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It is a well-known fact that any normed algebra can be represented isometrically
as an algebra of operators with the operator norm. As might be expected
from the very universality of this property, it is little used in the study of the
structure of an algebra. Far more helpful are representations on Hilbert space,
though these are correspondingly hard to come by: isometric representations
on Hilbert space are not to be expected in general, and even continuous non-
trivial representations may fail to exist. The purpose of this paper is to examine
a class of representations intermediate in both availability and utility to those
already mentioned—namely, representations on reflexive spaces. There
certainly are normed algebras which admit isometric representations of the
latter type but have not even faithful representations on Hilbert space: the
most natural example is the algebra 2(E) of all continuous linear operators
on E where E — I" with 1 <p # 2<oo, for Berkson and Porta proved in (2)
that if E, F are taken from the spaces lp with 1 <p < oo and E # F then the
only continuous homomorphism from £(£) into £(F) is the zero mapping.
On the other hand there are also algebras which have no continuous non-
trivial representation on any reflexive space—for example the algebra of finite-
rank operators on an irreflexive Banach space (see Berkson and Porta (2) or
Barnes (1) or Theorem 3, Corollary 1 below).

It turns out that a normed algebra can be represented on a reflexive Banach
space if and only if it admits sufficiently many weakly almost periodic functionals
(Theorem 1). At this point I must record my debt and express my thanks to
the referee, who pointed out to me the relevance of the technique of W. J.
Davis et al. in (14) and thereby enabled me to tidy up my results considerably
by proving the more difficult implication in Theorem 1. We also obtain in
the first part of the paper a number of related results on the non-existence of
continuous homomorphisms between algebras through consideration of weakly
almost periodic functionals. These results depend upon classifying various
Banach algebras according as some, all or none of the elements of the dual
are weakly almost periodic. Algebras for which the second of these three
possibilities hold are said to have regular multiplication: an alternative character-
isation is that the two Arens products on the bidual coincide (see (4)). This
property is useful for proving results of the type described above since it enjoys
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100 N. J. YOUNG

a remarkable degree of stability: if an algebra has regular multiplication then
so have all its closed subalgebras and quotient algebras. Thus, for example,
knowing that every C*-algebra has result multiplication but no infinite-
dimensional group algebra does (see (4) and (13) respectively) we may deduce
that an infinite-dimensional group algebra cannot be isometrically isomorphic
to an algebra of operators on Hilbert space with the operator norm. In order
to apply this technique more generally we are led to ask which operator algebras
have regular multiplication. A complete solution appears difficult, but we
obtain some partial results: the algebra of finite-rank operators on a Banach
space E has regular multiplication if and only if E is reflexive. In order that
£(£) have regular multiplication it is thus necessary that E be reflexive: we
show that it is not sufficient.

In the second part we turn to the converse problem of constructing repre-
sentations of algebras on reflexive spaces, and to this end introduce a stronger
notion of periodicity and obtain some of its properties.

The main technical tool we use is Grothendieck's criterion of weak com-
pactness (7, Proposition 3b). Let E be a complete locally convex space with
dual E' and let S be a collection of o(E', £>bounded sets in E' whose o{E', .En-
closed absolutely convex hulls generate E' algebraically, and let the topology
of E agree with that of uniform convergence on the members of S. A bounded
subset A of E is weakly relatively compact if and only if, for each B e S and
each pair of sequences (xn) in A and (x'm) in B, the two repeated limits of the
double sequence «*„, x'm}) are equal, provided they both exist. In the case
of a Banach space E we may take S to consist of a single norm-generating
subset of E'.

1. Weakly almost periodic functional
For this section it seems appropriate to use a more general setting than that

of normed algebras. Define a locally convex semi-topological algebra to be
a real or complex algebra endowed with a locally convex topology with respect
to which multiplication is separately continuous, and for which {xy: x, yeB}
is bounded for every bounded set B in the algebra. A normed algebra is a real
or complex algebra which is also a normed linear space and satisfies

II xy || S II x || || y ||
for all elements x, y.

Let E be a locally convex space. We denote by 2(E) the algebra of all
continuous linear operators on E with the topology of uniform convergence on
bounded sets. A basic system of neighbourhoods of zero in £(E) is given by
the sets

u(fQ s U],

where B runs through the weakly closed bounded sets of E and U runs through
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the closed absolutely convex neighbourhoods of zero in E. £(E) is a locally
convex semi-topological algebra. We write
&(£•) = {w e Q(E): u(B) is relatively compact in E for every bounded set B in E}

and denote by %(E) the subalgebra of Si(E) comprising the operators of finite
rank. Both %(E) and Si{E) will carry the topology induced by that of £(£).

A representation of an algebra 3Jona locally convex space E is a homo-
morphism of 31 into £(£)• When 31 is locally convex we say that a representation
is bounded if it maps bounded sets of 31 onto bounded sets of 2(E). A repre-
sentation is faithful if it is injective. If 31 and E are normed then a representation
is isometric if it is an isometry with respect to the given norm of 31 and the
operator norm of £(£).

Let 31 be a locally convex semi-topological algebra with dual 31' and bidual
31", and let # ' be the completion of 31' with respect to y?(3T, 30. Of course,
in the case of normed algebras, $ ' = 31'. For any h e 31' and a e 31 we
define ha e W by <;c, hay = (ax, h~). We shall say that a continuous linear
functional h on 31 is weakly almost periodic if, for every bounded set B in 31,
the set {ha: a e B} is CT($', 3I")-relatively compact.

Lemma 1. A continuous linear functional h on a locally convex semitopo-
logical algebra 31 is weakly almost periodic if and only if, for all pairs (an)and
(bm) of bounded sequences in 3t, the two repeated limits of the double sequence
(anbm, Ky are equal whenever they both exist.

Proof. This is a direct consequence of Grothendieck's criterion of weak
compactness applied to the complete locally convex space $' .

The repeated limit criterion makes it particularly easy to see the following.

Corollary. Let 31 and 33 be locally convex semi-topological algebras and
let <f>: 3I->23 be a homomorphism which maps bounded sets onto bounded sets.
If h is a weakly almost periodic functional on 93 then '<f>h (where '0 is the adjoint
of (ji) is weakly almost periodic on 31.

Incidentally the symmetry of the condition given in Lemma 1 shows that
an equivalent definition would be obtained if left-translates of h were used
instead of right-translates. The weakly almost periodic functionals on 31
constitute a strongly closed subspace of 31' (see (12, Theorem 2, Corollary 1)—
but we shall not use this fact).

Theorem 1. A normed algebra 31 has a faithful continuous [isometric] repre-
sentation on some reflexive Banach space if and only if the weakly almost periodic
functionals of unit norm on 31 separate the points ofH [comprise a norm-generating
set]. If % is a locally convex semi-topological algebra which has a faithful
bounded representation on a semi-reflexive locally convex space then the weakly
almost periodic functionals separate the points of%.
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Proof. Let <j>: 91-+£(£) be a bounded monomorphism, where E is a semi-
reflexive locally convex space. For each x e E and x' e E' let x<g)x' denote
the continuous linear form on 2(E) given by

We show that x®x' is weakly almost periodic on £(£). A simple computation
shows that (x<g>x')v = x®'vx' (where 'v is the adjoint of v). As v describes
a bounded set in Q(E), 'vx' remains bounded in E': we therefore need to show
that {x®yr: y' e B'} is weakly relatively compact in the completion of £(£)'
for any bounded set B'cE'. It is easily seen that the mapping of E' into
£(£•)' given by y'^x®y' is continuous with respect to the topologies /?(£", E)
and P(Q(E)', £(£)). Since any bounded set B' of E' is weakly relatively com-
pact in E' (£" being semi-reflexive), it follows that its image x(g)B' in £(£)'
is also weakly relatively compact.

It now follows by the Corollary to Lemma 1 that '4>(x®x') is a weakly
almost periodic functional on 91. Since <j) is injective the functionals

{t4>{x®x'):xeE, x'eE'}

separate the points of A; if the relevant spaces are normed and (j> is isometric
then {'4>{x®x'): || x \\E = 1 = || x' ||£<} is norm-generating.

The proof of the converse implication for normed algebras is deferred till
the end of the paper, though it can be read straight after the definition of auto-
compactness at the beginning of Section 2.

Let 51 be a locally convex semi-topological algebra with dual 31' and bidual
W, and regard 91 as canonically embedded in W. We shall say that 91 has
regular multiplication if the multiplication of 91 extends to a binary operation
on 91" which is separately continuous from (91", <r(9I", #')) to (91", <r(9T, 91')),
$T denoting (as before) the completion of the strong dual of 91. We first
extend to locally convex algebras a result proved by Pym (10, § 4.2) for Banach
algebras.

Lemma 2. The following are equivalent for any locally convex semi-topological
algebra 91:

(1) 91 has regular multiplication;

(2) for each bounded set B in 91 and each h e 91' the function (x, y)-*h{xy)
on BxB has a separately a(W, W)-continuous extension to BxB where
B is the CT(9I", W)-closure of B;

(3) every continuous linear functional on 91 is weakly almost periodic.

Proof. Suppose the binary operation (£, IJ)-»^»J extends the multiplication
of 91 and is separately continuous from (91", <r(9I", #')) into (91", a(9I", 91')).
Then for each h e 91' the mapping (£, >;)-><^, h} is separately ff(9I", 91')-
continuous. By Grothendieck's completeness theorem (7, page 103) a linear
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functional is tr(3I", 2l')-continuous if and only if it is ff(9l", 9T)-continuous on
B for each bounded set B in 31. Thus (1) implies (2).

Suppose, conversely, that (2) holds, and consider any pair £, n in 31". Pick
a bounded set B in 31 such that E,,neB. For each he W define <A, £>;> to be
the value at (£, r\) of the separately continuous extension to B x E of the function
h(xy) on BxB. This definition is independent of the particular choice of B,
and defines £,t\ as a linear functional on 91' which is clearly strongly continuous:
that is, fre 31". For fixed £, e 31" the functional »-><&, h> is ff(3l", 31')-
continuous on B for every bounded set B in 91, and is therefore <x(9I", dis-
continuous. The same applies to the mapping ^-><^, ft} for fixed rj, and
together these amount precisely to the continuity requirements of (1). Thus
(2) implies (1).

It is an immediate consequence of Theorem 2 of (12) that (2) is equivalent
to the following: for each pair (xn), (ym) of bounded sequences in 31 and each
h e 3T the two repeated limits of the double sequence (h(xnym)) are equal
whenever they both exist. By Lemma 1 this is equivalent to (3).

When the separately continuous extension of the multiplication of 31 to
31" does exist it is clearly bilinear and associative, so that 31" is an algebra.

Theorem 2. Let 31 and 93 be locally convex semi-topological algebras and
let 31 have regular multiplication. The same is true of 93 if either 93 is a sub-
algebra of 31 (in the relative topology) or there exists a continuous algebra
homomorphism u: 9l->33 with the property that every bounded set in 93 is con-
tained in the closure in 93 of the image under u of a bounded subset of 31.

Proof. When 93 is a subalgebra of 31 the conclusion follows from Lemma 2
and the Hahn-Banach theorem. Now suppose there exists a homomorphism u
with the properties described; they imply that the transpose 'u: 93'->5T, besides
being continuous, is also open with respect to the respective strong topologies,
and hence the bitranspose "u of u maps 31" surjectively onto 93". The kernel
of "u is the annihilator in 31" of 'M(93'): we prove that it is an ideal. For each
he 31' and y e 31 define yh e 31' by <JC, yh> = h(xy). If he '«(93') then also
yh e 'M(93'). For any £ e 31" pick a bounded filter $ on 31 converging to t
for <r(3T, 31'). Since the topologies <T(3I", 31') and a(5T, &') agree on B for
all bounded sets B in 31 (11, Corollary 3, p. 104), 4> also tends to £, for the latter
topology, and hence, using the separately continuous multiplication in 31",
we have

> = lim <xj>, h} = lim <x, yK) = <£, yh}.

Thus if £, annihilates 'M(93'), SO does ty for all y e 31. The set

{n e 91": in annihilates 'M(93')}

contains 31 and is <r(3I", $t')-closed, hence contains B for every bounded set B
in 31, and thus equals 31". Ker"« is therefore an ideal of 31", as we may obviously
treat multiplication on the left similarly.
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It follows that "u induces a multiplication on 23". To prove that this
operation has the right separate continuity property write E = W, F = 23',
'u = v, denote the operation of left multiplication by a fixed element of 51"
by m, and use the following lemma of standard type.

Lemma 3. Let v: F^*E be a continuous and open linear injection of locally
convex spaces and let m: (£", a(E', E))-*(E', a(E', E)) be a continuous linear
mapping, and suppose that the kernel of 'v is invariant under m. Then there is
a unique continuous linear mapping

satisfying
m'y' = 'vmx' for all x' e E' such that 'vx' = y'.

In the above E, P are the completions of E, F.
In particular, if 51 and 93 are normed and u: 5I-+23 is continuous and

relatively open and maps 91 onto a dense subalgebra of 23 then Theorem 2
applies. Thus a normed algebra has regular multiplication if and only if its
completion does. It therefore makes no difference in the sequel if we replace
the algebra %(E) of finite rank operators on a Banach space E by its closure
in £(£).

The following lemma allows us to exploit the sequential nature of the
criterion for regularity given in Lemma 2 (3).

Lemma 4. Let K and L be compact Hausdorff spaces and let S(K, L) denote
the space of separately continuous scalar functions on KxL with the topology
of pointwise convergence on KxL. Let A be a countable set of continuous
functions on KxL: if the closure A of A in S(K, L) is compact then every point
of A is the limit of a convergent sequence of elements of A.

Proof. For each fe A define continuous pseudometrics ps, qf on K, L
respectively by

pf(x, x') = sup \f(x, y)-f(x', y)\
yeL

q/j>, y') = SUP \f(x, y)-f(x, y')\.

Write x~x' if pf(x, x') = 0 for attfeA, and letX be the quotient space K/~
with the topology induced by the pseudometrics pf(fe A). K is metrisable
and the canonical surjection n: K-+K is continuous, so that K is also compact.
Likewise we construct the compact metric space L and quotient mapping
p: L^L. If x~x' and y~>>'_then/(x, y)=f(x', y) =f(x', /) for allfeA,
and this remains true for fe A. We may therefore regard elements of A as
functions on Kx L. Moreover, the elements of A transferred to KxL are
separately continuous o n K x L , and the topologies of pointwise convergence
on Kx L and on KxL agree on A.
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Since R and L are compact and metrisable they have countable dense
subsets P and Q: consider the topology on A of pointwise convergence on
PxQ. This topology is Hausdorff and is coarser than the initial compact
topology: it consequently agrees with the initial topology. Since PxQ is
countable A is metrisable and hence has the required property.

It is worth remarking that the statement of the lemma becomes false if the
hypothesis that A be countable is omitted: let K be the unit ball of a non-
separable Hilbert space H in its weak topology, and consider the function
/(*> y) = <*> J> o n ^ x ^ - Then/is separately continuous, and is adherent
to the uncountable set of continuous functions

{/P: P is a projection of finite rank on H}

where fP{x, y) = (Px, ;>>, which set is relatively compact in S(K, K). However,
there is no sequence in the set converging to / .

In order to make use of Theorems 1 and 2 we need to know about the
existence or otherwise of weakly almost periodic functionals on various classes
of algebra. We can give a satisfactory classification in the case of

Theorem 3. Let E be a locally convex space. If E is reflexive then every
continuous linear functional on R(E) is weakly almost periodic. If E is quasi-
complete but not semi-reflexive then there is no non-zero weakly almost periodic
functional on 3(£). Thus, if E is quasi-complete and barrelled, %{E) has regular
multiplication if and only if E is reflexive.

Proof. Consider a quasi-complete space E which is not semi-reflexive.
E contains a bounded set B which is not weakly relatively compact, and hence
(again by Grothendieck's criterion of weak compactness) there exists a sequence
(ym) in B and an equicontinuous sequence (x'n) in E' such that the double
sequence «ym, x^» has unequal repeated limits. Let h be a non-zero continuous
linear functional on ^(E): then there is a rank-one operator y'®x e g(E) such
that </<g)x, It} ^ 0. Introduce the rank-one operators un = x'n®x, vm = y'®ym.
The sequences («„), (vm) are bounded in <$(£)> and

<wnum, /J> = (ym, x'ny(y'®x, h},

which has unequal repeated limits. By Lemma 1, h is not weakly almost
periodic.

Suppose, conversely, that E is reflexive. Recall that this implies that
bounded sets of £(£) are relatively compact with respect to the weak operator
topology (that is, the product topology of £f, Ea denoting E in its weak
topology). Consider a continuous linear functional h on R(E) and let

Ai = (un), A 2 = (vm)

be bounded sequences in ft(£). Denote by Au A2 the closures of Au A2

in £(£) with respect to the weak operator topology. Pick a basic neighbour-
hood R(E)n[B; [/] whose polar contains h.
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Let D = Bu [j t{B), W =Un f) t~\U), and let D be the weak closure

of D in E. Since E is barrelled the bounded set A tcz2(E) is equicontinuous
and W is therefore a neighbourhood of zero. For each u e Q(E) define a
function don DxW° (where Ĥ ° is the polar of W in £") by

fl(x, / ) = <«*, / > 0 e 5 , / e W°).

Give D and W° the topologies a(E, £") and ff(£", iT): they are then compact
Hausdorff spaces, and the mapping u-*Ci takes £(E) into S(D, W°). It is
continuous with respect to the weak operator topology on Q(E) and the point-
wise topology on S(D, W°). Furthermore, if u e R(E) then the initial and weak
topologies of E agree on u(D), so that W° is an equicontinuous set of functions
on D with respect to the weak topology, and hence d is continuous on D x W°.
Let At = {#: u e Aj} for i = 1, 2. At and A2 are countable sets of continuous
functions on DxW° and their closures in S(D, W°), being contained in the
images of Av and A2, are compact for the pointwise topology. Applying
Lemma 4 we can find subsequences («„,), (vm.) of Au A2 and u, v in Au A2

such that
lim <wn.x, y'} = <MX, / >

n

and
lim <um.x, y'y = <i;x, y'>

for all xeD,y'e W°.
We can also embed R(E) in the space of all continuous functions on

Bx U° in a similar manner, and (by choice of B and U) h is continuous with
respect to the supremum norm on the image of St(E) in C(Bx U°). By the
Hahn-Banach and Riesz Representation theorems there is a regular Borel
measure fi on the compact Hausdorff space BxU° such that

it, hy = <tx, y'yn(dx, dy')
J BxW

for all / e R(E).
Fix any integer m: for any xe B and y' e U° we have vmxe D and y' e W °,

and hence
lim <wn.ivx, y'y == <uum'X, y'>.

n

By the dominated convergence theorem,

lim (un.vm., hy = lim <un.vm.x, y'yuidx, dy')
" " JBXW

<uvm.x, y'yuidx, dy').
J Bxlf
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Since W° = t/°u \J 't(U°) (the circles denoting polars in £')> we have also

for any xeB and / 6 £/° that x e J ) and 'uy' e W°, from which it follows
that

lim <uvm.x, / > = lim <um,x, ' « / >

= <DX, ' l l /> = <MUX, / > .

Applying the dominated convergence theorem again, we have

lim lim <un.vm., h} = (uvx, y'}\i{dx, dy').
m " JBXU°

Similar reasoning shows that the other repeated limit of <wn.t;m., /j> has the
same value. Consequently, if both repeated limits of the double sequence
(unvm, hy exist, they must both equal this common value. By Lemma 1 it
follows that &(E) has regular multiplication.

Corollary 1. If E is a reflexive and F an irreflexive Banach space there is
no non-zero continuous homomorphism from g(F) to £(£) .

Proof. If <f>: <5(F)->£(£) is a continuous homomorphism then for any
x e E and x' e E' the linear functional *<t>(x®x') is weakly almost periodic on
g(F), as shown in the proof of Theorem 1, and hence by Theorem 3

'<j)(x®x') = 0:

that is, <<KM)X, x") = 0 for all u e g(F), x e E and x' e E'.

Corollary 2. Let E be a reflexive Banach space. If % is either an infinite-
dimensional group algebra or the closure of g(F) in £(F) for some irreflexive
Banach space F, then there is no continuous epimorphism from a closed subalgebra
of&(E) onto 91.

Proof. If there were such an epimorphism then, by the open mapping
theorem, it would have the boundedness property described in Theorem 2,
and it would follow that 91 had regular multiplication. However, this is not
true of infinite-dimensional group algebras (13) nor of the closure of g(F)
in £(F) (Theorems 2 and 3).

It is known that £(F.) has regular multiplication if E is a Hilbert space,
and Theorems 2 and 3 show that if £(£) has regular multiplication for some
Banach space E then.F, is reflexive. It is natural to ask whether the converse
holds. This is settled negatively by the following result.

Theorem 4. The group algebra V (G) of any locally compact group G is
isometrically isomorphic to a subalgebra of £(£) (with the operator norm) for
some reflexive Banach space E.
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Proof. We consider Ll(G) with respect to left Haar measure on G. Let
pa = 1 +1/« and let E denote the /2-sum of the spaces U"(G)—that is, the
space of sequences (gn) with gn e LP"(G) satisfying

Kgn)\\E=\ I \\9A\U <oo,

(where | ||p is the norm in LP). E is reflexive since each If" is reflexive.
F o r / e L\G) define 7} e 2(E) by

Since | | /* 0 ||p S ll/lli II 0 IIP for all/) 2: 1, the operator norm of 7} is at most
| | / lit . The mapping /-> 7} is thus a norm-reducing homomorphism of L^G)
into £(£•). We show that it is actually an isometry.

Let £>0. For each compact neighbourhood U of the identity in G let eu

be a continuous non-negative function on G supported by U and satisfying
|| ev ||! = 1. Then (e^) is an approximate identity for L^iG) and hence we may
find a compact neighbourhood V of the identity such that

| |/* ^ 1 1 x ^ 0 "6)11/||,.
It suffices to prove that the representation is isometric on a dense subset of
L^{G), so that we may assume/has compact support. For any continuous
function /"of compact support on G, || F||p-»|| F| | j asp->l by the dominated
convergence theorem: we may therefore find m e N so large that

and
l l / *«Kl l , m ^O-

Consider (gn) e E, where gn — 0 if n ^ m and gm = eK: then IK^JI^ ^ 1 + e
and

The operator norm of Tf is thus at least ( l-e)2(l + e)~1 | | / | | i , and therefore
(since e was arbitrary) it equals | | / | | i .

Since Ll(G) has irregular multiplication for infinite Hausdorff G (as already
observed—(13)), Theorems 2 and 4 imply:

Corollary 1. Multiplication fails to be regular in Q(E) for some reflexive
Banach spaces E.

Corollary 2. There exist Banach algebras having regular multiplication
whose biduals have irregular multiplication.

Proof. In the construction above take G = Z. Each LPn(Z) has a basis,
and consequently their /2-sum E has the approximation property. By a theorem
of Grothendieck (6, Theorem 8, page 122) the bidual of g(£) is 2(E), which
does not have regular multiplication; however, by Theorem 3, ^(E) itself does
have regular multiplication.
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It appears to be a difficult problem to determine for which reflexive spaces
E the multiplication of £(£) is regular. It is so for Montel spaces (for which
£(£) = R(E)), but I do not know a wide class of reflexive Banach spaces for
which it is so. The following question suggests itself: has £(£) regular multipli-
cation if E is uniformly convex ? Or at least if E = F (1 <p < oo) ?

2. Autoperiodic functionals
Hitherto we have made use of weakly almost periodic functionals to prove

the non-existence of continuous homomorphisms between various algebras.
It would be still more useful if we could actually construct representations
by means of such functionals. One might expect this to be possible, for if
we are given a weakly almost periodic functional h on a Banach algebra %
then the w*-closure of {ha: \\ a || ^ 1}, being absolutely convex and w*-
compact in %', miglt appear to be a potential unit ball of a reflexive space on
which 21 acts as an algebra of operators. More specifically, if we define the
semi-norm ph on 91 by

then the completion of 9I/pA~1(0) is a Banach space %h on which the elements
of 91 act as operators in an obvious way. The trouble is that, despite the
almost-periodicity of h, 91,, is not reflexive in general. For example, if 91 is
the algebra C([0, 1]) and h is the functional determined by Lebesgue measure
then h is weakly "almost periodic (since 91 is a C*-algebra) but/?,, is the Z^-norm
and so 91,, = Ll[0, 1]. If we wish the above construction to work we must
therefore impose a stronger condition on h. This leads to the following
definitions.

Let B be an absolutely convex subset of a real or complex vector space E.
We denote by EB the quotient space \J IBJ f] IB. The gauge (or Minkowski

functional) of B, which is a seminorm on I) IB, induces a norm || ||B on EB.

We shall say that B is autocompact if the unit ball of EB is weakly compact,
where EB denotes the completion of EB. The image of B under the natural
mapping of \J?.B onto EB is clearly dense in the unit ball of EB.

Lemma 5. Let (E, E') be a dual pair of vector spaces and let B be a o(E, En-
closed absolutely convex subset of E. The following are equivalent:

(1) B is autocompact;

(2) the completion of EB is reflexive;

(3) for all pairs of sequences (xn) in B and (y'm) in the polar B° of B in E'
the two repeated limits of the double sequence «*„, y'm}) are equal
whenever they both exist.
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Proof. The equivalence of (1) and (2) is just the fact that a Banach space
is reflexive if and only if its unit ball is weakly compact. To prove the equi-
valence of (1) and (3) observe that the elements of B° induce linear functionals
of norm at most one on EB, and moreover the set of all such functionals con-
stitutes a norm-generating subset of E'B, as may be shown by a straightforward
Hahn-Banach argument. The equivalence thus follows from Grothendieck's
criterion of weak compactness applied to EB.

In view of the fact that the autocompactness of B s E depends on the
structure of E as a vector space and not on its topology it is perhaps not
surprising that a closed subset of an autocompact set in a Banach space need
not itself be autocompact. Nevertheless it is worth giving a cautionary example.
Let E = L2[0, 1]; by Lemma 5 the unit ball of E is autocompact. However,
if B is the closed set {/e E: \f\ g 1 a.e.} then EB = L^O, 1] and so B is not
autocompact.

We have now seen two examples of weakly compact sets in a Banach space
which are not autocompact: there is, however, an implication in the reverse
direction. If an absolutely convex autocompact set B in a separated locally
convex space E is bounded and completing (this means that EB is complete)
then B is weakly relatively compact. For, since B is bounded and E separated,
0 XB = {0}, so that EB is a subspace of E. And B is contained in the unit

A>0
ball of EB{— EB), which is weakly compact for the topology of EB, and hence
also for the (coarser) initial topology of E.

The symmetry of condition (3) above shows that a weakly closed absolutely
convex set is autocompact if and only if the same is true of its polar. This
is simply a restatement of the fact that a Banach space is reflexive if and only
if its dual is reflexive.

Consider now a normed algebra 31. We shall say that h E W is right-
autoperiodic on 31 if the o-(3T, 3l)-closure of {ha: || a \\m g 1} is autocompact
in W. Likewise h is left-autoperiodic if the a(2T, 3I)-closure of {ah: || a \\n ^ 1}
is autocompact. We call h autoperiodic if it is either right- or left-autoperiodic.

Every autoperiodic functional h is weakly almost periodic, for
{ha: || a | | , :£ 1}

is strongly bounded in 3T and its <x(3T, 3l)-closure is <x(3T, 3I)-compact and
therefore completing, so that it is weakly compact by the remark above.

We now construct a representation of a normed algebra 31 starting from
an arbitrary he W. Let Nh denote the subspace

{x: <ax,h} = 0 for all a e 31}
of 31, and define a norm || \\h on 31/Nh by

\\h = sup {Kax, A>|: || a ||a g 1}.
Let 3Ih denote the completion of 3l/iVft with respect to this norm. The operation
of multiplication on the left by a fixed element a e 31 maps Nh into itself, and
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hence induces a linear operator ah on %/Nh. Moreover, the operator norm of
ah is given by

|| a, || = sup {|| ax+Nh\\h: || x+Nh \\h g 1}

= sup {Kbax, h>\:xe 91, || b ||, ^ 1, sup |<6'x, *>| ^ 1}.
II V | |« £ 1

If || a || a g 1, then for all relevant b, ba is a 6', and hence || ah || g 1. Thus
II oh || ^ II a II a f°r all a e 51 and A e 91'. Since ah is continuous it has a unique
extension (denoted by the same symbol ah) to a continuous operator on 9fA.
The mapping a-»oA is a norm-reducing representation of 91 on the Banach
space 91,,.

There is also an " opposite " construction: let

hN = {xe 91: <xa, A> = 0 for all a e 91}

and define the norm J || on 9l/AiV in the obvious way. The operation of
multiplication on the right by an element a of 91 induces a continuous linear
operator ha on the completion ,,9t of 91/*^! t n e mapping a-*ha is a norm-
reducing anti-homomorphism of 91 into £(,,91), and consequently the mapping
a-+'(ha) is a continuous representation of 91 on hW.

The idea of representing 91 by linear operators on 91/A^ is not new: indeed
when 91 is an involutive algebra and h is a positive function this is a standard
piece of theory (5, IV § 5). The difference is that %jNh is usually equipped
with the inner product

The completion of 9I/JV,, with respect to this inner product is a Hilbert space
§A. There is a third norm we can consider on 91/A :̂ the quotient norm. In
general these three norms are inequivalent, as can be illustrated by the example
91 = C([0, 1]), h = Lebesgue measure. Then Nh = {0} so that the quotient
norm on 91/Â , is the original norm. The Hilbert space norm is that of L2[0, 1]
and || ||h is that of L^O, 1]. We thus have in this case

U \\*INh > II h , 1 I I U*.
and this inequality remains valid (apart from positive constants) for an arbitrary
C "-algebra, and even (if the middle term is omitted) for an arbitrary Banach
algebra. If 91 is a C*-algebra and A is a positive functional the inequality

I ! « , * £ II * IT* 1 R«k
is well known, and, for any x e 91,

»*= sup \h(ax)\
II o II S t

^ sup h(aa*)ih(x*x)i

II a II § i

^ || h ||* || x + Nh Us,.
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And if 51 is any Banach algebra and he W, ye Nh we have

| |x+JVJ|A= sup Kax,K>\= sup |<a(x-j/), A>|
II " II g 1 II a || § 1

£ | | h\\ \\x-y\\

so that || ||„ ^ || h || || ||a/JVh.
In the case of C*-aIgebras with identity, results of H. Halpern (8) show

when the three norms on %INh axe equivalent. Indeed, Halpern shows that
the quotient and inner-product norms on %/Nk are equivalent if and only if
h is a finite sum of irreducible functionals. Furthermore, for any x e 51,

\\x + Nh\\h= sup |<flx, h}\

II " II =5 1

^ \\x\\m-\x*x,hy.
Since we may replace x by any element of x+Nh, this yields

II L> II IIJJII ll«/iv
In conjunction with the inequalities already established this shows that if the
quotient and inner-product norms are equivalent on %INh then all three
norms are equivalent. It follows from Halpern's theorem that the three norms
in question are equivalent if and only if ft is a finite sum of irreducible functionals.

For fixed ft e W we shall say that a set B c 51 is kft-h-bounded if

{(ax, *>:|| a | | ag \,xeB)
is bounded.

The formulation of the opposite version of the following characterisation
is left to the reader.

Lemma 6. The following are equivalent for a continuous linear functional
h on a normed algebra 51:

(1) h is right-autoperiodic;
(2) 51,, is reflexive;
(3) for every bounded sequence (jcn) and left-h-bounded sequence (ym) in 91

the two repeated limits of the double sequence ((xnym, h}) are equal
provided they both exist.

Proof., h is autoperiodic if and only if the CT(5T, 5l)-closure B of the set
{ha: || a ||g, ^ 1} is autocompact. By Lemma 5 this is so if and only if, for all
sequences (xn) in the unit ball of 51 and (ym) in B° (the polar of B in 51), the
two repeated limits of «.xnym, /*> are equal provided they both exist. This
is clearly equivalent to condition (3).

To see that (1) and (2) are equivalent observe that 5th = #Bo (B and B°
have their above meanings) so that 5lft is reflexive if and only if B° is auto-
compact, which is so if and only if its polar B in 51' is autocompact—that is,
h is right-autoperiodic.

https://doi.org/10.1017/S0013091500010610 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010610


PERIODICITY OF FUNCTIONALS 113

Autoperiodic functionals have not nearly such good stability properties
as weakly almost periodic functions. Most notably of all, the restriction of
an autoperiodic functional to a closed subalgebra need not be autoperiodic.
Let E = L2(0, 1) and let 21 = £(£): the functional T-*(T1, 1> (where 1 is
the constant function equal to 1) is autoperiodic on 21 (see Theorem 6 below).
However, its restriction to C([0, 1]) (which is naturally embedded in 21,
continuous functions operating on E by pointwise multiplication) is not auto-
periodic, as has already been observed. Nor is it true in general that the auto-
periodic functionals on 21 comprise a norm-closed subset of W, as will follow
later. It is not even clear whether the sum of two right-autoperiodic functionals
is right-autoperiodic. There is, however, one positive result: if 21, 23 are Banach
algebras, <j>: 21-+23 is a continuous epimorphism and h is autoperiodic on 23
then '(j>h is autoperiodic on 21. For suppose that (an) is bounded and (bn) is
'^-bounded in 21, so that, for some K>0,

Ktf^m), /'>l ̂  K
for all n e N and a e 21 such that || a || ^ 1. By the open mapping theorem
{#(a): || a || ^ 1} contains a ball of positive radius in 23, and hence (</>(*„))
is A-bounded in 23. It follows that the repeated limits of

<<l>(an)<Kbm), h> = (anbm, ' # >

are equal, provided they exist.
We continue our comparison of the two types of periodicity by studying

the autoperiodic functionals on the operator algebras considered in Section 1.
We have seen that if E is reflexive then x®x' is weakly almost periodic on
£(£) for any x e E, x' e E', and the same is consequently true for the restriction
of x®x' to any subalgebra of £(£)• The example given above (1®1 on
£(L2(0,1))) shows that some modification is needed for autoperiodic functionals.

Lemma 7. Let Ebea reflexive Banach space, 21 a Banach algebra, n: 21-»£(£)
a continuous representation and x[, ..., x'keE'. If either of the equivalent
conditions

(a) {('(7r(a))xi, ..., %n(a))x'k): a e 21} is closed in E'®...@E';

(b) {'n(xl®x'1)+ ...+'n{xk(g)x'k): xu ..., xke E} is norm closed in 2t'

holds, then ln(x1®x\) + ...+'n(xk<2)x'k) is right-autoperiodic on 21 for any
xu ..., xke E.

Proof. Let Ek, (E')k denote the direct sums of k copies of E, E' respectively.
To show that (a) and (b) are equivalent define the continuous linear mapping
L: 2l->(£')" by La = d(n{a))x'u ...,'(n(a))x'k). The adjoint 'L: E^W of L
is given by 'Ux^ ..., xk) =

 tn(x1®x'l) + ... + 'n(xk®x'k). The equivalence now
follows from the fact that a continuous linear mapping between Banach spaces
has closed image if and only if the same is true of its adjoint.

E.M.S.—20/2—H
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Suppose, then, that F° = {('«a))xi, ..., '(n(a))x'k): ae 91} is closed in
(£")*• Let F be the annihilator of F" in Ek: then /"> is the dual of Ek/F (note
that, on account of reflexivity, weak and norm closure are the same for sub-
spaces of (£')*). For each ae% n(a)@...@n(a) maps F into itself, and
therefore induces an operator n(a) on Ek/F.

Now consider any xu ..., xke E, write h = tn(xl<S)x'l)-\-... + 'n(xk®x'k), and
pick an /z-bounded sequence (bm) in 31. There is some K>0 such that

Kn(bm)®...®n(bm)(Xl, ..., xk), (

for every a e 31 and me N. In other words, for every y' eF°,
{ < « ( * > , / > : / » € # }

is bounded, where x = (xu ..., xk)+Fe Ek/F. Thus the sequence (n(bm)x)
is bounded in the reflexive space Ek/F, and so has a weak cluster point x°.
And if (an) is any bounded sequence in 91 then {('(7i(an))xi, ..., \n(aj)xk): ne IV}
is bounded in F°, and so has a weak cluster point y . If therefore the two
repeated limits of the double sequence

(anbm, 'Tthy = <n(bm), C(7r(aJ)x;, ..., \n{an))x'k)>

exist, they must both equal <x°, j>°>- It follows that 'nh is right-autoperiodic
on 31.

In this instance it is worth stating the opposite version separately.

Lemma 7'. Let E be a reflexive Banach space, 31 a Banach algebra,

n: 5l

a continuous representation and xt,...,xke E. If either of the equivalent
conditions

(a) {(n(a)x1, ..., n{a)xk): a e 31} is closed in E®...®E;

(b) {'n(x1®x'1) + ... + 'n(xk<S>x'k): x\, ..., x'keE'} is norm closed in 31'

holds, then tn(x1<g)x'l)+... +'x(xk<g>x'k) is left-autoperiodic on %for any

x\, ...,x'keE'.

Theorem 5. Let %be a complex Banach algebra and let n be an irreducible
representation of 31 on a reflexive Banach space E (so that the only subspaces
of E invariant under 7t(3I) are {0} and E). Every element of E®E' determines
a left-autoperiodic functional on 31, and if 7i(3I) 3 %(E) then this functional
is also right-autoperiodic.

Proof. According to a theorem of Johnson (9) n is necessarily continuous,
so that we may apply Lemma 7. Let h = xt®x\ +... + xk <2>x'k e E®E', where
the x's and x"s are linearly independent. By Lemma T, 'nh is left-autoperiodic
on 31 provided that the subspace {(n(a)xu ..., n(a)xk): a e 91} is closed in Ek.
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By a well-known theorem (for example (3, § 25)) this subspace is in fact the
whole of £*. And if 7i(3l) 2 g(£) one readily checks that

{C(«(fl))xi, .... ' (n(a)K): « e 31} = (E ') \

and so by Lemma 7, 'TI/J is also right-autoperiodic.

Corollary. Every irreducible representation of a Banach algebra 31 on a
reflexive Banach space arises as the natural representation of 31 on h9T for
some left autoperiodic functional he W.

Proof. Let n: 51-»£(£) be an irreducible representation where Eis reflexive.
Pick any non-zero x e E, x' e E' and let h = 'n{x®x'). We show that n is
topologically equivalent (in the usual sense of representation theory) to the
representation a^'(ha) of 31 on hW. If a e hN then (n(ab)x, x") = 0 for all
* e 31, and since 7r(3T).x = E it follows that (n(a))x' = 0. We may therefore
define a linear mapping v: <H/hN-*E' by v(a+hN) = '(n(a))x'. We have,
moreover,

J | a + ftJV||= sup Kab,h>\= sup |<B(6)X, '(JI(«))X'>|
II * II S 1 || 6 || S 1

from which we may deduce (using the open mapping theorem and the fact that
n is irreducible) that v is bicontinuous with respect to the norms of 3I/,,iV
and E'. The adjoint mapping 'v: E-*^' is also bicontinuous. To prove
the two representations in question equivalent we show that, for every a e 31,
the diagram

commutes: that is for all £ e E and b e 31,

, 'vn(a)O = <b + hN, '(ha)'vO-

Using the fact that ha(b+hN) = ba+hN one easily reduces both sides to
(n(ba)l;, x'>. By Theorem 6 (or since fc3I = E') ft is autoperiodic.

The Corollary shows that one approach to the construction of all irreducible
representations of an algebra on reflexive spaces is to try to find all left-auto-
periodic functionals on the algebra. Of course, this will be a difficult task in
general: here is one case where it is possible.

Theorem 6. The autoperiodic functionals on Si(E), where E is Hilbert space,
are precisely those determined by the elements of E®E.
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Proof. Note that, since R(E) is conjugate-isomorphic to its opposite
algebra, we need not distinguish between right- and left-autoperiodicity. By
Theorem 6 each element of E®E determines an autoperiodic functional on
R(E). To prove the converse we use the fact that the dual of R(E) is the trace
class of operators (see, for example, (6)). That is, if h e R(E)' there exist finite
or countable orthonormal sequences (en) and (/„) in E and An>0 such that
SAn<oo and h = HAnen®fh. Suppose h$E<g>E, so that this sum is infinite.
Let vm be the rank-one operator /.~1em<S)fm: for any u e R(E) we have

<Mvm, /i> = Y, *n(uvmen,/„}

so that the sequence (vm) is /j-bounded. And if un e R(E) is denned to be

£ fj®fj t h e n II "« II = 1 a n d we find that

11 if m < n
ifm>B.

Lemma 6 now shows that h is not autoperiodic.
This example justifies the assertion above that the set of autoperiodic

functionals on 31 need not be norm-closed in 9T.
It does not seem to be easy to describe the autoperiodic functionals on

fl(Zs) for E a Hilbert space. The answer in this case is certainly not E®E,
for there are non-zero autoperiodic functionals on Q(E) which annihilate
St(E) (these may be constructed using an irreducible representation of the
Calkin algebra 2(E)/R(E)). There is, however, one more class of C*-algebras
for which a description can be given.

Theorem 7. The autoperiodic functionals on a commutative C*-algebra are
precisely the linear combinations of characters.

Proof. Consider the commutative C*-algebra C(K), Ka. compact Hausdorff
space. If n e C(K)' is a linear combination of characters C(K) is finite-
dimensional and so reflexive. Conversely, suppose ft is not a linear combination
of characters: then it is easily seen that ft, regarded as a regular Borel measure
on K, has an infinite set {tn} of density points (t e K is a density point of pi if
| fi |(f/)>0 for every neighbourhood U of t). Passing to a subset if necessary
we may assume that {?„} is discrete—that is, pairwise disjoint neighbourhoods
{[/„} of the {/„} exist. By the regularity of fi there exists a compact subset
Cn of Un such that | ft |(CB)>| | y, \(Un)>0. We have d \ \i | = gdfi, where g
is measurable and \ g \ = I identically on K. By Lusin's theorem there is a
continuous function gn on Cn agreeing with g except on a subset Dn of Cn

of | n |-measure at most | n |(t/n)/8 and satisfying | gn \ ^ 1 on Cn. Extend gn

to a continuous function on K in such a way that | gn \ g 1 on K and gn = 0
on K\ Un. Let h, = gj\ p \(Un). For a n y / 6 C(K) we have

I f /MA* ^ f
\jK JUn
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so that (hn) is a /j-bounded sequence in C(K). For each m e TV choose fm e C(K)
of unit norm so that/m | Cj = 1 for 1 ^ j : ^ m and/m = 0 outside C/jU...u£/m.
If n > m we have

r
mhndfi = 0.

And if n ^ m,

U^=-^-(f +f +f /^
On Cn\Dn we have/^ = 1 and gndfj. = d\ n\, so that the middle integral is
| n \(Cn) — | n \(Dn). And estimating the outer integrals using the fact that
\fm9n\ ^ 1,

If. \(Cn) 1

" I A* 1(1/.)

Since | /i | (Cn)>| | /x |(t/n) it follows that, for n>m,

We may choose subsequences (/m.) and (An.) of (fm) and (An) so that both

repeated limits of fm.hn,d\i exist: one is zero and the other has absolute
JK

value at least a quarter, so that \i is not autoperiodic, by Lemma 6.
There are several natural questions concerning autoperiodic functionals

in addition to the ones already raised in the text, and some of these are related
to open questions about operator algebras. We may ask whether the unpleasing
asymmetry of the conclusion of Theorem 5 can be eliminated: that is, if n
is an irreducible representation of a Banach algebra 91 on a reflexive space E
is it true that 'n(x®x') is right-autoperiodic for every xeE and x' eE'? In
order to construct a counter-example we must arrange that {'(n(a))xr: a e 91}
be not closed in E', which seems quite difficult. Another range of questions
arises if we interest ourselves in continuous topologically irreducible representa-
tions of an algebra 91 on a reflexive space E (that is, representations for which
the only closed subspaces invariant under TT(9I) are {0} and E). Is it still true
that every element of E®E' determines a left-autoperiodic functional on 91?
I do not even know the answer in the case E a Hilbert space and 91 a uniformly
closed subalgebra of L(E) (though if 91 is self-adjoint the answer is yes, since,
by Kadison's Density Theorem (5), in this case topological irreducibility is
equivalent to irreducibility). Since it is an open question whether the con-
clusion of Kadison's Theorem continues to hold when 91 is not assumed self-
adjoint, it is again difficult to construct a counter-example.
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We now return to the proof of Theorem 1, for which we need a slight
generalisation of the construction used hitherto in this section. Suppose that
91 is a normed algebra and that the w*-closed absolutely convex set C s 8 '
has polar C° in 91. Then the operation of multiplication on the left by a e 91
induces a linear mapping ac on 9tc° if and only if f] XC° is invariant under a,

x>o
or equivalently Ca £ XC for some A>0. When this is so we have (denoting
the gauge of C° by pco)

\\ac\\ = sup{pc.(ax):xeC°}

= sup {A: |<x, ja>|>x for some xe C° and y e C}

= inf {A>0: |<x, ya}\ g A for all x e C° and J; e C}

= inf {2>0: C a s ^ C } .
When C = {/za: || a || :g 1} this construction gives us the representation

a-*ah of 91 on 91,,. When ft is weakly almost periodic but not autoperiodic
the technique of (14) allows us to approximate the set {ha: f| a d ^ 1} by auto-
compact sets, and so obtain a representation on a reflexive space.

Lemma 8. Let W be an absolutely convex weakly compact set in a Banach
space E. Then W is the intersection of a decreasing sequence (Cm) of autocompact
sets each of which is invariant under every contraction in &(E) leaving W
invariant.

Proof. For each meN let p™ be the gauge of 2nW+(mn)~1B, v/here B

is the unit ball of E, and let pm{x) = <3 V p™(x)2f for each xeE (so that

pm(x) may be infinite). It is shown in (14) that Cm = {xeE: pm(x) ^ 1} is
autocompact, and it is easily seen that W s Cm and that Cm has the invariance
property described in the enunciation. For fixed n the sequence of sets
(2"W+m~1n~1B)meN is monotone decreasing and has intersection 2"W, so
that p%(x)^2~npw(x) (where pw is the gauge of W) as m->co for every xeE,
even when the right-hand side is infinite. It follows that

lim p"'(x) =U t 2-2nPw(.x?\ = Pwto.
m-*ao ( n = 1 J

and consequently that [\Cm = W.
Now consider a normed algebra 91 and let H be the set of weakly almost

periodic functionals of unit norm on 91. For the purposes of Theorem 1 we
may assume that 91 is complete and has an identity e of unit norm, since if
necessary we can adjoin such an identity and replace each heH by h@l:
if H is total or norm-generating then the same is true of the modified set with
respect to the enlarged algebra.

For each heH let Wh be the norm-closure in 91' of {ha: || a \\m ^ 1} and
pick a sequence (Chj m) of autocompact sets whose intersection is Wh as in
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Lemma 8. The invariance property ensures that Chtma^ Ch<m whenever
|| a || 5, ^ 1, so the construction above associates with each Cft>m a norm-
reducing representation a-+ahm of % on a Banach space Ehtm; moreover,
since Cht m is autocompact, the same is true of its polar in 51—in other words,
Eht m is reflexive. The /2-sum E of the spaces Eh< m (he H, meN) is con-
sequently reflexive. Corresponding to a e 91 define Ta e £(£) by

ht J = {aht mxht J.

Then || Ta || = sup || aKm || ^ || a l%, so that T is a norm-reducing representa-
h, m

tion of 31 on E.
To show that T is actually isometric observe that, for any h and m, if

CK ma <= AC,,, m then ha e XChi m and so

|<a, /J>| = |<e, /ia>| = A |<e, g}\ for some g e CKm,
and so

Fix heHand pickgmeCh < m such that

| 0m(e)| 1 ( 1 - 1/m) sup {| 5 ( e ) | :geC h < m } .

The sequence (gm) has a w*-cluster point g0 e f\ Cht m = Wb, and so

inf - 1

= \h(a)\ inf | hb(,e)\~l

II * ll s i

= I Ka)\l\\ h || = | h(a)\.

Thus H Ta || ^ sup | h(a)\, so that if # is total then T is faithful and if H is
hell

norm-generating then T is isometric.
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