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RINGS CHARACTERISED BY SEMIPRIMITIVE MODULES

YAsUYUKI HIRANO, DINH VAN HUYNH AND JAE KEOL PARK

A module M is called a CS-module if every submodule of M is essential in a
direct summand of M. It is shown that a ring R is semilocal if and only if
every semiprimitive right R-module is CS. Furthermore, it is also shown that the
following statements are equivalent for a ring R: (i) R is semiprimary and every
right (or left) R-module is injective; (ii) every countably generated semiprimitive
right R-module is a direct sum of a projective module and an injective module.

1. INTRODUCTION

Let R be a ring and M be a right R-module. Then M is called a semiprimitive
module if the Jacobson radical of M is zero. If every semiprimitive right module over a
ring R is injective, then R is a semisimple ring by [8]. However if we weaken injectivity
to quasi-injectivity then we only obtain a characterisation of semilocal rings which is
quite far from being semisimple. We prove the following:

THEOREM 1. For aring R the following conditions are equivalent:
(2) Every semiprimitive right R-module is quasi-injective.
(b) Every semiprimitive right R-module is CS.
(¢) Every 2-generated semiprimitive right R-module is quasi-continuous.
(d) R is a semilocal ring.
(e) The left-handed version of any one of (a), (b) and (c).

A ring R is called a right (left) SI-ring if every singular right (left) R-module is
injective. In [4] it is shown that a ring R is right Artinian, right and left SI if every
countably generated right R-module is a direct sum of a projective module and an
injective module. Motivated by this we establish the following theorem:

THEOREM 2. For a ring R the following conditions are equivalent:

1) Every semiprimitive right R-module is a direct sum of a projective module
4
and an injective module.
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(i) Every countably generated semiprimitive right R-module is a direct sum
of a projective module and an injective module.

(iii) R is a semiprimary right and left SI-ring.

(iv) The left-handed version of either (i) or (ii).

We note that if every 2-generated right R-module is quasi-continuous, then in
particular, for each cyclic R-module X, X & R is quasi-continuous and hence X is
injective by [9, Proposition 2.10] and therefore R is semisimple by [10, Theorem]. Also
we observe that if the hypothesis in (c¢) of Theorem 1 is weakened to cyclic semiprimitive
right R-modules then the ring R is not necessarily semilocal. For example, consider-
ing the ring Z of integers we see that even each cyclic Z-module is quasi-continuous.
However Z is not (semi)local. For a detailed study of rings (respectively, finitely gener-
ated quasi-projective modules) whose cyclic modules (respectively, factor modules) are
quasi-continuous we refer to {6, 12] and authors cited therein.

2. PRELIMINARIES

Throughout this paper we consider associative rings with identity and all modules
are unitary. For a module M we write Mg (respectively, g M) to indicate that M is
a right {respectively, left) R-module where R is a ring. The socle and the Jacobson
radical of M are denoted by Soc(M) and J(M), respectively. Let M and N be
modules and I be an index set. Then M{) denotes the direct sum of |I| copies of M,
and N is called M-generated if there exist an index set, say I, and an epimorphism
from M to N.

A module M is called semisimple if M = Soc(M). For a ring R, R is said to be
a semisimple ring if R = Soc(RRr), or equivalently if R = Soc(grR). A ring R is called
semilocal if R/J(R) is semisimple. If R is semilocal and J(R) is nilpotent then R is
said to be semiprimary.

A submodule E of a module M is called an essential submodule of M if ENU #0
for each non-zero submodule U of M. By definition, the singular submodule of My is
the following set:

Z(Mpg) = {a € M | aK = 0 for some essential right ideal K of R}.

If Z(M) = M, M is called a singular module. By [3] a module M is singular if and only
if there exists a module A containing an essential submodule B such that M = A4/B.
By the definition we also see that a non-zero singular module does not contain non-zero
projective submodules. In case Z(M) =0, M is called a non-singular module. A ring
R is called right non-singular if Z(Rgr) =0.

Following Goodearl {3] we call a ring R right (left) SIif every singular right (left)
R-module is injective. The structure of right SI-rings is obtained in [3, Theorem 3.1}

https://doi.org/10.1017/50004972700014490 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700014490

3] Semiprimitive modules 109

as follows: A ring R is right SI if and only if R is right non-singular and has a ring
direct sum decomposition R= K ® R, © --- ® R, where K/Soc(Kk) is semisimple
and each R; is Morita-equivalent to a right SI-domain.

The Jacobson radical J(M) of a module M is the intersection of all maximal
submodules of M. A module M is called semiprimitive if J(M) = 0. If R is a right
V-ring, that is, every simple right R-module is injective, then every right R-module
is semiprimitive (see {8]). From this fact and Osofsky’s result in [11] we easily see
that a ring R is semisimple if and only if every cyclic semiprimitive right R-module is
injective.

A module My, is defined to be a CS-module if each submodule of M is contained as
an essential submodule in a direct summand of M. A ring R is called a right CS-ring
if Rg is a CS-module. Let M be a module and N be any submodule of M. Then
by Zorn’s Lemma N has a mazimal essential eztension N* in M, that is, N* isa
submodule of M which is maximal with respect to the condition that N C N* and
N is essential in N*. If M is CS, then N* is a direct summand of M. Recently CS-
modules have been studied extensively. We refer to {10] and [12] to show how useful
this concept is.

Finally a CS-module Mp is called quasi-continuous if for any two direct summands
M; and M; of M also M, @ M, is a direct summand of M whenever M; N M; = 0.

For general background we refer to the texts by Anderson and Fuller [1], Faith [2],
Goodearl [3], Mohamed and Miiller [9] and Wisbauer [13].

3. THE PROOFS

First we prove Theorem 1.

The implications (a)=(b) and (a)=>(c) are clear.

(b)=(d). Assume (b). Put R = R/J(R). Then Rg and Ry are semiprimitive
modules. Clearly R satisfies (b), too. Hence for each index set I, _R_(—R{) is a CS right
R-module. Now let M be an arbitrary right R-module. Then there exist an index set

I and an epimorphism ¢ from -R(-}-? onto My. Since I_Z(EI) is CS, we have
R =408

with ker(p) C A and ker(yp) is essential in A, so A/ker(yp) is singular. Hence the
isomorphism
~ 7 ~ T B

shows that M is a direct sum of a singular module and a projective module. Thus by
[10, Theorem 3.18], R is semisimple, proving (d).
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(c)=>(d). Assume (c). Put R = R/J(R). Let X be a simple right R-module.
Then X @ R is a 2-generated semiprimitive right R-module. By (c), X @ R is quasi-
continuous and hence X is R-injective by [9, Proposition 2.10). It follows that R is
a right V-ring and so every right R-module is semiprimitive (see [8]). Now let Y be
a cyclic right R-module, that is, there exists a right ideal A of R containing J(R)
such that ¥ = R/A. Then Y is a semiprimitive right R-module. By (c), the right
R-module Y @ R is quasi-continuous and hence Yg is Rp-injective. Therefore Ygis
injective. This means that every cyclic right R-module is R-injective. By [11], R is
semisimple, proving (d).

(d)=(a). Assume (d). Let M be a semiprimitive right R-module. Then MJ(R) =
0, hence M is also a right R-module, where R = R/J(R). Thus M is a direct sum of
simple right R-modules. But every simple right R-module is also a simple right module
over R. Therefore My is semisimple and so Mg is quasi-injective, proving (a).

(d)« (e) is clear by the symmetry of (d).

The proof of Theorem 1 is complete. a

To prove Theorem 2 we consider a more general situation, namely we study SI-
modules M via the corresponding category o[M]. For a ring R we denote by Mod- R
the category of all right R-modules. Let M be a right R-module. Following Wisbauer
[13] we denote by o[M] the full subcategory of Mod- R whose objects are submodules
of M-generated modules. We fix the module M and define M-singularity and M-
nonsingularity in o[M] as follows.

Let N be a right R-module. Then N is called singular in o[M], or simply, M-
singular if there is a module K in o[M] which contains an essential submodule L such
that N = K /L. By this definition every M-singular right R-module belongs to o[M].
For M = R the notion R-singularity is identical to the usual definition of singular
modules in Mod- R given in Section 2.

The class of M-singular modules is closed under submodules, homomorphic images
and direct sums (see [13, 17.3 and 17.4]). Hence every module N € o[M] contains a
largest M-singular submodule, which we denote by Zps(N). If Zp(N) =0, N is called
M -nonsingular, or nonsingular in o[M]. A module M is called hereditary in o[M] if
every submodule of M is projective in o[M] (see [13, 39.1}).

Following (5], we call a module M an SI-module if every M-singular module is
M-injective. Basic facts about SI-modules can be found in [5]. We begin with the
following lemma. (Parts (ii), (ili) and (iv) are known however we include the proof of
these here for the sake of completeness.)

LEMMA 3. For a quasi-projective right R-module M the following conditions are
equivalent:
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(i) Every cyclic semiprimitive M-singular module is M-injective.
(1) Zm(M) =0 and each M-singular module is semisimple.
(iii) M is an SI-module.

If M is projective in o[M] then (i), (ii) and (iii) are equivalent to:

(iv) M is hereditary in o{M] and each M-singular module is semisimple.

PRroOOF: (i)= (ii). Assume (i). Then in particular, every simple M-singular mod-
ule is M-injective. Now let X be a cyclic M-singular module. Using an argument in
(8] we first verify that X is semiprimitive. Let 0 # 2 € X. Then by Zorn’s Lemma
there exists a submodule U of X which is maximal with respect to £ ¢ U. Hence
(zR+ U)/U is simple, so by (i), (zR+ U)/U is M-injective. It follows that there
exists of a submodule V of X containing U such that

X/U =(zR+U)/U & V/U.

If V # U, then ¢ € V, a contradiction. Hence V = U, which shows that U is a
maximal submodule of X. From this we infer that J(X) = 0. Hence by (i), X is
M-injective. Moreover, it follows that every cyclic submodule of any factor module of
X is also M-injective. From this and [1, Proposition 16.13] it follows that every cyclic
submodule of any factor module of X is X-injective. Hence by using [12, Theorem 1]
we see that X is semisimple. This implies that every M-singular module is semisimple.

If Zps(M) # 0, then by the previous argument, M contains a minimal M-injective
M-singular submodule S. However § is then a direct summand of M and so S is M-
projective, which is a contradiction. Hence Zp (M) = 0, proving (ii).

(ii)=>(iii). Assume (ii). Let N be an M-singular module and ¢ be a homomor-
phism from a submodule E of M to N. Without loss of generality we may assume
that E is essential in M. Since E/ker(y) is isomorphic to a submodule of N and
M is M-nonsingular by (ii), we easily check that ker(y) is essential in E and hence
ker(p) is essential in M. By (ii), M/ker(y) is then a semisimple module. Hence

M/ker(p) = E/ker(p) ® A/ker(p)

for some submodule A of M containing ker{y). From this we easily see that ¢ can
be extended to a homomorphism from M to N, proving the M-injectivity of N. Thus
M is an SI-module.

(iii) = (i) is obvious.

Now if M is projective in o[M], then we prove the following:

(ii)= (iv). Assume (iii). Let N be an arbitrary submodule of an M-injective
module @ in o[M] and denote by E(N) the M-injective hull of N in @ with N C
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E(N). Then Q = E(N) ® Q' for some M-injective submodule Q' of Q. Moreover,
E(N)/N is M-singular and therefore M-injective. Thus the isomorphism

Q/N =E(N)/N & Q'
shows that Q/N is M -injective. By [13, 39.6], M is then a hereditary module in

o[M]. The fact that every M-singular module is semisimple can be proved as in the
case (1)= ().

(iv)=(ii) is clear.

The proof of Lemma 3 is complete. 0

THEOREM 4. For a quasi-projective right R-module M the following conditions
are equivalent:

(a) Every semiprimitive module in o{M] is a direct sum of an M-projective
module and an M -injective module.

(b) Every countably generated semiprimitive module in o[M] is a direct sum
of an M-projective module and an M-injective module.

(¢) M is an SI-module such that M/Soc(M) is semisimple and every

semiprimitive module in o[M] is semisimple.

PROOF: (a)=(b) is obvious.

(b)=(c). Assume (b). Then every cyclic semiprimitive M-singular module must
be M-injective. By Lemma 3, M is then an SI-module.

Now let § = Soc(M). Assume that S is not essential in M. Then there exists
a non-zero finitely generated submodule W of M such that SNW = 0. Hence
Soc(W) = 0. Therefore the same argument as in the first part of proving (i)=>(ii)
(Lemma 3) shows that W is semiprimitive. Then by (b), W contains a non-zero M-
projective direct summand U which is in particular finitely generated, quasi-projective
and Soc (U) = 0. Since the object set of ¢[M] is closed under direct sums, homomorphic
images and subobjects, it follows that o{U] is a subcategory of o[M]. Hence, if Y is
a cyclic semiprimitive U-singular module, then Y is also M-singular and so Y is M-
injective by (b). By [1, Proposition 16.13] Y is U-injective. Thus, by Lemma 3, U
is an SI-module. Moreover, since Soc(U) = 0 we can easily verify that every simple
module in o{U] is U-injective. Hence, the same argument as that used for proving
(i)= (i) of Lemma 3 shows that every module in o[U] is semiprimitive. It follows
from this and (b) that every countably generated module in o{U] is a direct sum of
an M-projective module and an M-injective module. On the other hand, since U is
a submodule of M, every M-projective (respectively, M-injective) module is also U-
projective (respectively, U-injective) by [1, Propositions 16.12 and 16.13]). Thus every
countably generated module in o[U] is a direct sum of a U-projective module and a
U-injective module.
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Now, by [5, Theorem 2.2] we may assume without loss of generality that U has
no non-zero fully invariant proper submodules and then ¢{U] is Morita-equivalent with
Mod-T for some right SI-domain T' which is not a division ring. It follows that every
countably generated right T-module is a direct sum of a projective module and an
injective module. By [4], T must be a division ring, a contradiction. Thus S has to be
an essential submodule of M and hence M/S is semisimple by Lemma 3. This shows
furthermore that every module in ¢[M] has an essential socle.

Next we show that every cyclic semiprimitive module X in o[M] is semisimple.
Since X/Soc(X) is M-singular, by Lemma 3, X/ Soc(X) is semisimple, in particular
X/Soc(X) has finite (composition) length. Suppose on the contrary that X is not
semisimple. Then, X is not Artinian. (Note that in this case, X is semisimple if and
only if X is Artinian.) Hence Soc(X) is infinitely generated. Obviously, there exist
finitely many elements z;,22,...,z, in X such that

X=z;R+ - +z,R+ Soc(X)

and each (z;R+ Soc(X))/Soc(X) is simple. Put U = (21 R+ z2R+---+z.R) N
Soc(X). Then Soc(X)=U @V for some submodule V of Soc(X). It follows that

X =(zsR+--+z,R)®V

and so Vg is of finite length and hence the socle of one of the z;R’s must be infinitely
generated. We may assume that Soc (z;R) is infinitely generated. Put T = z; R. Then
we can easily check that also every finitely generated submodule of Soc(T') is a direct
summand of T, and it follows from this that J(T') = 0, that is, T is semiprimitive.
Moreover T/ Soc(T') is simple. Since T is semiprimitive, T = W @ V by hypothesis,
where W is M-injective and V is M-projective. Since T € o[M] we see from [1,
Proposition 16.13] that W is quasi-injective and from [1, Proposition 16.12] that V is
quasi-projective. Since W/ Soc (W) is semisimple by Lemma 3, W/ Soc (W) has finite
length. By [7, Lemma 1.1], W must have finite length; W is even the finite direct sum
of simple modules. Thus in considering T we may, without loss of generality, assume
that T'=V and so T is M-projective, in particular T is quasi-projective.

Now let Soc(T') = @ T; where I is an infinite index set and each T; is a minimal
el
submodule of T'. We may assume that I contains the set N of natural numbers and

consider the submodule U = @@ T; of Soc(T). Let S = Endg(T). By the assumptions
ieN

on T, that is T is semiprimitive and quasi-projective, we can use [1, Proposition 17.11]

to see that J(S) = 0, in particular S does not contain non-zero one-sided nilpotent

ideals and so S is semiprime. We use this to consider U as below. Since each minimal

submodule T; of U is a direct summand of T, for each T; there exists an idempotent
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fi € S such that f;T = T;. Moreover, since f; is the identity of Endg(f;T), it is easy
to see that Endg(f;T) = f;Sfi, that is, f;Sf; is a division ring and therefore for such
idempotents f;, f;S are minimal right ideals of S. Then by a standard argument we
can show that there exists a system {e;}ien of orthogonal idempotents in § such that

U =®8;T.

ieN

each e;T is minimal and

Now we divide N into two infinite subsets N; and N; such that N = N; UN; and
N; NN; =@. Put
Ur= @ eTand U; = @ ;T
ieN; JEN:

For each finite subset F, of N; put e4 = Z‘-GFQ e;. Then e, is an idempotent and so
T =eal @V, with Vo = (1 — ea)T. It follows that U, C V. Let V =V, where «
runs through all indices of finite subsets F, of N;. Then we have U, C V and

T:=T|V = ((@ e;T) +V)/V@V,,/V.

i€Fq

If we denote by U, the image of U; in T, then U; N J(T) =0, in particular, T/J(T_)
has an infinitely generated socle. By hypothesis, we have

T/J(T)=PeqQ,

where P is M-projective and Q is M-injective. As we previously saw, the socle of
T/J(T) is infinitely generated. Furthermore, since T/ Soc(T) is simple, it is easy to

see that Q/ Soc (@) is simple or zero. If @/ Soc (@) is zero, then Soc (@) =Q isof
finite length, because @ is cyclic. If Q/ Soc (é) is simple, Soc (é) must be of finite
length by [7, Lemma 1.1]. In any case, é has finite length and hence the socle of Pis

infinitely generated.

Finally, let Q be the inverse image of Q in T and @ the inverse image of @ in
T. Then V C @, in particular, Soc(Q) is infinitely generated, since U, C Soc(Q).
Moreover, since T/Q = P is M-projective, by {13, 18.3 (d)-(h)] the exact sequence

0-Q—T—->T/Q—0
splits, that is,

(1) T=PoQ
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for some submodule P of T with P = P. Since T is cyclic, we must have by (1)
that P # Soc(P) and Q # Soc(Q). Hence T/Soc(T) = P/Soc(P)® Q/Soc(Q) has
length at least 2, a contradiction. Thus X must be Artinian, and so X is semisimple.

Now let N be a semiprimitive module in o[M]. Then every minimal submodule
of N is a direct summand of N. If N is not semisimple, then there exists a cyclic
submodule X of N such that X is not semisimple. Moreover we can check easily that
any minimal submodule of X is also a direct summand of X . But Soc(X) is essential
in X. Hence J(X) = 0, that is, X is semiprimitive. Therefore X is semisimple as
shown above, a contradiction. Thus N is semisimple, proving (c).

(c)=>(a). Assume (c) and let N be a semiprimitive module in o[M]. By (c), N
is semisimple. Hence we can write N in the form

N = (@Ni) o | EPN;

iel jeJ

where each N; (i € I) is simple and M-nonsingular and each N; (j € J) is simple
and M-singular. Since M is a quasi-projective SI-module, it follows that @ N; is
iel
M-projective and @ N; is M-injective. This means that we have (a).
j€d

The proof of Theorem 4 is complete. 1]

Now we prove Theorem 2. The implication (i)=>(ii) is clear. From (i) it follows
that R is semiprimary and right SI by Theorem 4. By [3, Proposition 3.5] R is then
left SI, that is, we have (iii). The implication (iii)=> (i) is also clear by Theorem 4. The
equivalence (iii) < (iv) follows from the symmetry of (iii). Thus the proofis complete. 0

Finally we note that it is easy to find a ring as in Theorem 2 which is neither left
nor right Artinian. For example, if Q is the field of rational numbers and Q(z) is the
field of fractions of the polynomial ring Q|z]. Then the ring

Q Q=)
0 Q
is a semiprimary Sl-ring which is neither right nor left Artinian.

REFERENCES

(1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules (Springer-Verlag,
Berlin, Heidelberg, New York, 1974).

[2] C. Faith, Algebra II: Ring theory (Springer-Verlag, Berlin, Heidelberg, New York, 1976).

{3] K.R. Goodearl, Singular torsion and splitting properties, Amer. Math. Soc. Memoirs 124
(American Mathematical Society, 1972).

https://doi.org/10.1017/50004972700014490 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700014490

116 Y. Hirano, D. van Huynh and J.K. Park [10]
[4] D.V. Huynh and P. Dan, ‘A result on Artinian rings’, Math. Japon. 35 (1990), 699-702.
{8] D.V. Huynh and R. Wisbauer, ‘A structure theorem for SI-modules’, Glasgow Math. J.
34 (1992), 83-89.
[6] D.V. Huynh and R. Wisbauer, ‘Self-projective modules with w-injective factor modules’,
J. Algebra 153 (1992), 13-21.
(7] D.V. Huynh, N.V. Dung and R. Wisbauer, ‘On modules with finite uniform and Krull
dimension’, Arch. Math. 57 (1991), 122-132.
{8] G.O. Michler and O.E. Villamayor, ‘On rings whose simple modules are injective’, J.
Algebra 25 (1973), 185-201.
[9] S.H. Mohamed and B.J. Miiller, Continuous and discrete modules, London Math. Soc.
Lecture Note Series 147 (London Mathematical Society, 1990).
[10] K. Oshiro, ‘Lifting modules, extending modules and their applications to QF-rings’,
Hokkaido Math. J. 13 (1984), 310-338. .
[11] B.L. Osofsky, ‘Rings all of whose finitely generated modules are injective’, Pacific J.
Math. 14 (1964), 645-650.
[12] B.L. Osofsky and P.F. Smith, ‘Cyclic modules whose quotients have all complement sub-
modules direct summands’, J. Algebra 139 (1991), 342-354.
(13] R. Wisbauer, Foundations of module and ring theory (Gordon and Breach, Reading, 1991).
Department of Mathematics Institute of Mathematics
Okayama University PO Box 631 Boho
Okayama 700 Hanoi
Japan Vietnam

Department of Mathematics
Busan National University
Busan 609-735

South Korea

https://doi.org/10.1017/50004972700014490 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700014490

