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Abstract

The curse of dimensionality confounds the comprehensive evaluation of computational structural mechanics
problems. Adequately capturing complex material behavior and interacting physics phenomenon in models can lead
to long run times and memory requirements resulting in the need for substantial computational resources to analyze
one scenario for a single set of input parameters. The computational requirements are then compounded when
considering the number and range of input parameters spanning material properties, loading, boundary conditions,
and model geometry that must be evaluated to characterize behavior, identify dominant parameters, perform
uncertainty quantification, and optimize performance. To reduce model dimensionality, global sensitivity analysis
(GSA) enables the identification of dominant input parameters for a specific structural performance output. However,
many distinct types of GSA methods are available, presenting a challenge when selecting the optimal approach for a
specific problem.While substantial documentation is available in the literature providing details on the methodology
and derivation of GSA methods, application-based case studies focus on fields such as finance, chemistry, and
environmental science. To inform the selection and implementation of a GSA method for structural mechanics
problems for a nonexpert user, this article investigates five of the most widespread GSA methods with commonly
used structural mechanics methods and models of varying dimensionality and complexity. It is concluded that all
methods can identify the most dominant parameters, although with significantly different computational costs and
quantitative capabilities. Therefore, method selection is dependent on computational resources, information required
from the GSA, and available data.

Impact Statement

The lack of practical guidance for nonexperts and general users when selecting candidate global sensitivity
analysis (GSA) methods promotes the use of inadequate or inefficient approaches for a given workflow, such as
the implementation of local methods on nonlinear problems or a higher order effects study when only
identification of dominant parameters is required. Using an inadequateGSAmethod can result in the introduction
of error, inconclusive results, and the use of unnecessarily high or inaccurately low datasets. Our objective is to
inform a nonexpert user in GSAmethod selection and best practices for structural mechanics based on modeling
and analysis attributes. This article is written from a practical viewpoint.
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1. Introduction

The rapid growth of accessible computing power has enabled the formulation and analysis of complex,
physics-based computational models in the field of structural mechanics. Researchers can now realistically
capture the physics, chemistry, and mechanics necessary to simulate phenomena ranging from the atomic
scale (such as exploring the effects of chemical composition on mechanical properties) to the macro scale
(such as investigating the progressive failure of layered or hybrid structures). Techniques andmethods used
to formulate these computational models vary substantially with respect to fidelity, computational
demands, and complexity where the selection is based on the physical process to be simulated, data
quality, and required accuracy. Simulating a specific scenario in a reasonable amount of time, even onewith
a high dimensionality and complex behavior, is achievable with today’s computational capabilities.
However, comprehensive exploration of the design and analysis space to understand the change in
structural performance caused by geometry, loading, boundary conditions, and material properties can
quickly become intractable, even when utilizing high-performance computing (HPC) resources.

The curse of dimensionalitymust therefore be overcome by reducing the parameter space to include only
the most influential parameters on the outputs under evaluation and identifying the significant interactions
between parameters. Such information then informs uncertainty quantification (UQ) and improved model
formulation to ensure that themost dominant parameters and behaviors are fully characterized and captured.
Additionally, experimental testing and parameter characterization can then focus on limited data collection
to fully quantify the influential input parameters and to better understand significant parameter behavior and
interactions that impact model performance. Identification of the most significant input parameters also
informs the development of fast-running, yet accurate, lower fidelity models, such as a reduced order
surrogate model. Therefore, an approach to efficiently sample the input space so that the model is evaluated
as few times as possible while capturing the important statistical properties of the response is essential to
inform model development, data collection, and interpretation of the results.

Simply put, sensitivity analysis is amethodwhich links the uncertainty in the output of a computational
model to the input parameters. A local sensitivity analysis captures sensitivity relative to an individual
parameter and global sensitivity analysis (GSA) evaluates sensitivity with regards to the entire parameter
space. Thus, results from a GSA can be used to rank the influence of each parameter on a particular
response. While GSA provides the necessary information to identify dominant input parameters, many
distinct types of GSAmethods are available, presenting a challenge when selecting the optimal approach
for a specific problem. This ambiguity is exacerbated as direct comparisons between methods and
discussion of method selection are lacking in the GSA literature for structural mechanics. Most of the
literature pertaining to structural mechanics is comprised of papers describing the complex mathematics
of new or enhanced GSA techniques using structural mechanics problems to demonstrate the method or
cases of a single GSA method applied for a specific structural mechanics problem with the objective of
identifying the most influential parameters. An example of a new method demonstrated using structural
mechanics problems is the investigation of out of plane unidirectional composite laminate properties
using Bayesian multimodel inference and importance sampling to calculate probabilistic Sobol’ indices
(Zhang et al., 2021a, 2021b).

Representative examples of applied GSA in structural mechanics include the analysis of cable-stayed
bridges using the method of Sobol’ (Nariman, 2017), structural vibration of a nuclear reactor using the
global Fourier amplitude sensitivity method (Banyay et al., 2020), thrust force ripple analysis of linear
switched reluctant motors using the method of Sobol’ (Chen et al., 2021), and a demonstrative article
where finite element methods and GSA are used to evaluate models pertaining to vehicle impact, blast
containment vessels, spinal impact injuries, and space shuttle flow liners (Thacker et al., 2005).

Comparative studies of GSA methods are essential to evaluate the differences in the results from the
varyingmethods and to informmethod selection for a specific problem given that themany techniques are
based on distinct methodology, sampling, efficiency, and output. Existing studies are distributed across
disparate fields and examples include using models for watershed and snow accumulation with 13 and
5 parameters respectively evaluated using local methods and GSAmethods including Sobol’ (Tang et al.,
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2007), food safety with 5 parameters including the methods of regression, analysis of variance, and
graphical methods (Frey et al., 2003), flood forecasting with 13 parameters evaluated using 10 available
methods contained in the software package PSUADE and 8 parameters evaluated with local, global
screening, and quantitative methods (Gan et al., 2014; Iooss and Lemaître, 2015), radioactive pollution
with 21 parameters evaluated with 9 local and GSA methods (Hamby, 1995), water quality with
6 parameters evaluated with local methods including the Morris method (Sun et al., 2012), GSAmethods
applied to a 5 parameter thermal runaway model of a batch reactor (Saltelli et al., 2005), and building
energy assessment with 11 parameters being evaluated with local and GSA methods including extended
Fourier amplitude sensitivity test (FAST; Yang et al., 2016). Publications specifically comparing GSA
methods for structural mechanics models are much scarcer. An example is a theoretical study of variance-
based and derivative-based GSA applied to metal forming where two parameters, yield stress and
hardening modulus, are investigated (Arnst and Ponthot, 2014).

Conclusions in the literature are generally that each of the methods is sufficient for the models being
evaluated and that the quantitative methods are superior in the evaluation of the parameters. While a
method may be sufficient, it may not be efficient, and the computational burden of a quantitative method
may not be necessary if only parameter screening is needed. The model with the greatest dimensionality
evaluated in the cited comparative studies contained 21 parameters, and the other models were relatively
simple and often comprised of deterministic, equation-based models. Structural mechanics problems can
grow exponentially with an increase in model complexity due to the inherent nature of defining material
behavior in popular commercial simulation programs, for example, finite element (FE) methods, thus
requiring the need for GSA comparisons of structural mechanics problems to include models with a large
number of varying parameters.

The lack of practical guidance for nonexperts and general users when selecting candidate GSA
methods promotes the use of inadequate or inefficient approaches for a given workflow, such as the
implementation of local methods on nonlinear problems (Saltelli et al., 2019) or performance of a higher
order effects studywhen only identification of dominant parameters is required. Using an inadequateGSA
method for a computational structural mechanics problem leads to the introduction of error, inconclusive
results, inefficiency, and the potential for obtaining unnecessarily large datasets. Critically, using a GSA
method lacking the required functionality also deprives the user of potentially notable discoveries
pertaining to parameter behavior and interactions. Our objective is to inform a nonexpert user in selecting
a GSA method for structural mechanics based on modeling and analysis attributes. Along with encour-
aging best practices for GSA method selection, this article demonstrates the process of applying five
popular GSA methods to three computational structural mechanics problems where the process and
results are discussed from a practical viewpoint for nonexperts and general users. The GSA methods
selected for evaluation are available from the same open-source package and readily implemented using
typical desktop computational hardware/resources. Optimal performance is evaluated based on a variety
of criteria including convergence, required resources, and relative accuracy.

2. Overview of GSA methods

GSA method selection was based on popularity, documentation, open-source availability, and compu-
tational resource requirements. A total of five GSA methods were evaluated representing a range of
mathematical approaches, namely Sobol’ Indices, Morris Method, Extended Fourier Amplitude Sensi-
tivity Test (EFAST), Random Sampling-High Dimensional Model Representation (RS-HDMR), and
Derivative-Based Global Sensitivity Measure (DGSM). Each of these methods was analyzed using
sampling methods considered to be optimal by the literature, and a brief mathematical/conceptual
overview of each method is included. Table 1 compares various functionalities of each method along
with a reference for additional information, where the ability to estimate the first (Si), total (ST), and
higher order (n-order) sensitivity measures is noted. The first-order sensitivity measure is a parameter’s
estimated contribution to the variance of the model output independent of possible interaction with other
parameters. The total order sensitivity measure is a parameter’s estimated contribution to a model’s
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variance inclusive of interactions between all other model parameters. A method’s ability to estimate a
parameter’s n-order sensitivity measures allows for the inspection of the parameter’s contribution to the
model variance while including interactive effects from n number of parameters, where a second-order
interaction would yield a parameter’s estimated contribution inclusive of interaction from a second
parameter. Although the Morris method and the DGSM do not calculate first-order measures, these
methods were included due to their value as grouping/screening procedures where they are commonly
used as an initial step to reducemodel dimensionality prior to employingmore computationally expensive
variance-based methods (Saltelli et al., 2006, 2008). All investigated methods are readily implemented
using consumer-grade workstations (do not require HPC access) and are available in the open-source
Python library, SALib (Jon Herman, 2017).

2.1. Sobol’ indices: variance-based

This GSA method, originally formulated by Sobol’ (1990), applies analysis of variance to estimate the
significance of an input parameter based on first and total order indices. A significant advantage of the
Sobol’method is that higher-order indices can be calculated to further investigate parameter interactions.
This method measures the contribution of an input parameter by first determining the total variance of the
model throughout the sample space. Then by fixing a single parameter and evaluating the model
throughout the sample space again, a comparison can be made between the total variance of the model
and the variance with the single input being fixed. The significance of the fixed parameter is then based on
the difference between these two variances. The original Sobol’method used a Monte Carlo algorithm to
determine the first-order sensitivitymeasure estimates of an arbitrary group of parameters with respect to a
function f xð Þ decomposed into 2k summands, where k is the number of parameters in the function and
x¼ x1,x2,…,xk½ �. First-order indexes Si quantify the significance of a single, independent parameter on
the uncertainty of the model output.

Multiple modifications and contributions were made to the original algorithm by exploring various
sampling methods, estimators, capabilities, and limitations (Jansen et al., 1994; Jansen, 1999; Sobol’,
2001, 2005; Saltelli et al., 2010). An improved sampling method expanded on Sobol’s quasi-random
LPt-sequence (Sobol’ and Shukhman, 1995). Of these contributions, the Jansen (1999) and Saltelli et al.
(2010) publications are considered particularly noteworthy, where the Saltelli et al. (2010) approach
introduces an algorithm where first and total order indices can be calculated simultaneously while
utilizing the Jansen (1999) estimator. The total order index, ST , highlights the significance of a parameter
while also considering all k-number interactions with the other parameters with respect to the model
output. The distinction between a parameter’s first and total indices is significant in evaluating and

Table 1. Comparison of the GSA methods

Capabilities

First
order

Total
order n-order Quantitative Sampling method

Sample size
limitations

Algorithmic
basis Primary citation

Sobol Yes Yes Yes Yes Saltelli extension—Sobol’
sequence

No Variance Saltelli and
Annoni, 2010

Morris No Yes No No Campolongo—Trajectories No Derivative Campolongo et al.,
2007

EFAST Yes Yes Yes Yes Search-Curve—Saltelli
proposed transformation

Yes Variance Saltelli et al., 1999

HDMR Yes Yes Yes Yes Stratified latin hypercube Yes Variance Li et al., 2010
DGSM No Yes No No Morris—Trajectories No Derivative Sobol’ and

Kucherenkob,
2009
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identifying interactions with other parameters. If the first and total order indices are similar in value, then
minimal interaction is present. If the first and total order indices are significantly different, then the
parameter is interactingwith other parameters.While not explicitly available in the SALib library, it is also
possible for the Sobol’method to estimate a parameter’s significance based on its nth-order index, where
the index is based on the parameter’s own contribution and its interaction with all the other parameters at
the nth level, where n< k, with respect to themodel output, while if n¼ k the resulting estimation is simply
the total order index.

The Sobol’methodwas chosen for investigation based on its widespread use, the ability to explore nth-
order interactions, and its robustness. The specific implementation by Saltelli et al. (2010) with the total-
order effects determined using Jansen’s (1999) reversed estimator scheme was evaluated (Puy et al.,
2022). A brief mathematical overview begins with the decomposition form of the function in question
f xð Þ as shown in equation (1), where each term is square integrable over Ω,

f ¼ f 0 +
X

i
f i +

X
i

X
i < j

f ij +…+ f 1,2…k: (1)

Each term in equation (1) is obtained from the series of conditionals shown in equations (2a)–(2c),

f 0 ¼E Yð Þ, (2a)

f i ¼EX�i Xið Þ�E Yð Þ, (2b)

f ij ¼EX�ij Xi,Xj
� �� f i� f j�E Yð Þ (2c)

and so on for higher-order terms.
The partial variance is shown in equations (3a) and (3b),

Vi ¼VXi EX�i Xið Þ½ �, (3a)

V ij ¼VXiXj EX�ij Xi,Xj
� �� ��VXi EX�i Xið Þð Þ�VXj EX�j Y jXj

� �� �
… (3b)

and so on for higher-order terms.
The output variance of the function is given in equation (4),

V Yð Þ¼
X

i
V i +

X
i

X
i < j

V ij +…+V1,2…k: (4)

The first-order sensitivity index is given by equation (5), a ratio between the first-order partial variance
and the output variance,

Si ¼ Vi

V Yð Þ : (5)

The total variance is shown in equation (6), where N is the number of samples, A and B are sample
matrixes of sizeNxk.A ið Þ

B is amatrix where the ith column is taken frommatrixB, and all other columns are
that of matrix A,

VT ¼EX�i VXi X�ið Þð Þ¼ 1
2N

XN

j¼1
f Að Þj� f A ið Þ

B

� �
j

� �2

: (6)

The total sensitivity index for variable i is shown in equation (7), as a ratio between the total variance
and the output variance,

STi ¼
VT

V Yð Þ : (7)

Further reading and detailed derivations are provided by Saltelli et al. (2008, 2010).
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2.2. The Morris method: derivative-based

The Morris method is a one factor at a time (OFAAT) derivative-based approach to determine parameter
influence measures called elementary effects (Morris, 1991). Advancing beyond a simple OFAAT
method, the Morris method uses an average of these elementary effects evaluated at multiple points to
remove the localizing effects of a single samplemethod, where derivatives are taken at a single point in the
parameter space. The method is found to be efficient when examining datasets with many parameters The
Morris method exhibits a minimized computational cost when compared to variance-based methods
(Saltelli et al., 2008), but lacks the quantitative ability of the aforementioned Sobol’ method and is
therefore considered a qualitative method. The Morris method was chosen based on the reduced
computational cost of generating qualitative total order sensitivity measures and the method is commonly
used as a screening application to reduce model dimensionality prior to more detailed analysis with an
advanced GSA method.

Sampling methods for the Morris method create a trajectory on which the parameters are varied given
pseudo-random starting points. Improvements made on Morris’ original sampling method were formu-
lated by Campolongo et al. (2007), where the samples/trajectories are chosen to uniformly stratify the
dataset in p-levels, improving the sample space coverage and minimizing overlapping sequences. As an
addition to the originally proposedmethod, Campolongo et al. (2007) suggested taking the absolute value
of the calculated elementary effect. This method of using the absolute value is shown to improve the
accuracy of the predicted elementary effect when the model exhibits nonmonotonic behavior.
Equation (8)) shows the method in which the mean of the elementary effects of each variable is calculated
as proposed by Campolongo et al. (2007). Themean elementary effect is often compared to the total order
GSA measures estimated by variance-based methods (Campolongo et al., 2007; Saltelli et al., 2008;
Sobol’ and Kucherenkob, 2009). Where r in equation (8) is the number of trajectories or sample sets, and
EEj

i is the elementary effect determined from each trajectory for each input variable xi ¼ x1,x2,…,xk½ �
where k is the number of input parameters in f xð Þ,

μ∗i ¼
1
r

Xr

j¼1
EEj

i

�� ��: (8)

Equation (9) shows the method of calculating the standard deviation of the mean elementary effect.
This represents the magnitude of interactive effects between variable xi and all other parameters x�i,

σ2i ¼
1

r�1ð Þ
Xr

j¼1
EEj

i�μ
� �2

: (9)

The analytical derivative in equation (10) is themethod used to calculate the elementary effects.Where
Δ is a value contained in [1/ p�1ð Þ,…,1�1/ p�1ð Þ], where p is the level of discretization of the sample
set. Conceptually this is the partial derivative of the model where an input variable xi is changed by Δ,

EEi ¼ Y X1,X2,…,Xi�1,Xi +Δ,…,Xkð Þ�Y X1,X2,…,Xkð Þ½ �
Δ

: (10)

2.3. EFAST: Fourier transformation based

The FAST, originally proposed by Cukier et al. (1978)), uses Fourier transformation coefficients to
determine first-order sensitivity indices. Later the FAST method was expanded by Saltelli and Bolado
(1998) by implementing an improved sampling method and estimator of total order indices, referred to as
the EFAST method. For the first-order indices, it is suggested that the EFAST sensitivity measure is
comparable to that of Sobol’s first order, with a reduction in computational cost, while the total order may
differ based on the interdependencies of parameters (Saltelli et al., 1999). The EFASTmethod represents a
unique GSA method when compared to variance and derivative-based methods and the potential of
decreased computational time compared to Sobol’s method given the more deterministic sampling
scheme, while allowing for higher order terms to be included. The k-dimensional sample space is
explored using design points taken over a search curve to explore the input space with various frequencies
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ω1,ω2,…,ωkð Þ. These frequencies are selected to prohibit interference with one another, allowing for the
frequencies to respond uniquely to each input. A Fourier transformation is used on the search curve and
the resulting Fourier coefficients are used to calculate the variances required for the sensitivity indices.
Equation (11) shows the general form of the search curve proposed by Saltelli et al. (1999), where ωi are
the frequencies corresponding to each k-input, s is a scaler evaluated throughout the range �π < s< πð Þ,
and φ is a phase-shift coefficient randomly chosen between 0 < φ< 2πð Þ,

xi ¼ 1
2
+
1
π

sin ωis+ φið Þð Þ: (11)

Equation (12) shows that the function f sð Þ is a function of k-numbers of search curves, each evaluated
through the range of s, where k is the number of inputs,

f sð Þ¼ f x1 sð Þ,x2 sð Þ,…,xk sð Þð Þ: (12)

Equation (13) shows the method used to calculate the output variance of the model,

bD¼ 1
2π

Z π

�π
f 2 sð Þds� 1

2π

Z π

�π
f sð Þds

	 
2
: (13)

Equations (14) and (15) show how the Fourier coefficients are calculated to represent f sð Þ as a Fourier
series expansion,

Aj ¼ 1
2π

Z π

�π
f sð Þcos cos jsð Þds, (14)

Bj ¼ 1
2π

Z π

�π
f sð Þsin sin jsð Þds, (15)

and
Λj ¼A2

j +B
2
j : (16)

Equation (17) shows how the partial variance of each k-input is calculated using Λ, which is calculated
using equation (16) and where p is the number of higher harmonics,

Di ¼ 2
X+∞

p¼1
Λpωi : (17)

Equation (18) shows the method of determining the total variance (Homma and Saltelli, 1996; Saltelli
et al., 1999), which is the difference between the model’s output variance and the partial variance of all
parameters except the ith term,

DTi ¼D�D�i: (18)

The total and first-order indices are then calculated using equations (19) and (20), respectively,

STi ¼
DTi

D
(19)

and

Si ¼Di

D
: (20)

2.4. Random sampling-high dimensional model representation: meta-model approach

This method utilizes a meta-model approach where the randomly sampled data is represented by a
component function allowing the RS-HDMR method to be used on unstructured datasets. This is
particularly useful when the data has already been obtained and the particular sampling method/sequence
for the other methods was not utilized, whereas the other methods require specific sampling methods of
the inputs. This method first approximates a function representing the dataset using an expansion of a bias
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function in the form of cubic B-splines followed by improved estimations of the component function
using backfitting. Upon convergence of the component function, sensitivitymeasures are calculated using
the equations shown below. A complete derivation and explanation of the RS-HDMRmethod is provided
by Li et al. (2010). The RS-HDMR method was selected given the level of versatility the method offers
when applied to existing datasets or datasets that would be too computationally expensive to obtain using

specific sampling methods. The sensitivity indices are represented here as total Spj

� �
, equation (21),

structural first order Sapj

� �
, equation (22), and correlated Sbpj

� �
, equation (23) contributions.

Spj ¼
PN

s¼1f pj x sð Þ
Pj

� �
y sð Þ � y

� �
PN

s¼1 y sð Þ �y
� �2 , (21)

Sapj ¼
PN

s¼1 f pj x sð Þ
pj

� �� �2

PN
s¼1 y sð Þ �y

� �2 , (22)

Sbpj ¼ Spj �Sapj : (23)

2.5. Derivative-based global sensitivity measure

The DGSMmethod was proposed by Sobol’ and Kucherenkob (2009) as an advancement to the original
Morris method. Their work provides a link between the importance measure and the total sensitivity
index. The DGSMmethod is selected here based on the prospect of improving the quantitative ability of
the Morris method for total order sensitivity measures leading to improved screening results, where it is
most utilized while retaining the relatively low computational cost compared to the more complex
methods. Differentiating the DGSM from the improved Morris method proposed by Campolongo
et al. (2007), the partial derivatives of a function’s local variance are squared, as opposed to taking the
absolute value. Similar to equation (8) in the Morris method, equation (24) shows the method of
calculating the importance measure, νi for each variable. The normalization of this importance measure
is shown in equation (25), where the link between the importance measure and Sobol’s total sensitivity
index is provided in Sobol’ and Kucherenkob (2009),

vi ¼
Z
Hn

∂f
∂xi

� �2

dx: (24)

Equation (25) shows the link between the importance measure and the total sensitivity index for
variable i, where D is the total output variance shown in equation (6),

Stoti ≤
νi
π2D

: (25)

3. Technical approach

The convergence, performance, and computational resource requirements for the GSA methods were
evaluated by applying each method to three case studies following the procedure in Figure 1. These case
studies consisted of twowidespread structural mechanics analysis methods, FE and peridynamics (PD), with
varying model fidelity, dimensionality, expected parameter interactions, and complexity. Case 1 was a high-
fidelity model with complex, multiple interacting damage mechanics, and sufficient dimensionality relative
to computational structural mechanics problems that could be evaluated on consumer-grade hardware. Case
2 was known to have interacting parameters and case 3 was chosen to evaluate the effectiveness of GSA on
PD models which included modeling parameters in addition to material property parameters. Surrogate
modelswere formulated for each case studyusing datasets calculatedwith the high-fidelitymodels. Surrogate
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modeling allows for large sample sizes to be generated for the GSA at a comparably minimal computational
cost relative to collecting the necessary data directly from the high-fidelity models.

3.1. Data acquisition from case study models

The study datasets were obtained from validated macro and microstructural mechanics models created
using two different software packages, Abaqus 2019 by Dassault Systèmes and Peridigm (Parks et al.,
2012), a PD code developed at Sandia National Laboratories (Silling and Lehoucq, 2010). Each case was
chosen to represent a unique analysis condition for GSA.

3.1.1. Case 1: layered structure under four point bend loading (FE FPB 41)
The most complex case study is the 41-parameter FE macroscale model analyzed using Abaqus. This
model represents a layered metal/composite Four-Point Bend (FPB) specimen, fabricated from four
different Eglass fabric/epoxy composite lamina cocured to a 5456 aluminum substrate (Figure 2a). The

Figure 1. The technical approach used for evaluating the GSA methods.
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simulation exhibits complex, progressive failure with nonlinear behavior (Figure 2b). This high-fidelity
model captures five different damagemechanisms that are each explicitly modeled: matrix cracking, fiber
fracture, delamination within the composite, disbond at the composite/metal interface, and plastic
deformation. All material properties included in the model are GSA parameters and most are described
by sparse and/or disparate data. The goal of GSA was to determine the most influential parameters on
damage tolerance to inform focused experimental testing to fully characterize all dominant parameters.
Further details of the model development and validation are available in Arndt et al. (2022). Initial
simulation indicated that plasticity in the metal significantly dominated damage tolerance, followed by
shear in the composite. Therefore, it is expected that GSAwill indicate that themost influential parameters
represent these two damage mechanisms. This model was chosen due to its complex structural behavior
and large number of parameters. This case represents the limit of computational time per single analysis
and a number of parameters to feasibly generate an adequately populated dataset for surrogate modeling
on a commercially available desktop computer.

Table 2 provides the parameter number, description, mean value, and sampling range for each
parameter used to generate the dataset for this case. Given the sparseness of the data, the mean values
were used to validate themodel and a range of ± 20% of themean values, representing a z-score of 2 for an
assumed 10% standard deviation representing typical material variability (Mead et al., 2012), was
assigned to each parameter to create the sampling range for both surrogate model development and
GSA sampling, This z-score was assumed to capture adequate parameter variation which is critical for
GSA. The aluminum substrate is defined using an elastic-plastic Johnson Cook constitutive material
model (X0–X4). All interfaces between lamina (interlaminar) and the composite/metal (bimaterial) are
explicitly modeled with cohesive elements using a Cohesive Zone Model (CZM). Cohesive elements are
defined with maximum principal stress for damage initiation, mixed-mode critical strain energy release
rate for damage propagation, and element deletion to represent progressive failure (X29–X40). Each of
the lamina types is defined using a ContinuumDamageModel (CDM) to capture the in-plane failure (X5–
X28). The total energy absorbed by both damage and plastic deformation was cumulative throughout the
analysis and chosen as the output value to be evaluated with GSA due to its ease of automated extraction
and correlation to damage magnitude.

3.1.2. Case 2: double cantilever beam with epoxy adhesive (FE DCB 9)
This nine parameter macroscale FE model created in Abaqus represents a double cantilever beam (DCB)
specimen fabricated from 5456 aluminum adherends bonded by a thermoset epoxy (Figure 3). DCB

Figure 2. (a) Solid model for the damage tolerance of a metal/composite cocured structure. (b)
Representative example of simulated composite failure using the finite element model.
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Table 2. Parameter descriptions and ranges used in the FE FPB model study

Parameter
number Description Units Min. value Mean value Max value

X0 Youngs modulus Aluminum 5456-
H116 (Al-5456)

Gpa 55.70 69.63 83.56

X1 Poissons ratio Al-5456 — 0.23 0.29 0.35
X2 Yield stress Al-5456 MPa 164.35 205.44 246.53
X3 Johnson cook strength coefficient

Al-5456
MPa 571.37 714.22 857.06

X4 Johnson cook strain hardening
exponent Al-5456

— 0.49 0.61 0.73

X5 Youngs modulus E-BX 1200 Gpa 15.44 19.30 23.16
X6 Tensile strength E-BX 1200 MPa 292.31 365.38 438.46
X7 Poissons ratio E-BX 1200 — 0.12 0.15 0.18
X8 Intralaminar fracture toughness

E-BX 1200
N/m 21015.22 26269.03 31522.83

X9 Youngs modulus E-BX 1800 GPa 15.44 19.30 23.16
X10 Tensile strength E-BX 1800 MPa 292.31 365.38 438.46
X11 Poissons ratio E-BX 1800 — 0.12 0.15 0.18
X12 Intralaminar fracture toughness

E-BX 1800
N/m 21015.22 26269.03 31522.83

X13 Youngs modulus Hexcel 7500 GPa 15.61 19.51 23.41
X14 Tensile strength Hexcel 7500 MPa 257.56 321.95 386.34
X15 Poissons ratio Hexcel 7500 — 0.12 0.15 0.18
X16 Intralaminar fracture toughness

Hexcel 7500
N/m 14010.15 17512.68 21015.22

X17 Youngs modulus Hexcel 7781 GPa 24.27 30.33 36.40
X18 Tensile strength Hexcel 7781 MPa 386.06 482.58 579.10
X19 Poissons ratio Hexcel 7781 — 0.12 0.15 0.18
X20 Intralaminar fracture toughness

Hexcel 7781
N/m 14010.15 17512.68 21015.22

X21 Shear modulus of laminate GPa 4.41 5.52 6.62
X22 Shear strength of laminate MPa 28.46 35.57 42.69
X23 Shear damage parameter — 0.22 0.28 0.33
X24 Maximum shear damage — 0.57 0.71 0.86
X25 Maximum shear plastic strain — 0.02 0.02 0.02
X26 Effective shear yield stress MPa 28.46 35.57 42.69
X27 Coefficient in shear hardening

equation
GPa 3.58 4.48 5.38

X28 Power term in shear hardening
equation

— 0.58 0.73 0.87

X29 Youngs modulus for intralaminar
adhesive resin (IAR)

GPa 55.15 68.94 82.73

X30 Nominal stress normal-only mode
IAR

MPa 41.99 52.49 62.99

X31 Nominal stress first/second direction
IAR

MPa 26.91 33.63 40.36

Continued

Data-Centric Engineering e28-11

https://doi.org/10.1017/dce.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.23


testing is a standard method for obtaining mode I fracture properties and DCB simulation is used to
explore the effects of varying material properties on disbond between the adherends. This model has the
lowest dimensionality of the case studies and the fracture behavior is straightforward and well-
characterized. Full model details and validation are provided in Smith (2021). This model was chosen
to explore the possibility that a screening method may be adequate for lower dimensionality and less
complex GSA scenarios, allowing reduction in computational resource requirements if accuracy is
maintained. The parameter information is provided in Table 3. To test the capability of the GSA methods
to encompass a larger parameter space relative to values, a range of ± 30% of the means (z-score of 3) was
applied for this case. Based on engineering judgment, the mode I energy release rate and adherend
stiffness are expected to dominate the parameter space.

The aluminum adherends were defined using linear-elastic constituent properties as plastic deform-
ation was negligible during experimental testing. The cohesive elements used to represent the thermoset
epoxywere defined using CZMas in Case 1 and propagation of damagewas defined usingmode-I critical
strain energy release rate. The model output was again the total damage energy absorbed.

Table 2. Continued

Parameter
number Description Units Min. value Mean value Max value

X32 Normal mode fracture energy IAR N-m/m2 1064.77 1330.96 1597.16
X33 Shear mode fracture energy first/

second direction IAR
N-m/m2 2324.00 2905.00 3486.01

X34 Mixed mode behavior for
Benzeggagh-Kenane IAR

— 2.08 2.60 3.12

X35 Youngs modulus for composite/
metal interface adhesive resin
(CMAR)

GPa 55.15 68.94 82.73

X36 Nominal stress normal-only mode
CMAR

MPa 84.32 105.40 126.47

X37 Nominal stress first/second
direction CMAR

MPa 53.81 67.27 80.72

X38 Normal mode fracture energy
CMAR

N-m/m2 1064.77 1330.96 1597.16

X39 Shear mode fracture energy first/
second direction CMAR

N-m/m2 2324.00 2905.00 3486.01

X40 Mixed mode behavior for
Benzeggagh-Kenane CMAR

— 2.08 2.60 3.12

Figure 3. FE model of a DCB test configuration.
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3.1.3. PD uniaxial tensile test (PD uniaxial 18)
This 18 parameter microscale model predicts the Young’s modulus of a zirconium diboride (ZrB2) tensile
specimen as a function of porosity using PD to test theGSAmethods on a distinctly differentmethodology
and size scale than the FE case studies. PD has been successfully demonstrated to predict complex
microcrack behavior in composites and metals, as well as unit cells containing voids and cracks (Askari
et al., 2008; Madenci et al., 2018). In PD, damage is incorporated into the force function by allowing
bonds to break after a certain specified elongation allowing for the inherent inclusion of crack networks in
analysis. PD is becoming more widespread for problems displaying multiple crack initiation and
propagation, therefore, this analysis method was chosen as an alternative approach to FE. The model
was recreated based on a problem from the literature (Guo et al., 2008) and was validated using all four of
the reported specimens with varied void density (Figure 4).

The ZrB2 was modeled as a unit cube to minimize computational cost with minimal error given the
specimens’ linear-elastic behavior and the quasistatic nature of the loading condition, as the original
specimen dimensions were unknown. The voids were introduced in the gauge region of the model
specimen based on percent volume where the void’s position and radius were chosen based on a defined
Gaussian distribution. The respective void parameters and distribution parameters are shown in Table 3
(X1–X11). GSAwas performed to evaluate the effect of the voids and their geometric parameters on the
effective stiffness of the uniaxial tensile ZrB2 specimen. The mean parameter values provided in Table 4
are the arithmetic means of the input to the four validation models and the data range was ± 20% of this
mean value. PD modeling parameters were included in the GSA for this case. The parameters reported as
integers comply with the required format of the PD code. The horizon value was based on Peridigm
analysis requirements (Parks et al., 2012), and the maximum value was limited to 0.2 due to the rapidly
increasing computational cost above this value. Note that some of the reported values in Table 4 lack units
as the values were normalized to the scale of the model. Because the model was developed as a unit cube,
normalization was needed to preserve the ratios between void parameters and the model dimensions as
well as eliminate the use of exceedingly small values. For this case, a priori prediction of the dominant
parameters was challenging as the influence of the modeling parameters was uncertain.

3.2. Surrogate modeling

The computational time required for the parameter sampling needed for GSA using high-fidelity models
is typically prohibitive, therefore surrogate models are developed to obtain the large data set needed for
GSA. A surrogate model is an approximation of a complex system, based on a limited number of data

Table 3. Parameter descriptions and ranges used in the FE DCB 9 model study

Parameter
number Description Units Min. value Mean value Max value

X0 Youngs modulus Al MPa 49700 71000 92300
X1 Poisson’s ratio Al — 0.231 0.33 0.429
X2 Youngs modulus cohesive resin

(CR)
MPa 1148 1640 2132

X3 Shear modulus Dir-1 CR MPa 4417 6310 8203
X4 Shear modulus Dir-2 CR MPa 4417 6310 8203
X5 Nominal stress normal-only

mode CR
MPa 48.3 69 89.7

X6 Nominal stress first direction CR MPa 28 40 52
X7 Nominal stress second direction CR MPa 28 40 52
X8 Normal mode fracture energy CR N-m/m2 0.42 0.6 0.78
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Figure 4. PD model and validation results.

Table 4. Parameter descriptions and ranges used in the PD uniaxial 18 model study

Parameter
number Description Units

Min.
value

Mean
value

Max
value

X0 Point volume (normalized to scale) — 1.90E�04 2.38E�04 2.86E�04
X1 Void density % 0.04 0.05 0.06
X2 Center of void distribution X-axis

(normalized to scale)
— 0.40 0.50 0.60

X3 Center of void distribution Y-axis
(normalized to scale)

— �1.09 �1.36 �1.63

X4 Center of void distribution Z-axis
(normalized to scale)

— 0.40 0.50 0.60

X5 Mean void radius (normalized to scale) — 0.04 0.05 0.06
X6 Maximum variation of void radius from

mean
% 0.16 0.20 0.24

X7 Void convex hull discretization — 16.00 20.00 24.00
X8 Standard deviations for void

distribution X-axis
— 1 2 3

X9 Standard deviations for void
distribution Y-axis

— 1 2 3

X10 Standard deviations for void
distribution Z-axis

— 1 2 3

X11 Standard deviations for void radius — 1 2 3
X12 Density of ZrB2 (voidless) kg/m3 4.54E+03 5.68E+03 6.82E+03
X13 Bulk modulus of ZrB2 (voidless) Pa 1.86E+11 2.32E+11 2.78E+11
X14 Shear modulus (voidless) Pa 1.57E+11 1.96E+11 2.35E+11
X15 Hourglass coefficient — 0.020 0.025 0.030
X16 Horizon radius (normalized to scale) — 0.11 0.15 0.2
X17 Number of loading steps in analysis — 1 3 5
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points, that predicts the relationship between the system inputs and outputs using a mathematical
formulation. With proper construction, surrogate models accurately mimic the behavior of the high-
fidelity simulation at a much lower computational cost (milliseconds versus minutes/hours per simulation
for the three cases).

To formulate the surrogate models, output data was generated at points identified using stratified Latin
hypercube sampling (Shields et al., 2015; Shields and Zhang, 2016). This process was automated through
Distribution-based Input for Computational Evaluations (DICE) developed by the Naval SurfaceWarfare
Center Carderock Division (NSWCCD) (Nahshon andReynolds, 2016). DICE is a standalone executable
that generates an array of input vectors using a specified sampling method for the provided parameter
ranges and distributions.

The surrogate models were trained on these datasets using forward-feed neural networks by means of
TensorFlow V2.11 (Abadi et al., 2016). The datasets were broken into three subsets, the training dataset,
the validation dataset, and the testing dataset. The training dataset was used to train the neural network
(NN) and the validation dataset acted as a benchmark from which accuracy metrics were determined to
evaluate the current training iteration of the surrogate model. The validation dataset is determined from
random sampling during each training iteration where the data is shuffled and resampled before each
iteration. The training/validation dataset were allocated such that the training and validation datasets were
80 and 20% of the training/validation (parent) dataset, respectively. The choice of the training/validation
split percentages was based on a traditional ratio when using NN’s, where an 80/20 split was known to
result in abundant training data while using a large enough portion of the sample space for validation to
prevent overfitting.

This process was repeated until the root-mean-square error (RMSE) of the NN’s estimation of the
entire validation dataset was less than 5%. RMSE was chosen as it is more sensitive to higher magnitude
errors than mean absolute error. Upon the convergence of the NN validation metric the testing dataset that
waswithheld from training of theNNwas used to predict values for eachmodel, where the accuracy of the
predictionsmade by theNNversus the actual were shown to agreewell with the validation accuracy found
during training. This agreement between the validationmetric and the accuracy of the predictionsmade by
the NN from the testing data versus the actual values refute overtraining of the NN model. Parameters of
each of the NN surrogates are shown in Table 5, where the number of hidden layers and the constant
number of neurons is specified. The input layer was equal to the number of model parameters. An output
layer of a single neuron completed the NN’s architecture, determined by utilizing a grid search method,
where the best-performing NN for each model was the resulting surrogate.

Table 6 shows the number of runs used to train the NN surrogate models, the training dataset sizes, the
testing dataset sizes, and the RMSEs of the NN’s estimations resulting from the testing datasets. The size
of the dataset generated from each parent model was dictated by the model complexity, where the parent
dataset used to train and validate the NN increased relative to model dimensionality. The models with a
higher number of parameters require considerably more parent runs to achieve an accurate surrogate
model. The computational time to generate an adequate dataset is further impacted when considering that
the models with a larger number of parameters are more complex for the cases investigated, leading to a
much higher computational time per single analysis of the original models.

Table 5. Architecture of the Forward Feed Neural Network used for surrogate modeling, all of which
have the same number of neurons for each layer where the number of hidden layers is specified

Model Neurons Layers Learning rate Drop out Max epochs Optimizer Activation function

FE 4PB 41 576 2 0.00225 0.1 100 Adam ReLU
FE DCB 9 256 1 0.00075 0.1 200 Adam ReLU
PD Uni 18 384 1 0.0005 0.4 200 Adam ReLU
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3.3. Sampling for GSA

Once the surrogate model for each case was formulated, these surrogate models were used to collect
datasets for GSA according to the sampling scheme specific to eachGSAmethod in SALib. The sampling
strategies for the Sobol’, Morris, EFAST, and DGSM methods are identified in their primary citations
(Table 1). The HDMR method allows for any appropriate sampling method, and the stratified Latin
hypercube method was applied for consistency. Parameters were normalized within the range of 0–1 to be
evaluated by the NN, where normalized parameters increase the rate of training convergence. To
determine the convergence rate, the sample size was increased between 300 and 500,000 for each
GSA method when possible. Due to numerical or hardware limitations, some sample sizes were not
possible when implementing certain methods. Specifically, the EFAST method has limitations at smaller
sample sizes, while some sample sizeswere too large for theHDMRmethodwhen the available RAMwas
insufficient (<128 GB).

4. Case studies results

4.1. Convergence study

The number of samples at convergence was determined for each method and summarized in Table 7.
Convergence is determined as the number of samples required for each method to produce constant
estimations (within 5% for two consecutive increases in sample size) for all parameters with a sensitivity
measure contributing more than 10% to the model output. The rate of convergence for each method is
visualized by heatmaps that report the absolute difference as a percentage between consecutive sample
sizes (Figures 5 and 6). The heatmaps present convergence rates for the individual parameters estimated to
contribute more than 10%, an average rate for all parameters contributing greater than 10% (GT 10%), an
average rate for parameters that were identified to be nonnegligible by inspection of the indices (Top 10 or
Top 3), and an average rate for all parameters (All). In general, more parameters resulted in larger datasets

Table 6. The number of parent model runs required to train the surrogate models, the test/train split,
and the RMSE error of the final surrogate model

Model Training dataset size Testing dataset size RMSE testing (%)

FE 4PB 41 4000 1000 1.71
FE DCB 9 1200 300 2.59
PD Uni 18 2400 600 3.00

Table 7. The number of samples for convergence required by each method to estimate first and total
order GSA measures for parameters contributing more than 10% to the model output

Cost of convergence

Model Sobol’ Morris EFAST HDMR DGSM

FE FBP 41: First order 500K+ N/A 500K+ 2500 N/A
FE FBP 41: Total order 50K 5000 500K+ 50K+ 25K
FE DCB 9: First order 1000 N/A 2000 300 N/A
FE DCB 9: Total order 1000 300 2000 300 300
PD uniaxial 18: First order 200K+ N/A 25K 750 N/A
PD uniaxial 18: Total order 50K 10K 25K 5000 10K

Note. + indicates that the convergence criteria were not achieved.
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to achieve convergence. This finding is important as GSA can provide relevant information without
convergence for some objectives. For example, if the objective is to identify the most dominant
parameters, this information will be evident at a much smaller computational cost than if the specific
ordering or converged influence values for all parameters are needed.

4.2. Case 1: FE FPB 41

The converged first and total order sensitivity measures calculated by each GSA method for Case 1 are
shown in Figure 7a,b, and quantitative sensitivity measures are provided in Table 8. Each of the GSA
methods produced similar estimations for first-order indices when available. Total indices differed with
HDMR and DGSM predicting higher measures than Sobol and EFAST for the most influential parameter
(X2).Meanwhile, theMorris method differentiated the dominant parameters but generally underpredicted
parameters of greater significance and overpredicted parameters with less significance as compared to the
other methods.

Parameters X2, X0, X4, and X31 have the largest overall influence on the model’s output as indicated by
both total and first-order indices. Allmethods ranked these as the top four influential parameters, although the
order of importance determined by the Morris method deviated from the other methods for I-3 and I-4 (the
third and fourthmost influential parameters, respectively). TheMorrismethod switched the importanceofX4
and X31; however, there is a small difference in sensitivity measure between the two, indicating that they are
similar in importance. Similarly, the I-5 (the fifth most influential parameter) ranking deviated with DGSM
and EFAST predicting X33 and the other methods selecting X28. As seen in Table 8, there is a small
difference between the two indices, again indicating that these two parameters are similar in importance.

The HDMR method predicted some interaction between parameters as indicated by the difference
between the total and first-order measures. Meanwhile, the Sobol’ and EFASTmethods calculated nearly
identical first and total values, indicating minimal, if any, parameter interaction.

4.3. Case 2: FE DCB 9

The converged first and total order sensitivity indices for the FE DCB 9 model are shown in Figure 8a,b,
with the quantitative values provided in Table 9. As with Case 1, all methods predicted similar results for

Figure 5. Heat maps for total order convergence.
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Figure 7. (a) Values of total order SAmeasures estimated by each method for the FPB A-41model using a
sample size of 50,000 for the HDMR method and converged values at 500,000 for all other methods.
(b) Values of first-order SA measures estimated by each method for the FPB A-41 model using a sample

size of 50,000 for the HDMR method and converged values at 500,000 for all other methods.

Figure 6. Heat maps for first-order convergence.
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first-order measures, when available, with differences noted in the total measures. The Morris method
continued a trend of overestimating the less significant parameters indices while underestimating the
significant parameter indices relative to the other methods, while in general predicting the same set of
most influential parameters.Meanwhile, theDGSMmethod again predicted sensitivitymeasures 20–40%
higher than the other methods. However, for Case 2, the HDMR predictions aligned with Sobol’ and
EFAST sensitivity measures rather than the DGSM predictions as in Case 1.

For Case 2, parameter X0 was determined to be the most significant parameter with little interaction
with other parameters, shown by the large and similar magnitudes for both total and first-order measures.
All methods identified the same first three influential parameters, X0, X1, and X8, with the DGSM
switching the order of X1 andX8.Given the extremely small difference in sensitivitymeasures, indicating
nearly equal importance between these two parameters, this difference is considered insignificant.

4.4. Case 3: PD uniaxial 18

Total and first-order sensitivity measures for Case 3 are shown in Figure 9, with quantitative values
provided in Table 10. As with Case 2, it was observed that both theMorris and the DGSM varied from the
other methods for the total order estimations while all other predictions were nearly identical. Parameters
X0, X15, and X14 were the most dominant with minimal parameter interaction indicated by the relatively
large and similar estimations for both total and first-order measures. The DGSM method alone ranked
X15 over X0 as the most influential parameter. All methods except for the DGSM predicted X13 as the
fifth most influential parameter, which instead predicted X16.

5. Discussion

5.1. Convergence

As expected, the screening methods converged faster while identifying the same most influential
parameters as the quantitative methods, highlighting their primary advantage. Both methods were
significantly less computationally demanding than the Sobol’ and EFAST methods for all cases. When
comparing the screening methods to the HDMRmethod, both methods were more efficient for case 1 and
equally efficient for case 2, however, both required double the amount of data for case 3 convergence. It
should be noted that the input to the HDMRmethod is the dataset obtained directly from the FE analysis,
and the code creates its own surrogate model for GSA. Meanwhile, all other methods use the same ANN
surrogate model for each case formulated according to Section 3.2. When directly comparing the two
screening methods, the Morris method is significantly more efficient for case 1, the same for case 2, and
slightly less efficient for case 3.

When comparing the quantitative methods, Sobol’ and EFAST were the most computationally
demanding of all cases. This result was expected for Sobol’, and EFAST was expected to be more
computationally efficient than Sobol’ for first-order results with total order efficiency related to

Table 8. Top 5 influential parameters for Case 1 ranked in order from most (I-1) to less (I-5)
significant by each method at converged values

Method I-1 I-2 I-3 I-4 I-5

Order ST Si ST Si ST Si ST Si ST Si

Sobol’ X2 (0.38) X2 (0.37) X0 (0.14) X0 (0.14) X4 (0.12) X31 (0.11) X31 (0.11) X4 (0.10) X28 (0.04) X28 (0.03)
EFAST X2 (0.38) X2 (0.37) X0 (0.14) X0 (0.13) X4 (0.12) X31 (0.11) X31 (0.11) X4 (0.10) X33 (0.04) X28 (0.03)
HDMR X2 (0.47) X2 (0.37) X0 (0.18) X0 (0.14) X4 (0.14) X31 (0.11) X31 (0.13) X4 (0.10) X28 (0.05) X28 (0.03)
Morris X2 (0.26) — X0 (0.16) — X31 (0.15) — X4 (0.14) — X28 (0.08) —

DGSM X2 (0.48) — X0 (0.18) — X4 (0.15) — X31 (0.14) — X33 (0.04) —
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interdependencies. However, the EFAST method required the same number of samples for first-order
convergence in case 1 as the Sobol method, double the convergence requirement for case 2, and was only
more efficient for case 3, even though minimal parameter interactions were noted for all cases. Regarding
total indices, EFASTwas substantially higher than both other quantitative methods for cases 1 and 2, and
lower than Sobol’ but significantly higher than HDMR for case 3. HDMR required the lowest number of

Figure 8. (a) Converged values of total order SA measures estimated by each method for the FE DCB
9 model using a sample size of 75,000 for the HDMR method and 200,000 for all other methods.

(b) Converged values of first-order SAmeasures estimated by each method for the FEDCB 9model using
a sample size of 75,000 for the HDMR method and 200,000 for all other methods.

Table 9. The most influential parameters for Case 2 ranked in order from most (I-1) to less significant
(I-3) by each method at converged values

Method I-1 I-2 I-3

Order ST Si ST Si ST Si

Sobol’ X0 (0.91) X0 (0.9) X1 (0.05) X1 (0.05) X8 (0.05) X8 (0.04)
EFAST X0 (0.91) X0 (0.89) X1 (0.05) X1 (0.05) X8 (0.05) X8 (0.04)
HDMR X0 (0.92) X0 (0.89) X1 (0.05) X1 (0.05) X8 (0.05) X8 (0.04)
Morris X0 (0.67) — X1 (0.16) — X8 (0.14) —

DGSM X0 (1.13) — X8 (0.07) — X1 (0.06) —
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Figure 9. (a) Converged values of total order SA measures estimated by each method for the PD
uniaxial18 model using a sample size of 50,000 for the HDMRmethod and 200,000 for all other methods.
(b) Converged values of first-order SA measures estimated by each method for the PD uniaxial18 model

using a sample size of 50,000 for the HDMR method and 200,000 for all other methods.

Table 10. Dominant parameters for PD uniaxial 18 ranked in order from most (I-1) to least (I-5)
significant by each method

Method I-1 I-2 I-3 I-4 I-5

Order ST Si ST Si ST Si ST Si ST Si

Sobol’ X0 (0.46) X0
(0.43)

X15
(0.26)

X15
(0.22)

X14
(0.19)

X14
(0.18)

X1
(0.08)

X1
(0.05)

X13
(0.05)

X13
(0.04)

EFAST X0 (0.46) X0
(0.43)

X15
(0.26)

X15
(0.22)

X14
(0.19)

X14
(0.17)

X1
(0.09)

X1
(0.06)

X13
(0.05)

X13
(0.04)

HDMR X0 (0.45) X0
(0.43)

X15
(0.26)

X15
(0.24)

X14
(0.19)

X14
(0.18)

X1
(0.08)

X1
(0.05)

X13
(0.04)

X13
(0.04)

Morris X0 (0.33) — X15
(0.25)

— X14
(0.21)

— X1
(0.13)

— X13
(0.09)

—

DGSM X15
(0.65)

— X0 (0.56) — X14
(0.24)

— X1
(0.11)

— X16
(0.06)

—

Data-Centric Engineering e28-21

https://doi.org/10.1017/dce.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.23


samples in all cases, except for first-order case 1 convergence which was equivalent to Sobol’. As
previously noted, HDMR used a different surrogate model than the other methods.

Comparing the first and total order convergence results, it is shown that the first order measures
converged equal to or faster than the total order measures, except for the Sobol’method. Because the total
order measure is a sum of the first order measure and all interdependent measures, The SALib library
version of the Sobol’ method calculates the first and total order measures simultaneously using identical
samplematrices, eliminating implementation as the source of this finding. It was observed that the EFAST
method required the same number of samples to converge for both first and total order for each of the three
cases, where the HDMR method converged more rapidly for the first order than the total order GSA
measures for case 1 and 3 and equally for case 2.

The trend for CoC increased as a function of the number of parameters, with two exceptions caused by
numerical instability. For Case 3, the Morris method exhibited a single deviation for one of the dominant
parameters with an error >10% from the converged sensitivity value in the 7500–10,000 sample range
(Figure 2), resulting in the Case 3 CoC to be greater than the Case 1 CoC as a result. Instability in
convergence was also noted in the Sobol method for cases 1 and 3 where the dominant parameters
oscillated about the converged value after 5000 samples until consistently predicting the converged value
at 50,000 samples for both cases.

5.2. Parameter ordering

Tables 8–10 show that all methods predicted the same most dominant parameters for all cases. For case
1 (Table 8), all quantitative methods predicted the same ordering and nearly identical measures. The
HDMR method suggested stronger interactions between the parameters indicated by the increased total
order measures relative to first-order measures. The screening methods exhibited minor discrepancies
from the quantitative methods, namely X4 and X31 were switched by the Morris method and X33 was
ranked more influential than X28 by DGSM. These discrepancies were considered to be insignificant as
bothX4 andX31 had nearly identical measures andX28 andX33 had relatively small measures compared
to the top four. As previously stated, a prior UQ study by Arndt et al. (2022) concluded that only the top
four parameters significantly influenced the prediction of damage tolerance. Additionally, the predicted
parameters align with the Arndt et al findings that aluminum and composite shear plasticity are the
dominant failure mechanisms. The top three parameters represent aluminum properties and the next three
are shear plasticity properties of the resin.

All methods predicted a single dominant parameter, X0 (the Young’s modulus of the aluminum) for
case 2 (Table 9) followed by the Poisson’s ratio for the aluminum and the critical strain energy release rate
for the adhesive resin (X1 and X8, respectively). From an engineering perspective, the deformation in the
aluminum caused by the effective bending stiffness of the adherends (X0) greatly affected the stress
concentration at the delamination front overwhelming the importance of the Mode I fracture energy of
adhesive (X8). Surprisingly the Poisson’s ratio (X1) and X8 were ranked as similarly important with all
methods except DGSMpredicting X1 as slightly more influential. However, all parameters after X0 had a
nearly identical and significantly low measure relative to X0.

For case 3, all methods predicted identical dominant parameters except for the DGSM method
(Table 10). DGSM results for this case indicated the largest discrepancy in the entire study. Parameters
X15 and X0 were switched and assigned nearly identical measures while all other methods ranked X15
first by an appreciable margin over X0. Additionally, DGSM predicted X16 in place of X13 which is
considered insignificant given the lowmeasures after the thirdmost influential parameter. As this casewas
chosen to investigate a problem with modeling parameters in addition to material properties, it is
interesting to note that the top two parameters are modeling parameters, the hourglass coefficient
(X15) and point volume (X0). It was not surprising that the point volume would have a significant effect
on the stiffness of the specimen as this parameter effects the computed density in the energy-based
formulation. The sensitivity to X0 was also noted during model construction.
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5.3. Method selection

As methods predicted similar results when identifying the most dominant parameters, method selection is
dependent on the information required from the GSA and available computational resources. The Sobol’
method requires the most computational resources in general while providing the option for higher-order
investigation.When this capability is needed, one option to significantly reduce computational demand is to
first use a screeningmethod to eliminate parameterswith little influence on the output. TheSobol’method can
then be performed on the reduced parameter space to obtain more detailed, higher-order information on the
remaining parameters. TheMorris method exhibited amuch faster rate of convergence for all test caseswhile
identifying the same dominant parameters as the quantitative methods. Therefore, this method would be
efficient at reducing the parameter space prior to quantitative GSA and especially effective when long-
running, high-fidelity models are used to generate the dataset. Other screening applications are identification
of the significant parameters to inform focused design, analysis, optimization, and UQ.

Both the Morris method and the Sobol’ method require a specific sampling method to be optimally
efficient. Therefore, method selection must be determined prior to data generation directly from the high-
fidelity models or the sample data determined from a surrogate model following the sample scheme. For
existing data sets, the HDMRmethod uses any random or quasi-random sampling method and converges
relatively quickly compared to the other quantitative methods. Therefore, the HDMR method can be
applied to experimental test data or other cases with alternative data sampling. However, the HDMR
method is limited by RAM capacity, prohibiting large sample sizes without access to HPC. Both the
DGSM and the EFAST method performed adequately but with no clear advantage and being limited by
sample size, respectively.

5.4. Limitations

The present study is limited to three test cases with simulation times that could be feasibly sampled using a
typical desktop computer. Two common analysis methods were investigated, however, the field
of structural mechanics encompasses methodology ranging from analytical solutions to complex
high-fidelity modeling. Different mathematical formulations, higher dimensionalities and parameter
interactions, and output requirements may necessitate a more advanced or specialized GSA method.
An open-source code was utilized due to its availability but limits the study as other GSA packages were
not compared. For example, noteworthy methods not included in this study are the Bayesian method
(Oakley and O’Hagan, 2004), the generalized Sobol’method for models with multiple outputs (Gamboa
et al., 2014), and the Cramér vonMisesmethod (Gamboa et al., 2018), where the last two of thesemethods
can be explored using the open-source Python package UQpy (Olivier et al., 2020). Additionally, the
DAKOTA software developed and maintained by Sandia National Laboratory (Adams et al., 2021)
provides many options for sensitivity analysis, UQ, and optimization. Hardware limitations were noted
with the HDMRmethod, where limited RAMcapacity hindered the convergence study. As the goal of this
study was to investigate analysis that could be performed on a typical desktop, HPC was not utilized and
would remove this limitation.

6. Conclusions

The full process to perform GSA was presented in a general manner for nonexperts to inform method
selection by compiling resources for additional study, highlighting a user-friendly Python package that
can be implemented on a typical desktop, and encouraging best practices for computational structural
mechanics problems. It was demonstrated that method selection is dependent on computational resources,
information required from the GSA, and available data. All methods provided comparable results as a
screeningmethod to identify themost dominant parameters, and themore advanced, quantitativemethods
provided insight into parameter interactions by providing both first and total indices. The Morris method
was advantageous as a screening tool using the estimated total order GSA measures. This method
predicted the same dominant parameters as the others at a much smaller computational cost, which is
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especially beneficial when data acquisition is computationally intensive. The DGSM screening method
also predicted the same dominant parameters as the other methods with some deviances in the ordering,
which would be irrelevant if the objective was to only identify the most influential parameters. DGSMdid
require a much higher number of samples for Case 1 convergence, the most complex model with the
highest number of parameters. Sobol’, EFAST, and HDMR all provided comparable indices for both first
and total order GSA measures, with Sobol’ the most computationally expensive in general. However,
Sobol’ offers the capability to explore higher-order interactions when necessary for more complex
parameter spaces. The HDMR method is advantageous for existing datasets. It did exhibit a RAM
limitation which could be overcome by performing GSA using HPC. While the EFAST method did
provide comparable ordering and indices to the other quantitative methods, it did not exhibit the expected
reduction in computational cost.
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