up to time n− 1. In many practical
applications, such as the smoothing problem in HMMs, one is interested in the formula for
Fn : Xn+1 → R (bounded for now),

Qn(Fn) =
∫
Xn+1 Fn(x0, . . . , xn)[∏n−1

p=0 Gp(xp)]μ(dx0)
∏n

p=1 Mp(xp−1, dxp)∫
Xn+1 [∏n−1

p=0 Gp(xp)]μ(dx0)
∏n

p=1 Mp(xp−1, dxp)
. (2)

In practice ηn(f ) and Qn(Fn) are unavailable analytically and we must resort to numerical
approximation procedures in order to compute it. We remark that Qn(Fn) is of interest, not
only for smoothing for HMMs, but many other application areas; see, for instance [3]. In this
article we focus on the numerical approximation of Qn(Fn) and simultaneously ηn(f ). The
latter task is often achieved quite well using sequential Monte Carlo (SMC) methods.
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SMC methods are designed to approximate a sequence of probability distributions of increas-
ing dimension. The method uses N ≥ 1 samples (or particles) that are generated in parallel,
and are propagated via importance sampling and resampling methods. Several convergence
results, as N grows, have been proved (see, e.g. [1], [7]) along with the stability in time of the
error of the algorithm [5], [12] in the context of filtering for HMMs. These latter results are of
particular importance due to the temporal sequential nature of the inference; we do not want
the errors over time to accumulate.

As noted above, SMCs can be very useful for approximating ηn(f ). However, it is well-
known due to the path degeneracy problem (see [8]) that the standard SMC approach of cost
O(N) per time step for approximating Qn(Fn) performs very badly. For example, consider the
central limit theorem (CLT) for the standard SMC approximation of Qn(Fn), call it Q

N,S
n (Fn)

with Fn(x0, . . . , xn) = ∑n
p=0 fp(xp), fp : X → R (additive functionals—this is of particular

interest in application areas),

√
N [QN,S

n (Fn) − Qn(Fn)] d−→ N (0, σ 2,S
n (Fn)),

where ‘
d−→’ denotes convergence in distribution as N → +∞ and N (0, σ

2,S
n (Fn)) is a one-

dimensional Gaussian distribution with 0 mean and variance σ
2,S
n (Fn). Poyiadjis et al. [11]

showed that, under strong assumptions, σ
2,S
n (Fn) ≥ c(n), with c(n), O(n2).

One SMC approach designed to deal with these aforementioned issues is that of the forward
filtering backward smoothing algorithm (FFBS) of [8] and [10] and in particular the SMC
approximation of the backward interpretation of Feynman–Kac formulae, written as QN

n (Fn).
This is a ‘forward only’ approximation of the FFBS algorithm, which is of cost O(N2) per time
step. Several convergence results for this algorithm (and FFBS), including a CLT are proved in
[3], [7], and [9]; the assumptions used are fairly strong and do not always apply on noncompact
state-spaces X. The O(N2) cost per time step is counterbalanced by the time-behaviour of (an
appropriateley defined) an error in approximating Qn(Fn) for Fn additive; it can be no worse
than linear in time (see, e.g. [9]), versus the O(n2) for standard SMC. For instance, Del Moral et
al. [3] showed that for Fn additive, as

√
N [QN

n (Fn) − Qn(Fn)] d−→ N (0, σ 2
n (Fn)), under some

strong hypotheses: σ 2
n (Fn) ≤ c(n + 1) with c < +∞ not depending upon n. In this paper we

weaken the hypotheses previously used in the literature (such as [3], [7], and [9]). A related
idea, the forward filtering backward simulation algorithm in [7], has cost O(N) but we do not
consider it in this paper.

In the analysis of SMC algorithms, time-stability is often posed as follows. Writing ηN
n (f )

as the SMC approximation of ηn(f ), we have under minimal assumptions that
√

N [ηN
n (f )−

ηn(f )] d−→ N (0, ϑ2
n(f )). In the literature an often proved result, under additional assumptions,

is that ϑ2
n(f ) ≤ c where c does not depend upon n. The time-stability of an SMC has been

addressed in many papers (e.g. [2]), but, only recently have the assumptions been weakened,
for example, in [5] and [12]. The assumptions used in the early work of Del Moral et al.
[2] relied on very strong mixing assumptions associated to the underlying Markov chain of
the Feynman–Kac formula. Significant efforts were made to weaken this assumption (see [5]
and [12]). We use similar assumptions to [12] in order to weaken the assumptions used in
[3] and [4] to provide the framework for our approach. First, proving a CLT for the SMC
approximation of the backward interpretation of Feynman–Kac formulae (Theorem 1), that is√

N [QN
n (Fn) − Qn(Fn)] d−→ N (0, σ 2

n (Fn)). Secondly, providing a linear-in-time bound on the
associated asymptotic variance expression when the function is additive (Theorem 2), that is
for Fn(x0, . . . , xn) = ∑n

p=0 fp(xp), σ 2
n (Fn) ≤ c(n + 1) where c does not depend upon n.
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This paper is structured as follows. In Section 2 we state our notation, the algorithm, and
estimates along with our assumptions. In Section 3 the CLT is proved. In Section 4 we prove
σ 2

n (Fn) ≤ c(n+ 1). In Section 5 we verify our assumptions. The appendices contain technical
results for the proofs of the CLT and asymptotic variance.

2. Preliminaries

2.1. Notation

For a kernel M : X × B(X) → R+ and σ -finite measure μ on (X, B(X)) μM(·) :=∫
X μ(dx)M(x, ·). For a function ϕ : X → R and kernel M (respectively signed measure μ),

M(ϕ)(x) := ∫
X ϕ(y)M(x, dy) (respectively μ(ϕ) := ∫

ϕ(y)μ(dy)). For a given function
V : X �→ [1, ∞), we denote by LV the class of functions ϕ : X → R for which ‖ϕ‖V :=
supx∈X |ϕ(x)|/V (x) < +∞. When V ≡ 1 we write ‖ϕ‖∞ := supx∈X |ϕ(x)|. We also denote,
for a probability measure μ, ‖μ‖V := sup|ϕ|≤V |μ(ϕ)|. The probability measures on X are
denoted by P . For μ ∈ P such that μ(V ) < +∞, we denote μ ∈ PV . Throughout c is used
to denote a constant whose meaning may change, depending upon the context; any (important)
dependencies are written as c(·). The bounded, real-valued and measurable functions on a
space Z are written as Bb(Z). The notation xk:n = (xk, . . . , xn) is used, with k < n.

Recall (1) which is defined in terms of potentials Gn and Markov kernels Mn. Throughout
the paper it is assumed for a σ -finite measure λ on X (typically Lebesgue) and each n ≥ 1 that
Mn(xn−1, dxn) = Hn(xn−1, xn)λ(dxn)whereHn : X2 → R+, with

∫
X Hn(xn−1, xn)λ(dxn) =

1 for all xn−1 ∈ X. A semi-group for n ≥ 1 is defined as

Qn(xn−1, dxn) := Gn−1(xn−1)Mn(xn−1, dxn)

with for 0 ≤ p ≤ n, f : X → R, Qp,n(f )(x) := ∫
f (xn)

∏n
q=p+1 Qq(xq−1, dxq) with the

convention Qp,p = Id , the identity operator. We use this semi-group notation for operators
that are introduced later on. Sometimes we abuse the notation and write Qn(xn−1, xn) =
Gn−1(xn−1)Hn(xn−1, xn). We write the d-dimensional Gaussian distribution with mean μ and
covariance � as Nd(μ, �) and if d = 1 we drop subscript d. We end by noting that throughout
this paper for every n ≥ 0, ‖Gn‖∞ < +∞.

2.2. Algorithm and estimate

The SMC algorithm samples from the joint law

P(d(x1:N
0 , x1:N

1 , . . . , x1:N
n )) =

( N∏
i=1

η0(dxi
0)

) n∏
p=1

N∏
i=1

	p(ηN
p−1)(dxi

p),

where x1:N
q = (x1

q , . . . , xN
q ) ∈ XN (0 ≤ q ≤ n), ηN

n = (1/N)
∑N

i=1 δxi
n
, and the operator

	n : P → P is defined by 	n(μ)(dy) = μ(Gn−1Mn)(dy)/μ(Gn−1). The estimate of γn(f )

is γ N
n (f ) = [∏n−1

q=0 ηN
q (Gq)]ηN

n (f ).
We let Fn : Xn+1 → R in order to study the SMC approximation of (2). Now the backward

interpretation (see, e.g. [3]) is

Qn(Fn) =
∫

Xn+1
Fn(x0 : n)ηn(dxn)Mn(xn, dx0 : n−1),

where

Mn(xn, dx0 : n−1) =
n∏

q=1

Mq,ηq−1(xq, dxq−1), (3)
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For

Mq,ηq−1(xq, dxq−1) = Gq−1(xq−1)Hq(xq−1, xq)ηq−1(dxq−1)

ηq−1(Gq−1Hq(·, xq))
,

we write MN
n in (3) for when η0, . . . , ηn−1 are replaced by ηN

0 , . . . , ηN
n−1. The SMC app-

roximation of Qn(·), written as QN
n (·) is QN

n (dx0 : n) = ηN
n (dxn)

∏n
q=1 Mq,ηN

q−1
(xq, dxq−1).

If Fn(x0 : n) = ∑n
p=0 fp(xp), fp : X → R, then setting FN

0 = f0 the O(N2) approximation
is QN

n (Fn) = ηN
n (FN

n ), where FN
n (x) = fn(x) + ηN

n−1(Qn(·, x)FN
n−1)/η

N
n−1(Qn(·, x)).

2.3. Assumptions

We make the following assumptions.

(A1) There exists a V : X → [1, ∞) unbounded and constants δ ∈ (0, 1) and d ≥ 1 with the
following properties. For each d ∈ (d, +∞) there exists a bd < +∞ such that for all
x ∈ X, supn≥1 Qn(eV )(x) ≤ e(1−δ)V (x)+bd 1{Cd }(x), where Cd = {x ∈ X : V (x) ≤ d}.

(A2) It holds that μ ∈ Pv , with v = eV .

(A3) For every α ∈ (0, 1
2 ), supn≥1 Gn−1(x)Hn(x, y)/ηn−1(Gn−1Hn(·, y)) ∈ Lv̄α , with

v̄(x, y)α = v(x)αv(y)α .

(A4) With d as in (A1) for each d ∈ [d, ∞), Gn−1(x)Hn(x, y) > 0 for all x, y ∈ X, n ≥ 1
with 0 <

∫
Cd

λ(dy) < +∞ and there exist ε̃−
d > 0 such that, infn≥1 Gn−1(x)Hn(x, y) ≥

ε̃−
d for all x, y ∈ Cd . In addition νd(dy) := λ(dy) 1{Cd }(y)/

∫
Cd

λ(dy) ∈ Pv .

(A5) With d as in (A1), and ε̃−
d as in (A4) for each d ∈ [d, ∞) there exist ε̃+

d ∈ [ε̃−
d , ∞) such

that, supn≥1 Gn−1(x)Hn(x, y) ≤ ε̃+
d for all x, y ∈ Cd

(A6) It holds that supn≥0 supx∈X Gn(x) < +∞.

Assumptions (A1), (A2) and (A4)–(A6) are Assumptions (H1)–(H5) of [12], except slightly
modified to our density notation. Assumption (A3) appears to be needed under our analysis,
but can be verified in practice. Under the other assumptions of this paper, α as in (A3) could
be verified if Hn ∈ Lv̄β1 and (infx∈Cd

Gn−1(x)Hn(x, y))−1 ∈ Lvβ2 with β1, β2 > 0 and
α = β1 + β2. A discussion of the unmodified assumptions and comparison to the assumptions
of [6] can be found in [12].

3. Central limit theorem

The asymptotic variance in the CLT for the forward only smoothing (respectively FFBS) is,
under some conditions, given by [3, Theorem 3.1] (see also [7]):

σ 2
n (Fn) :=

n∑
p=0

ηp

([
hp,n

{
Pp,n(Fn) − ηp(Dp,n(Fn))

ηp(Dp,n(1))

}]2)
(4)

for the predictor. The operators are for 0 ≤ p ≤ n,

hp,n(xp) = Qp,n(1)(xp)

ηp(Qp,n(1))
, Pp,n(Fn)(xp) = Dp,n(Fn)(xp)

Dp,n(1)(xp)
,

Dp,n(Fn)(xp) =
∫

Mp(xp, dx0 : p−1)Qp,n(xp, dxp+1:n)Fn(x0 : n)
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and

Qp,n(xp, dxp+1:n) =
n−1∏
q=p

Qq+1(xq, dxq+1). (5)

With the conventions that D0,n = Q0,n and Dn,n = Mn. Note that if Qn(Fn) = 0, σ 2
n (Fn) =∑n

p=0 ηp(h2
p,nPp,n(Fn)

2). We obtain the CLT under weaker assumptions than considered by
[3] and [7], but only for bounded functions; we note that (A1) and (A3) need not be time-
uniform, but in order to connect with the next section, we make them time-uniform. Indeed,
we can pose (A1) as Qn(v) ≤ c(n)v1−δ . We use E{·} to denote expectation with respect to the
particle system.

Theorem 1. Assume that (A1)–(A3) hold. Suppose that for each n ≥ 0, 1/Gn ∈ Lvδ/2 , with δ

as in (A1), then for any n ≥ 0, Fn ∈ Bb(X
n+1),

√
N [QN

n − Qn](Fn)
d−→ N (0, σ 2

n (Fn)).

Proof. By translation, we can assume that Qn(Fn) = 0. For notational convenience, we
introduce the rescaled quantity

D̂p,n(Fn) = Dp,n(Fn)

ηpQp,n(1)

and its empirical analogue

D̂N
p,n(Fn) = DN

p,n(Fn)

ηpQp,n(1)

for DN
p,n(Fn) = ∫

MN
p (xp, dx0 : p−1)Qp,n(xp, dxp+1:n)Fn(x0 : n). From De Moral et al. [3,

p. 965] and Equation (5.3) of[3, p. 962], it follows that

√
N [QN

n − Qn](Fn) = √
N

n∑
p=0

γ̄ N
p (1)

γ̄ N
n (1)

[ηN
p − 	p(ηN

p−1)](D̂N
p,n(Fn)),

where we have set γ̄ N
p (1) = γ N

p (1)/γp(1). Since the quantity γ̄ N
p (1) converges to one

in probability (e.g. Proposition 1), from Slutsky’s lemma we show that we can ignore the
γ̄ N
p (1)/γ̄ N

n (1) term for proving the CLT. The proof consists of exploiting the decomposition

for F̂ N
p,n = D̂N

p,n(Fn) − D̂p,n(Fn),

n∑
p=0

√
N [ηN

p − 	p(ηN
p−1)](D̂N

p,n(Fn))

= √
N

( n∑
p=0

[ηN
p − 	p(ηN

p−1)](F̂ N
p,n) +

n∑
p=0

[ηN
p − 	p(ηN

p−1)](D̂p,n(Fn))

)
.

and prove that the first term on the right-hand side converges to 0 in probability while the second
term converges in law towards a centred Gaussian distribution with variance σ 2

n (Fn).
As Gp ∈ Bb(X) (for each p ≥ 0), Fn ∈ Bb(X), and D̂p,n(Fn) ∈ Bb(X) for 0 ≤ p ≤ n; by

Corollary 9.3.1 of [1], the sequence
√

N([ηN
0 −η0](D̂0,n(Fn)), . . . , [ηN

n −	n(η
N
n−1)](D̂n,n(Fn)))

converges in law towards a centred Gaussian vector with covariance matrix

diag(varη0(D̂0,n(Fn)), . . . , varηn(D̂n,n(Fn))).
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It follows that
∑n

p=0

√
N [ηN

p − 	p(ηN
p−1)](D̂p,n(Fn)) converges in law towards a centred

Gaussian distribution with variance
∑n

j=0 varηj
(D̂j,n(Fn)); this is just another way of writing

σ 2
n (Fn).

In the last part of the proof we show that the term
∑n

p=0

√
N [ηN

p − 	p(ηN
p−1)](F̂ N

p,n)

converges to 0 in probability; this quantity has zero expectation and by the first inequality
of [3, p. 965]

E

{( n∑
p=0

√
N [ηN

p − 	p(ηN
p−1)](F̂ N

p,n)

)2}
≤ c

n∑
p=0

E{	p(ηN
p−1)([F̂ N

p,n]2)}

(where c < +∞ does not depend on N ). It thus remains to verify that for any index 0 ≤ p ≤ n

the quantity E{	p(ηN
p−1)([F̂ N

p,n]2)} converges to 0 as N → ∞. We use the decomposition

	p(ηN
p−1)([F̂ N

p,n]2) = ηp([F̂ N
p,n]2) + [	p(ηN

p−1) − 	p(ηp−1)]([F̂ N
p,n]2) and treat each term

separately. As Gp ∈ Bb(X) (for each p ≥ 0), Fn ∈ Bb(X), and F̂ N
p,n(Fn) ∈ Bb(X) for 0 ≤

p ≤ n; it follows from the dominated convergence theorem, Fubini’s theorem, and Lemma 1
that E{ηp([F̂ N

p,n]2)} converges to 0. For dealing with the second term, as F̂ N
p,n(Fn) ∈ Bb(X),

we note that E{|[	p(ηN
p−1) − 	p(ηp−1)]([F̂ N

p,n]2)|} is upper-bounded by (c does not depend
on N )

c

∫
X

E

∣∣∣∣
ηN

p−1(Gp−1Hp(·, xp))

ηN
p−1(Gp−1)

− ηp−1(Gp−1Hp(·, xp))

ηp−1(Gp−1)

∣∣∣∣λ(dxp) (6)

By assumption (A3) and the boundedness of Gp−1 for every fixed xp ∈ X Proposition 1 applies
to the function Gp−1Hp(·, xp) and Gp−1; it follows that for every fixed xp ∈ X the function

∣∣∣∣
ηN

p−1(Gp−1Hp(·, xp))

ηN
p−1(Gp−1)

− ηp−1(Gp−1Hp(·, xp))

ηp−1(Gp−1)

∣∣∣∣ 1

ηp−1(Gp−1Hp(·, xp))

d−→ 0. (7)

From Lemma 3, we show that for λ-almost everywhere (a.e.) with fixed xp ∈ X (7) is also
uniformly integrable; consequently for λ-a.e. with fixed xp ∈ X (7) converges in expectation
to zero. In addition, by Lemma 3, (6) is upper-bounded by

c

∫
X

v(xp)2αηp−1(Gp−1Hp(·, xp))λ(dxp).

Application of Fubini’s theorem and repeated use of Corollary 1 allows us to show that∫
X v(xp)2αηp−1(Gp−1Hp(·, xp))λ(dxp) ≤ c, where c < +∞ depends on p but not N . Thus,

by the dominated convergence theorem, we have shown that the term in (6) goes to zero, which
completes the proof.

4. Control of the asymptotic variance

We now consider the asymptotic variance when Fn(x0 : n) = ∑n
p=0 fp(xp), fp : X → R.

Contrary to Theorem 1 we will not assume that the fp are bounded; let ‖f ‖vα = supp≥0 ‖fp‖vα .

Theorem 2. Assume that (A1)–(A6) hold. Then if ‖f ‖vα < +∞, α ∈ (0, 1
6 ) there exists a

c < +∞ which only depends upon the constants in (A1) and (A3)–(A6) such that for any n ≥ 1:
σ 2(Fn) ≤ c‖f ‖vα (n + 1).
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Proof. Consider the term hp,n(x){Pp,n(Fn)(x) − ηp(Dp,n(Fn))/ηp(Dp,n(1))} in (4). We
have the simple calculation

Pp,n(Fn)(x) − ηp(Dp,n(Fn))

ηp(Dp,n(1))
= (δx ⊗ ηp − ηp ⊗ δx)(D̄p,n(Fn ⊗ 1))

ηp(Dp,n(1))Dp,n(1)(x)
,

where D̄p,n = Dp,n ⊗ Dp,n and the • notation is used to denote operators/functions on the
product space. Let η̄p,x := (δx ⊗ηp −ηp ⊗ δx) then using the additive nature of the functional
Fn, we derive

η̄p,xD̄p,n(Fn ⊗ 1)

=
p−1∑
q=0

η̄p,x(Q̄p,n(1)M̄p:q(fq ⊗ 1)) +
n∑

q=p

η̄p,xp (Q̄p,q((fq ⊗ 1)Q̄q,n(1))),

where Mp:q = Mp,ηp−1 , . . . , Mq+1,ηq .
We consider first for p ≥ 1,

hp,n(x)

ηp(Dp,n(1))Dp,n(1)(x)

p−1∑
q=0

η̄p,x(Q̄p,n(1)M̄p:q(fq ⊗ 1))

= hp,n(x)

ηp(Qp,n(1))

p−1∑
q=0

ηp(Qp,n(1)[Mp:q(fq)(x) − Mp:q(fq)]). (8)

By Proposition 3 the right-hand side is upper-bounded by c‖f ‖vαv(x)2α. Then, we consider
(which covers the p = 0 case)

hp,n(x)

ηp(Dp,n(1))Dp,n(1)(x)

n∑
q=p

η̄p,x(Q̄p,q((fq ⊗ 1)Q̄q,n(1)))

= hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)

n∑
q=p

η̄p,x(Q̄p,q((fq ⊗ 1)Q̄q,n(1))). (9)

By Proposition 2, the right-hand side is upper-bounded by c‖f ‖vαv(x)3α . Thus, we have
proved that σ 2

n (Fn) ≤ c‖f ‖vα

∑n
p=0 ηp(v6α). We conclude by noting that α ∈ (0, 1

6 ) and
using Proposition 1 of [12].

5. An example

An example where our assumptions can hold, is that of [12, Section 3.2], with some minor
modifications. Let X = Rdx with n ≥ 0, Xn+1 = Xn + Wn. Let Wn be independent and
identically distributed (i.i.d.) ∼ Ndx (0, Idx ) with Idx the dx × dx identity matrix. We can take
V (x) = 1 + x�x/2(1 + δ0), δ0 > 1. The observation model is taken as Yn|Xn = x ∼
Ndy (H(x), σ 2Idy ) where H : X → Rdy ; that is, Gn(x) is the dy-dimensional Gaussian density
with mean H(x) covariance Idy and is evaluated point-wise at the observed yn. It is assumed
that the actual observations lie on a space Y� ⊂ Rdy , with Y� compact. If H is bounded such
that limr→∞ sup|x|≥r [( 1

2 )x�x(1 + δ1)/(δ0(1 + δ0)) + ( 1
2 )σ 2

y supy∈Y�
|y| sup|λ|=1 λ�H(x) −

(H(x)�H(x))/(2σ 2
y )] < 0 with δ1 ∈ (0, 1) then we can verify all of the assumptions,
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Figure 1: Estimate of the asymptotic variance. The function is Fn(x0 : n) = ∑n
p=0 xp and an SMC

algorithm is computed with N = 10 000, 100 times for each time point. The y axis is rescaled for
presentation purposes and the dotted line is a least squares estimate of a linear regression of σ 2 against

time.

including 1/Gn−1 ∈ Lvδ/2 using the work of [12], apart from (A3). This holds if for
α ∈ (0, 1

2 ) infy∈X((infx∈Cd
Hn(x, y))v(y)α) > 0. This is because ηn−1(Cd) can be shown

to be lower-bounded uniformly in n (see the proof of [12, Lemma 8]) and Gn−1 is (uniform
in n) upper and lower-bounded if Y� is compact (which it is). Simple calculations show that
infy∈X((infx∈Cd

Hn(x, y))v(y)α) > 0, can hold if σ 2
y > 4 and then taking 1 < δ0 small

enough.
Another observation model (with the above hidden Markov chain and v(x)) for which we

can verify the assumptions of this paper can be found in [12, Section 3.1.1]. Here, we set
Y� = Y = {0, 1}dx and write B(p) as the Bernoulli distribution with success probability p, the
observation model is Yn|Xn = x ∼ B(p(x1)) ⊗ · · · ⊗ B(p(xdx )) where p(x) = 1/(1 + e−x).
It is easily shown that 1/Gn−1 ∈ Lvδ/2 and all the other assumptions apart from (A3) easily
follow. Assumption (A3) will follow by the above calculations and the fact that (treating Gn

as a function of the observations also) Gn(x; y) ≤ 1 and inf(y,x)∈Y×Cd
Gn(x; y) > 0. To

illustrate the linear growth bound for this example (dx = 1), we generate 1000 data points
from the model and estimate the asymptotic variance, using an SMC algorithm for the function
Fn(x0 : n) = ∑n

p=0 xp. The results, shown in Figure 1, demonstrate the expected linear in time
increase.

Appendix A. Technical results for the central limit theorem

Note that F N
n is the natural filtration of the particles at time n.

Lemma 1. Assume that (A1)–(A3) hold. Suppose that for each n ≥ 0, 1/Gn ∈ Lvδ , with δ as in

(A1). Let p > 0 then for λ-a.e. xp ∈ X and any F ∈ Bb(X
n+1), [DN

p,n − Dp,n](F )(xp)
d−→ 0.

Proof. By [3, Lemma 6.1], we have

[DN
p,n − Dp,n](F )(xp) =

p∑
q=0

[Mp,q,ηN
q

− Mp,q,	q(ηN
q−1)

](SN
p,q,n(F ))(xp), (10)
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where for μ ∈ P , 0 ≤ q < p. It holds that

Mp,q,μ(xp, dxq:p−1) = μ(dxq)Qq,p−1(xq, dxq+1:p−1)Qp(xp−1, xp)

μQq,p−1(Qp(·, xp))
,

where Qq,p−1 is defined in (5) and

SN
p,q,n(F )(xq:p) =

∫
Xq+n−p

Qp,n(xp, dxp+1:n)MN
q (xq, dx0 : q−1)F (x0 : n);

see (3) for a definition of MN
q . We note that

sup
xq:p∈Xp−q+1

|SN
p,q,n(F )(xq:p)| ≤ c‖F‖∞, (11)

where c is a finite constant that may depend on p, n but not on N . We will show that each
summand on the right-hand side of (10) will converge to 0 in probability.

It is first remarked that by (A1), (A3), and Proposition 1,

ηN
q Qq,p−1

(
Qp(·, xp)

ηp−1(Qp(·, xp))

)
d−→ ηqQq,p−1

(
Qp(·, xp)

ηp−1(Qp(·, xp))

)

and

	q(ηN
q−1)

[
Qq,p−1

(
Qp(·, xp)

ηp−1(Qp(·, xp))

)]
d−→ ηqQq,p−1

(
Qp(·, xp)

ηp−1(Qp(·, xp))

)

so it is enough to show that

[ηN
q − 	q(ηN

q−1)]
[
Qq,p−1

(
Qp(·, xp)SN

p,q,n(F )

ηp−1(Qp(·, xp))

)]
d−→ 0. (12)

We have via the Jensen and the (conditional) Marcinkiewicz–Zygmund inequalities that

E

{∣∣∣∣[ηN
q − 	q(ηN

q−1)]
[
Qq,p−1

(
Qp(·, xp)SN

p,q,n(F )

ηp−1(Qp(·, xp))

)]∣∣∣∣
}

≤ c√
N

E

{∣∣∣∣Qq,p−1

(
Qp(·, xp)SN

p,q,n(F )

ηp−1(Qp(·, xp))

)
(x1

q)

∣∣∣∣
2}1/2

.

From (11) it follows that

E

{∣∣∣∣Qq,p−1

(
Qp(·, xp)SN

p,q,n(F )

ηp−1(Qp(·, xp))

)
(X1

q)

∣∣∣∣
2}1/2

≤ c‖F‖∞E

{
Qq,p−1

(
Qp(·, xp)

ηp−1(Qp(·, xp))

)
(X1

q)2
}1/2

.

Then by assumption (A3) and repeated application of Corollary 1, we have

E

{
Qq,p−1

(
Qp(·, xp)

ηp−1(Qp(·, xp))

)
(X1

q)2
}1/2

≤ cv(xp)αE{v(X1
q)2α}1/2.
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For E{v(X1
q)2α}, Jensen’s inequality and application of Lemma 2 yields

E

{∣∣∣∣[ηN
q − 	q(ηN

q−1)]
[
Qq,p−1

(
Qp(·, xp)SN

p,q,n(F )

ηp−1(Qp(·, xp))

)]∣∣∣∣
}

≤ c√
N

v(xp)α.

Thus, we have shown that (12) holds, from which we conclude the proof.

Lemma 2. Assume that (A1) and (A2) hold. Suppose that for each n ≥ 0, 1/Gn ∈ Lvδ with δ

as in (A1) then for any n ≥ 0 there exists a c < +∞ such that for any N ≥ 2, E{v(X1
n)} ≤ c.

Proof. We proceed via induction. The n = 0 case follows as η0 ∈ Pv . Thus, we assume
for n − 1 and consider n, E{v(X1

n)} = E{ηN
n−1(Qn(v))/ηN

n−1(Gn−1)}. Now, consider

ηN
n−1(Gn−1) ≥

∥∥∥ 1

Gn−1

∥∥∥−1

vδ
ηN

n−1

(
1

vδ

)
≥

∥∥∥ 1

Gn−1

∥∥∥−1

vδ

1

ηN
n−1(v

δ)
. (13)

So, we have that E{v(X1
n)} ≤ ‖1/Gn−1‖vδE{ηN

n−1(Qn(v))ηN
n−1(v

δ)}. Now, via the multiplica-
tive drift Qn(v) ≤ cv1−δ , so

E{ηN
n−1(Qn(v))ηN

n−1(v
δ)} ≤ cE

{
1

N2

(∑
i

v(Xi
n−1) +

∑
i �=j

v(Xi
n−1)

1−δv(X
j
n−1)

δ

)}

= c

(
E{v(X1

n−1)} + N − 1

N
E{v(X1

n−1)
1−δv(X2

n−1)
δ}

)

≤ 2cE{v(X1
n−1)},

where we have applied Hölder’s inequality to obtain the last line; the induction hypothesis
completes the proof.

Lemma 3. Assume that (A1)–(A3) hold. Suppose that for each n ≥ 0, 1/Gn ∈ Lvδ/2 with δ as
in (A1), then there exists a 1 ≥ κ > 0 such that for any n ≥ 1 there exists a c < +∞ such that
for λ-a.e. xn ∈ X,

E

{∣∣∣∣
[
ηN

n−1(Gn−1Hn(·, xn))

ηN
n−1(Gn−1)

− ηn−1(Gn−1Hp(·, xn))

ηn−1(Gn−1)

]
1

ηn−1(Gn−1Hn(·, xn))

∣∣∣∣
1+κ}

≤ cv(xn)
(1+κ)α,

where α is as in (A3).

Proof. We have

E

{∣∣∣∣
[
ηN

n−1(Gn−1Hn(·, xn))

ηN
n−1(Gn−1)

− ηn−1(Gn−1Hp(·, xn))

ηn−1(Gn−1)

]
1

ηn−1(Gn−1Hn(·, xn))

∣∣∣∣
1+κ}

≤ c

(
1

ηn−1(Gn−1)1+κ
+ E

{∣∣∣∣ ηN
n−1(Gn−1Hn(·, xn))

ηN
n−1(Gn−1)ηn−1(Gn−1Hn(·, xn))

∣∣∣∣
1+κ})

.

Then by the application of assumption (A3), we obtain

E

{∣∣∣∣ ηN
n−1(Gn−1Hn(·, xn))

ηN
n−1(Gn−1)ηn−1(Gn−1Hn(·, xn))

∣∣∣∣
1+κ}

≤ cv(xn)
(1+κ)αE

{∣∣∣∣ ηN
n−1(v

α)

ηN
n−1(Gn−1)

∣∣∣∣
1+κ}

. (14)
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We will now show that (see the right-hand side of (14)) E{|ηN
n−1(v

α)/ηN
n−1(Gn−1)|1+κ} ≤ c

for some 1 ≥ κ > 0. From the proof of (13) in Lemma 2, we can show in a similar manner
that E{|ηN

n−1(v
α)/ηN

n−1(Gn−1)|1+κ} ≤ cE{{ηN
n−1(v

α)ηN
n−1(v

δ/2)}1+κ}. From Minkowski’s
inequality, we have E{{ηN

n−1(v
α)ηN

n−1(v
δ/2)}1+κ} is upper-bounded by

1

N2(1+κ)

(
E

{{∑
i

v(Xi
n−1)

α+δ/2
}1+κ}1/(1+κ)

+ E

{{∑
i �=j

v(Xi
n−1)

αv(X
j
n−1)

δ/2
}1+κ}1/(1+κ))1+κ

≤ 1

N2(1+κ)
(NE{v(X1

n−1)
(α+δ/2)(1+κ)}1/(1+κ)

+ N(N − 1)E{v(X1
n−1)

α(1+κ)v(X2
n−1)

δ(1+κ)/2}1/(1+κ))1+κ .

For 0 < κ < min{1/δ−1, 1/(2α)−1, 1/(α+δ/2)−1}, we will show that the two expectations
in the above equation are upper-bounded by a constant. For E{v(X1

n−1)
(α+δ/2)(1+κ)}1/(1+κ), we

can apply Jensen’s inequality followed by Lemma 2. For E{v(X1
n−1)

α(1+κ)v(X2
n−1)

δ(1+κ)/2}1/(1+κ),
we can apply the Cauchy–Schwarz inequality to obtain the upper-bound

E{v(X1
n−1)

2α(1+κ)}1/2(1+κ)E{v(X2
n−1)

δ(1+κ)}1/2(1+κ);
the two terms are controlled via Jensen’s inequality followed by Lemma 2. Hence, we can
deduce that E{|ηN

n−1(v
1/2)/ηN

n−1(Gn−1)|1+κ} ≤ c for some κ > 0 which concludes the proof
of the lemma.

Proposition 1. Assume that (A1) and (A2) hold. Suppose that for each n ≥ 0, 1/Gn ∈ Lvδ ,

with δ as in (A1) then for any � > 0, f ∈ Lv1/(1+�) , n ≥ 0, ηN
n (f )

d−→ ηn(f ).

Proof. The result is proved by induction. The n = 0 case follows by the weak law of large
numbers for i.i.d. random variables; η0 ∈ Pv . Thus, the result is assumed for n − 1 and we
consider n. We have

[ηN
n − ηn](f ) = [ηN

n − 	n(η
N
n−1)](f ) + [	n(η

N
n−1) − ηn](f ). (15)

First, we deal with the second term on the right-hand side of (15). We have the standard
decomposition

[	n(η
N
n−1) − ηn](f )

=
[

1

ηN
n−1(Gn−1)

− 1

ηn−1(Gn−1)

]
ηN

n−1(Qn(f )) + 1

ηn−1(Gn−1)
[ηN

n−1 − ηn−1](Qn(f )).

By Corollary 1, Qn(f ) ∈ Lv1/(1+�) (recall that for any n ≥ 0, ‖Gn‖∞ < +∞), so by the

induction hypothesis it follows that [	n(η
N
n−1) − ηn](f )

d−→ 0.
We now deal with the first term on the right-hand side of (15). We can use [4, Theorem A.1],

which can be applied using Lemma 2. We have to verify Equations (25) and (26) of [4]. In the
notation of this paper, they read:

(i) supN P(	n(η
N
n−1)(|f |) ≥ κ) → 0 as κ → ∞.

(ii) (1/N)
∑N

i=1 E{|f (xi
n)| 1{|f (xi

n)|/N≥ε} | F N
n−1}

d−→ 0 for any ε > 0.
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We see that (i) follows from [	n(η
N
n−1)− ηn](f )

d−→ 0. For (ii), set 0 < κ ≤ � ∧ δ/(1 − δ), we
easily see that (1/N)

∑N
i=1 E{|f (xi

n)| 1{|f (xi
n)|/N≥ε} | F N

n−1} ≤ 	n(η
N
n−1)(|f |1+κ)/(εN)κ . As

Qn(|f |1+κ) ∈ Lv1/(1+�) by construction, it follows that 	n(η
N
n−1)(|f |1+κ)/(εN)κ

d−→ 0 which
completes the proof.

Appendix B. Proofs for the asymptotic variance

We provide the proofs which are used for Theorem 2. This is broken into three sections:
controlling the forward (9) and backward (8) part of the asymptotic variance and the technical
results used to achieve this. We write Eμ⊗η as the expectation with respect to the inhomo-
geneous Markov chain {X̄p}p≥0 on X := X2 with initial distribution μ ⊗ η and transition
Hp(xp−1, xp)Hp(yp−1, yp)λ(dxp) ⊗ λ(dyp). Also, M̄d

p,q := ∑q−1
k=p 1{C̄d }(X̄k) 1{C̄d }(X̄k+1).

B.1. Controlling the forward part

Proposition 2. Assume that (A1), (A2), and (A4)–(A6) hold. Then if ‖f ‖vα < +∞, α ∈ (0, 1
3 )

there exist a c < +∞ and ρ ∈ (0, 1) which depend only upon the constants in (A1) and
(A4)–(A6) such that for any x ∈ X,

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)

n∑
q=p

η̄p,x(Q̄p,q((fq ⊗ 1)Q̄q,n(1)))

≤ c‖f ‖vαv(x)3α

{
1 + ρ(1 − ρn−p)

1 − ρ

}
. (16)

Proof. We break up our proof into three parts where we deal with controlling the summands
on the left-hand side of (16).

(i) The q = p case of (16). We have

η̄p,x(Q̄p,q((fq ⊗ 1)Q̄q,n(1))) = η̄p,x((fp ⊗ 1)Q̄p,n(1)).

Then as fp ∈ Lvα , we have

δx ⊗ ηp((fq ⊗ 1)Q̄p,n(1)) ≤ ‖f ‖vαv(x)αQp,n(1)(x)ηp(Qp,n(1)). (17)

Thus, by using a similar argument to (17),

η̄p,x((fp ⊗ 1)Q̄p,n(1)) ≤ c‖f ‖vαQp,n(1)(x)[v(x)αηp(Qp,n(1)) + ηp(vαQp,n(1))].
Hence, we have

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)
η̄p,x((fp ⊗ 1)Q̄p,n(1))

≤ c‖f ‖vα
hp,n(x)

ηp(Qp,n(1))
[v(x)αηp(Qp,n(1)) + ηp(vαQp,n(1))]. (18)

Now for the first term on the right-hand side of (18) we have

hp,n(x)

ηp(Qp,n(1))
v(x)αηp(Qp,n(1)) ≤ cv(x)2α,
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where we have used Propositions 1 and 2 of [12] and Lemma 7, namely,

sup
n≥1

sup
0≤p≤n

‖hp.n‖vα < +∞.

For the second term on the right-hand side of (18) we have, for any r ∈ [d, ∞),
hp,n(x)/ ηp(Qp,n(1)) ηp(vαQp,n(1)) = hp,n(x)ηp(vαhp,n) ≤ cv(x)αηp(v2α), where
we use supn≥1 sup0≤p≤n ‖hp.n‖vα < +∞. By Proposition 1 of [12] it follows that
supp≥0 ‖ηp(v2α)‖vα < +∞, thus, hp,n(x)/ηp(Qp,n(1))ηp(vαQp,n(1)) ≤ cv(x)α .
Thus, for the q = p case, we have established that

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)
η̄p,x((fp ⊗ 1)Q̄p,n(1)) ≤ c‖f ‖vαv(x)2α. (19)

(ii) The q = n case of (16). We have η̄p,x(Q̄p,q((fq ⊗1)Q̄q,n(1))) = η̄p,x(Q̄p,n((fp ⊗1))).
Then, we can apply the proof of Theorem 1 of [12] to show that there exists a ρ ∈ (0, 1)

(which depends upon the constants in (A1)–(A6)),

η̄p,x(Q̄p,n((fp ⊗ 1)))

ηp(Qp,n(1))Qp,n(1)(x)
≤ c‖f ‖vα

vp,n,α(x)

‖hp,n‖vα
μ(vα)ρn−p,

where vp,n,α(x) = v(x)α‖hp,n‖vα /hp,n(x). Thus, we have established that for q = n,

hp,n(x)
η̄p,x(Q̄p,n((fp ⊗ 1)))

ηp(Qp,n(1))Qp,n(1)(x)
≤ c‖f ‖vαv(x)αμ(vα)ρn−p. (20)

(iii) The p < q < n case of (16). Using almost the same calculations as Theorem 1 of [12]
(which relies on the proofs of [6]), we have for arbitrary d, β ∈ (0, 1),

η̄p,x(Q̄p,q((fq ⊗ 1)Q̄q,n(1)))

≤ 2‖f ‖vα

[
Eδx⊗ηp

{q−1∏
s=p

Ḡq(X̄s)v̄(X̄q)αQ̄q,n(1)(X̄q) 1{M̄d
p,q≥β(q−p)} ρ

M̄d
p,q

d

}

+ Eδx⊗ηp

{q−1∏
s=p

Ḡq(X̄s)v̄(X̄q)αQ̄q,n(1)(X̄q) 1{M̄d
p,q<β(q−p)} ρ

M̄d
p,q

d

}]
, (21)

where ρd = 1 − (ε−
d /ε+

d )2. We begin by considering the first term on the right-hand side
of (21), when multiplied by the term outside the summation on the left-hand side of (16).
As in Theorem 1 of [12] as ρd < 1, we have

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)

× Eδx⊗ηp

{q−1∏
s=p

Ḡq(X̄s)v̄(X̄q)αQ̄q,n(1)(X̄q) 1{M̄d
p,q≥β(q−p)} ρ

M̄d
p,q

d

}

≤ ρ
β(q−p)
d hp,n(x)

Qp,q(vαQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(vαQq,n(1))]
ηp[Qp,q(Qq,n(1))] .
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Then, we can apply Lemma 4 to show that

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)

× Eδx⊗ηp

{q−1∏
s=p

Ḡq(X̄s)v̄(X̄q)αQ̄q,n(1)(X̄q) 1{M̄d
p,q≥β(q−p)} ρ

M̄d
p,q

d

}

≤ c‖f ‖vαρ
β(q−p)
d v(x)3α.

Now consider the second term on the right-hand side of (21), when multiplied by the
term outside the summation on the left-hand side of (16). We have

hp,n(x)Eδx⊗ηp {[∏q−1
s=p Ḡs(X̄s)]v̄(X̄q)αQ̄q,n(1)(X̄q) 1{M̄d

p,q<β(q−p)}}
Qp,n(1)(x)ηp(Qp,n(1))

≤ c(d, α, β)μ(v3α)v(x)3α exp{−(q − p)c(d, α, β)]},
where we note that d was arbitrary and we have applied Lemma 5. Then, we can make
d larger so that we have for p < q < n,

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)
η̄p,x(Q̄p,q((fq ⊗ 1)Q̄q,n(1))) ≤ c‖f ‖vαρq−pv(x)3α, (22)

where ρ ∈ (0, 1) depends upon the constants in (A1)–(A6) as well as α.

Then combining (19), (20), and (22), we have proved that for any x ∈ X,

hp,n(x)

ηp(Qp,n(1))Qp,n(1)(x)

n∑
q=p

η̄p,x(Q̄p,q((fq ⊗ 1)Q̄q,n(1)))

≤ cμ‖f ‖vαv(x)3α

[
1 +

n∑
q=p+1

ρq−p

]

from which we conclude the proof.

B.2. Controlling the backward part

Proposition 3. Assume that (A1)–(A6) hold. Then if ‖f ‖vα < +∞ for α ∈ (0, 1
2 ) there exists

a c < +∞ which depends only upon the constants in (A1) and (A3)–(A6), such that for any
x ∈ X, p ≥ 1,

hp,n(x)

ηp(Qp,n(1))

p−1∑
q=0

ηp(Qp,n(1)[Mp:q(fq)(x) − Mp:q(fq)]) ≤ c‖f ‖vαv(x)2α. (23)

Proof. Consider the summand in (23),

ηp(Qp,n(1)[Mp:q(fq)(x) − Mp:q(fq)])
= ‖f ‖vαηp

(
[Qp,n(1)v(x)αvα]

[ [Mp:q(fq/‖f ‖vα )(x) − Mp:q(fq/‖f ‖vα )]
v(x)αvα

])
.
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Then applying Lemma 6, we have

ηp(Qp,n(1)[Mp:q(fq)(x) − Mp:q(fq)]) ≤ c‖f ‖vαρ(p−q−1)ηp(Qp,n(1)vα)v(x)α.

Thus, (23) is upper-bounded by c‖f ‖vαhp,n(x)ηp(hp,nv
α)v(x)α . Then, we have

c‖f ‖vαhp,n(x)ηp(hp,nv
α)v(x)α ≤ c‖f ‖vα

[
sup
n≥1

sup
0≤p≤n

‖hp,n‖vα

]2
v(x)αηp(v2α)v(x)α

≤ c‖f ‖vα

[
sup
n≥1

sup
0≤p≤n

‖hp,n‖vα

]2
sup
p≥0

‖ηp‖v2αv(x)2α.

From Propositions 1 and 2 of [12] it follows that

[
sup
n≥1

sup
0≤p≤n

‖hp,n‖vα

]2
sup
p≥0

‖ηp‖v2α < +∞

from which we conclude the proof.

B.3. Technical results

Lemma 4. Assume that (A1), (A2), and (A4)–(A6) hold. Then for any α ∈ (0, 1
2 ) there exists

a c < +∞ depending only on the constants in (A1) and (A3)–(A6), such that for any n ≥ 1,
0 ≤ p < q < n, x ∈ X:

hp,n(x)
Qp,q(vαQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(vαQq,n(1))]
ηp[Qp,q(Qq,n(1))] ≤ cv(x)3α.

Proof. Note that throughout c denotes a generic finite constant that may depend upon α, but
whose value may change upon each appearance. Define the Markov semi-group Tp,q(x, dy) =
Qp,q(x, dy)/Qp,q(1)(x). Then, we have

hp,n(x)
Qp,q(vαQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(vαQq,n(1))]
ηp[Qp,q(Qq,n(1))]

= hp,n(x)
Tp,q(vαhq,n)(x)

Tp,q(hq,n)(x)

ηp[hp,qTp,q(vαhq,n)]
ηp[hp,qTp,q(hq,n)] . (24)

We will consider the right-hand side of (24). First, the term

hp,n(x)

Tp,q(hq,n)(x)
= Qp,n(1)(x)∏n−1

s=p λs

Qp,q(1)(x)
∏n−1

s=q λs

Qp,n(1)(x)
,

where λs = ηs(Gs) and we have used, recursively, Lemma 1 of [12]. Then by cancelling,
it clearly follows that hp,n(x)/Tp,q(hq,n)(x) = hp,q(x). Hence, combining our calculations
together and returning to (24), we have established that

hp,n(x)
Qp,q(vαQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(vαQq,n(1))]
ηp[Qp,q(Qq,n(1))]

= hp,q(x)Tp,q(vαhq,n)(x)
ηp[hp,qTp,q(vαhq,n)]
ηp[hp,qTp,q(hq,n)] . (25)
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We now focus on the term 1/ηp[hp,qTp,q(hq,n)] in (25). We note that for any x ∈ X,

hp,q(x)Tp,q(hq,n)(x) = Qp,q(1)(x)∏q−1
s=p λs

Qp,n(1)(x)

Qp,q(1)(x)
∏n−1

s=q λs

= hp,n(x).

By Lemma 10 of [12] for any arbitrary d ∈ [d, ∞) it follows that

inf
n≥1

inf
0≤p≤n

inf
x∈Cd

hp,n(x) > 0

and so for any d as stated, and by using the above calculation, it follows that

ηp[hp,qTp,q(hq,n)] ≥ ηp[1{Cd } hp,n] ≥ ηp(Cd)
[

inf
n≥1

inf
0≤p≤n

inf
x∈Cd

hp,n(x)
]
.

Now, by using the proof of Lemma 8 of [12], we have for large enough d that there is a finite
c > 0 such that

inf
p≥0

ηp(Cd)[ inf
n≥1

inf
0≤p≤n

inf
x∈Cd

hp,n(x)] ≥ c.

Thus, returning to (25), we have

hp,n(x)
Qp,q(vαQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(vαQq,n(1))]
ηp[Qp,q(Qq,n(1))]

≤ chp,q(x)Tp,q(vαhq,n)(x)ηp[hp,qTp,q(vαhq,n)]. (26)

Now, using the above arguments, we have supn≥1 sup1≤q≤n ‖hq,n‖vα < +∞, so, we have
for any x ∈ X Tp,q(vαhq,n)(x) ≤ cTp,q(v2α)(x), where c does not depend upon p, q, n. Then
using Theorem 1 of [12], we arrive at Equation (61) of [12], thus,

Tp,q(vαhq,n)(x) ≤ c
vp,q,2α(x)

‖hp,q‖v2α

, (27)

where vp,q,2α(x) = v(x)2α‖hp,q‖v2α /hp,q(x) and we are invoking Lemma 7. Hence, returning
to (26), we have

hp,n(x)
Qp,q(vαQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(vαQq,n(1))]
ηp[Qp,q(Qq,n(1))] ≤ cv(x)3αηp[hp,qTp,q(vαhq,n)]. (28)

We now turn to ηp[hp,qTp,q(vαhq,n)] on the right-hand side of (28). By using (27), we have
ηp[hp,qTp,q(vαhq,n)] ≤ cηp(v2α), where c depends on α only. Using Proposition 1 of [12]
(noting again Lemma 7 and that α ∈ (0, 1

2 )), we can thus conclude that

hp,n(x)
Qp,q(vαQq,n(1))(x)

Qp,q(Qq,n(1))(x)

ηp[Qp,q(vαQq,n(1))]
ηp[Qp,q(Qq,n(1))] ≤ cv(x)3α,

which completes the proof.

Lemma 5. Assume that (A1), (A2), and (A4)–(A6) hold. Then there exists a d ∈ [d, ∞) (which
can be arbitrarily large) such that for any α ∈ (0, 1

3 ), β ∈ (0, 1) there exists a 0 < c(d, α, β) <

+∞ such that for any, n ≥ 1, 0 ≤ p < q < n, x ∈ X,

hp,n(x)Eδx⊗ηp {[∏q−1
s=p Ḡs(X̄s)]v̄(X̄q)αQ̄q,n(1)(X̄q) 1{M̄d

p,q<β(q−p)}}
Qp,n(1)(x)ηp(Qp,n(1))

≤ c(d, α, β)μ(v3α)v(x)3α exp{−(q − p)c(d, α, β)}.
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Proof. Throughout c denotes a generic finite and positive constant that depends upon α, β, d,
but whose value may change upon each appearance. The dependencies of c are omitted in the
proof in order to simplify the notation.

We can rewrite the above equation as

hp,n(x)Eδx⊗ηp {[∏q−1
s=p Ḡs(X̄s)]v̄(X̄q)αQ̄q,n(1)(X̄q) 1{M̄d

p,q<β(q−p)}}
Qp,n(1)(x)ηp(Qp,n(1))

=
hp,n(x)Eδx⊗ηp {[∏q−1

s=p Ḡs(X̄s)]v̄(X̄q)αh̄q,n(X̄q) 1{M̄d
p,q<β(q−p)}}

Qp,q(hq,n)(x)ηp(Qp,q(hq,n))
. (29)

Now consider the hp,n(x)/Qp,q(hq,n)(x) term in (29). We have

hp,n(x)

Qp,q(hq,n)(x)
= Qp,n(1)(x)

∏n−1
s=q λs∏n−1

s=p λsQp,n(1)(x)
= 1∏q−1

s=p λs

.

Now, using Propositions 1 and 2 of [12], it follows that λ := infs≥0 λs > 0 and, thus, by the
above calculation it follows that hp,n(x)/Qp,q(hq,n)(x) ≤ 1/λq−p. This leaves us with

hp,n(x)Eδx⊗ηp {[∏q−1
s=p Ḡs(X̄s)]v̄(X̄q)αQ̄q,n(1)(X̄q) 1{M̄d

p,q<β(q−p)}}
Qp,n(1)(x)ηp(Qp,n(1))

≤
Eδx⊗ηp {[∏q−1

s=p Ḡs(X̄s)]v̄(X̄q)αh̄q,n(X̄q) 1{M̄d
p,q<β(q−p)}}

λq−pηp(Qp,q(hq,n))
. (30)

We next consider the 1/ηp(Qp,q(hq,n)) term on the right-hand side of (30). Pick a fixed
r ∈ [d, d). Then by repeatedly applying (A4), we obtain

ηp(Qp,q(hq,n)) ≥ ηp(Qp,q(Cr)) inf
n≥1

inf
0≤q≤n

inf
x∈Cr

hq,n(x)

≥ ηp(Cr)(ε
−
r νr (Cr))

q−p inf
n≥1

inf
0≤q≤n

inf
x∈Cr

hq,n(x).

Now, by Lemma 10 of [12] it follows that infn≥1 inf0≤q≤n infx∈Cr
hq,n(x) > 0. For r and,

hence, large enough d it follows that infp≥0 ηp(Cr) > 0 by the proof of Lemma 8 of [12]. Now
fix r from here on in. Thus, we have shown that for r , large enough d,

hp,n(x)Eδx⊗ηp {[∏q−1
s=p Ḡs(X̄s)]v̄(X̄q)αQ̄q,n(1)(X̄q) 1{M̄d

p,q<β(q−p)}}
Qp,n(1)(x)ηp(Qp,n(1))

≤ c
Eδx⊗ηp {[∏q−1

s=p Ḡs(X̄s)]v̄(X̄q)αh̄q,n(X̄q) 1{M̄d
p,q<β(q−p)}}

(λε−
r νr (Cr))q−p

. (31)

Now to complete the proof, we note that as hq,n ∈ Lvα and supn≥1 sup0≤q≤n ‖hq,n‖vα <

+∞, by Propositions 1 and 2 of [12] and Lemma 7, the upper-bound of the right-hand side of
(31) is equal to

c
Eδx⊗ηp {[∏q−1

s=p Ḡs(X̄s)]v̄(X̄q)3α 1{M̄d
p,q<β(q−p)}}

(λε−
r νr (Cr))q−p

.
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Then by the proof of Theorem 1 of [12], we note that

Eδx⊗ηp

{[q−1∏
s=p

Ḡs(X̄s)

]
v̄(X̄q)3α 1{M̄d

p,q<β(q−p)}
}

≤ cμ(v3α)v(x)3α exp

{
−dδ(q − p)(1 − β)

2
+ 3dδ

2

}
.

Hence, we have proved that for r , large enough d,

hp,n(x)Eδx⊗ηp {[∏q−1
s=p Ḡs(X̄s)]v̄(X̄q)αQ̄q,n(1)(X̄q) 1{M̄d

p,q<β(q−p)}}
Qp,n(1)(x)ηp(Qp,n(1))

≤ cμ(v3α)v(x)3α exp

{
−(q − p)

[
dδ(1 − β)

2
+ log(λ) + log(ε−1

r μr(Cr))

]
+ 3dδ

2

}
.

On noting that r is fixed, we can increase d to ensure that the result holds.

Lemma 6. Assume that (A1)–(A6) hold. Then for any α ∈ (0, 1
2 ), p ≥ 1, q ∈ {0, . . . , p − 1}

there exists a c < +∞ which depends only upon the constants in (A1) and (A3)–(A6) such that

sup
(x,z)∈X

sup
|f |≤vα

|Mp:q(f )(x) − Mp:q(f )(z)|
v̄(x, z)α

≤ cρ(p−q−1).

Proof. We start by using Lemma 4.3 of [3], which provides the neat reversal equation:

Mp:q(f )(x) = ηq(f Qq,p−1[Qp(·, x)])
ηq(Qq,p−1[Qp(·, x)]) for all x ∈ X. (32)

First, we focus on the q ∈ {0, . . . , p−2} case. We note that using a similar proof to Lemma 1
of [12] it follows that for any ϕ : X → R,

ηq(Qq,p−1(ϕ)) =
(p−2∏

s=q

λs

)
ηp−1(ϕ). (33)

Using the representation (32) and the identity (33), we have
Mp:q (f )(x) − Mp:q (f )(z)

v̄(x, z)α

= (ηq ⊗ ηq)(f {Qq,p−1[Qp(·, x)]Qq,p−1[Qp(·, z)] − Qq,p−1[Qp(·, z)]Qq,p−1[Qp(·, x)]})
(
∏p−2

s=q λs)2ηp−1[Qp(·, x)]ηp−1[Qp(·, z)]v̄(x, z)α
. (34)

Consider the argument of the function that is operated on by (ηq ⊗ ηq), when excluding f

on the right-hand side of (34). This can be written as (δs ⊗ δt − δt ⊗ δs)(Q̄q,p−1(Qp(·, x) ⊗
Qp(·, z))). Then by (A3) as Qp(y, x)/ηp−1[Qp(·, x)] ∈ Lv̄α , and via decompositions and
calculations in [6] (see, e.g. the proof of Theorem 1 of [12]), we obtain

(δs ⊗ δt − δt ⊗ δs)(Q̄q,p−1(Qp(·, x) ⊗ Qp(·, z)))
ηp−1[Qp(·, x)]ηp−1[Qp(·, z)] ≤ c(δs ⊗ δt )R̄q,p−1(v̄

α)v̄(x, z)α,

where c depends on supp≥1 ‖Qp/ηp−1[Qp]‖v̄α and

R̄r (x̄, dȳ) = Q̄r (x̄, dȳ) − 1{C̄d }(x̄)(ε−
d )2νd ⊗ νd(dȳ)
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with x̄ = (x1, x2) ∈ X, ȳ = (y1, y2) ∈ X, and R̄q,p−1 = R̄q+1 . . . R̄p−1. Using Theorem 1 of
[12], we have

(δs ⊗ δt )R̄q,p−1(v̄
α) ≤ cρ

β(p−q−1)
d Q̄q,p−1(v̄

α)(s, t)

+ c exp

{
−(p − q − 1)

[
δd(1 − β)

2
− 2bd

]
+ 3δd

2

}
v̄(s, t)α,

where c does not depend upon d , and d ≥ d, β ∈ (0, 1) are arbitrary and ρd = (1− (ε−
d /ε+

d )2).
Thus, returning to (34), we have established that

Mp:q(f )(x) − Mp:q(f )(z)

v̄(x, z)α

≤ c

(p−2∏
s=q

λs

)−2

(ηq ⊗ ηq)

(
vα

{
ρ

β(p−q−1)
d Q̄q,p−1(v̄

α)

+ exp

{
−(p − q − 1)

[
δd(1 − β)

2
− 2bd

]

+ 3δd

2

}
v̄α

})
. (35)

We split the right-hand side of (35) into the sum of two expressions:

c

(p−2∏
s=q

λs

)−2

(ηq ⊗ ηq)(vαρ
β(p−q−1)
d Q̄q,p−1(v̄

α)) (36)

and

c

(p−2∏
s=q

λs

)−2

(ηq ⊗ ηq)

(
vα exp

{
−(p − q − 1)

[
δd(1 − β)

2
− 2bd

]
+ 3δd

2

}
v̄α

)
. (37)

We start with (36) and rewrite it as

cρ
β(p−q−1)
d

ηq(vαQq,p−1(v
α))∏p−2

s=q λs

ηq(Qq,p−1(v
α))∏p−2

s=q λs

.

By Theorem 1 of [12], we have the upper-bound,

cρ
β(p−q−1)
d ηq(vα[hq,p−1ηp−1(v

α) + ρ̃β(p−q−1)μ(vα)cμvα])ηq([hq,p−1ηp−1(v
α)

+ ρ̃β(p−q−1)μ(vα)cμvα]),
where c < ∞, and ρ̃ ∈ (0, 1) that does not depend on d. As supq≥1 sup1≤p≤q+1 ‖hq,p−1‖vα <

+∞ by Proposition 2 of [12] and by Proposition 1 of [12], we have that supp≥1 ‖ηp−1(v
α)‖vα <

+∞, it follows that cρ
β(p−q−1)
d ηq(v2α)ηq(vα) is the upper-bound on (36), where again c does

not depend on d . Noting that α ∈ (0, 1
2 ) and applying Jensen’s inequality and Proposition 1 of

[12], we have the upper-bound, cρ
β(p−q−1)
d for c independent of d.

Now, turning to (37), by Proposition 2 of [12] it follows that infp≥0 λp = λ > 0, and, by
the above argument supp≥1 ‖ηp−1(v

2α)‖vα < +∞, hence, we have

c exp
{−(p − q − 1)

[( 1
2

)
δd(1 − β) − 2bd + 2 log(λ)

] + ( 3
2

)
δd

}
,

https://doi.org/10.1239/jap/1437658602 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658602


358 A. JASRA

the upper-bound on (37). Thus, combining this upper-bound with that of cρ
β(p−q−1)
d on (36)

and recalling that the sum of these terms are upper-bounded on the left-hand side of (35), we
have established that

Mp:q(f )(x) − Mp:q(f )(z)

v(x)αv(z)α

≤ c

[
ρ

β(p−q−1)
d + exp

{
−(p − q − 1)

[
δd(1 − β)

2
− 2bd + 2 log(λ)

]
+ 3δd

2

}]
,

where q ∈ {0, . . . , p−2}, c does not depend upon d and d > d is arbitrary. As d is arbitrary, we
can conclude that for large enough d , there is a ρ ∈ (0, 1) such that for any q ∈ {0, . . . , p − 2},

sup
(x,z)∈X

sup
|f |≤vα

|Mp:q(f )(x) − Mp:q(f )(z)|
v(x)αv(z)α

≤ cρ(p−q−1),

with c < +∞.
For the q = p − 1 case, we have by definition of the backward kernel,

Mp,ηp−1(f )(x) − Mp,ηp−1(f )(z)

v(x)αv(z)α

= ηp−1(f Qp(·, x))

ηp−1(Qp(·, x))v(x)αv(z)α
− ηp−1(f Qp(·, z))

ηp−1(Qp(·, z))v(x)αv(z)α
.

By (A3) as Qp(y, x)/ηp−1[Qp(·, x)] ∈ Lv̄α and as v ≥ 1, we have

Mp,ηp−1(f )(x) − Mp,ηp−1(f )(z)

v(x)αv(z)α
≤ cηp−1(v

2α).

Using α ∈ (0, 1
2 ) and Proposition 1 of [12], we conclude the proof.

Appendix C. Additional technical results

The following result is Lemma 3 of [12] and is included as it is frequently referred to in the
text. A resulting corollary is also given.

Lemma 7. Assume that (A1), (A2), and (A4)–(A6) hold with v the drift function in (A1), (A2),
(A4), and (A5). Then for any α ∈ (0, 1) the statements of (A1), (A2), (A4), and (A5) also hold
for the drift function vα and with α-dependent constants

Corollary 1. Assume that (A1) holds and that for every n ≥ 0, ‖Gn‖∞ < +∞. Then for
any α ∈ (0, 1), n ≥ 1 there exist constants δ(n) ∈ (0, 1) and d(n) ≥ 1 with the following
properties. For each d(n) ∈ (d(n), +∞) there exists a bd(n) < +∞ such that for all x ∈ X
Qn(eαV )(x) ≤ exp((1 − δ(n))V (x) + bd(n) 1{Cd(n)}(x)), where Cd(n) = {x ∈ X : V (x) ≤
d(n)}.
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