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We present a theoretical framework for porous media gravity currents propagating over
rigid curvilinear surfaces. By reducing the flow dynamics to low-dimensional models
applicable on surfaces where curvature effects are negligible, we demonstrate that, for
finite-volume releases, the flow behaviour in both two-dimensional and axisymmetric
configurations is primarily governed by the ratio of the released viscous fluid volume
to the characteristic volume of the curvilinear surface. Our theoretical predictions are
validated using computational fluid dynamics simulations based on a sharp-interface
model for macroscopic flow in porous media. In the context of carbon dioxide geological
sequestration, our findings suggest that wavy cap rock geometries can enhance trapping
capacity compared with traditional flat-surface assumptions, highlighting the importance
of incorporating realistic topographic features into subsurface flow models.
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1. Introduction

The dynamics of porous media gravity currents is a fundamental issue in fluid mechanics,
with applications ranging from groundwater hydrology to carbon dioxide (CO;) geological
sequestration. Despite their inherent complexity, these flows can be effectively described
by low-dimensional models, which offer both predictive capacity and valuable insights
into their spatial and temporal evolution (Philip 1970; Huppert & Neufeld 2014).
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A theoretical framework for gravity currents propagating through porous media was
established by Huppert & Woods (1995), who developed low-dimensional models for two-
dimensional propagation over both horizontal and inclined flat surfaces, and proposed
self-similar solutions. This framework was subsequently extended to axisymmetric
configurations by Lyle er al. (2005) and further generalised to inclined situations by Vella
& Huppert (20006). Later studies enriched the theoretical framework by incorporating non-
Newtonian effects for power-law fluids (Di Federico, Archetti & Longo 2012), investigated
experimentally by Longo et al. (2013), thereby underscoring the importance of rheological
characterisation.

Despite these theoretical advances, a major limitation of existing models is their
common assumption of flat, horizontal surfaces, which fails to represent the complex
topography found in practical situations, such as in CO, geological sequestration, where
cap rocks often exhibit irregular, wavy geometries (Woods 2015). While Pegler, Huppert &
Neufeld (2013) extended the analysis to porous media gravity currents over power-law
surfaces, these monotonic curvilinear approximations do not capture the undulating nature
of cap rocks. Therefore, the disconnect between idealised models and realistic geological
formations constitutes a critical gap in our understanding of porous media gravity currents
over complex topography.

To bridge this gap, we develop a theoretical framework for porous media gravity
currents propagating over non-monotonic curvilinear surfaces. Building on the principles
of hydrostatic pressure distribution and Darcy’s law, we first establish a model for the local
evolution of viscous fluids over curvilinear surfaces. Then, under the assumptions of small
slopes and negligible curvature effects, we transform the local model into a global model
that describes the overall evolution of the current. Through non-dimensionalisation, we
identify a key dimensionless parameter that governs the flow dynamics in finite-volume
releases, offering a straightforward physical interpretation. Finally, we validate the global
model using computational fluid dynamics (CFD) simulations.

This paper is organised as follows. In §2, we develop low-dimensional models for
porous media gravity currents propagating over curvilinear surfaces. Section 3 employs
non-dimensionalisation to identify the key parameters that govern topographic effects.
In §4, we present our CFD approach for capturing macroscopic sharp interfaces of
porous media gravity currents. Section 5 provides numerical validations of the theoretical
predictions from our low-dimensional models. Section 6 offers further discussions of
the proposed model, while § 7 explores the application to CO, geological sequestration.
Section 8 outlines the future outlook on this fundamental issue, and finally, § 9 concludes
the study.

2. Theoretical framework
2.1. Problem description

We consider a semi-infinite, unbounded, homogeneous porous medium characterised by
its porosity ¢ and permeability K, with a rigid and impermeable curvilinear lower surface
f(x) (see figure 1). In this system, the characteristic pore-scale length /, is assumed to be
significantly smaller than the characteristic length of the curvilinear surface /. (i.e. [, <
l.), ensuring a clear scale separation. Initially, the domain is saturated with an ambient
fluid of density pg and viscosity wg. At the origin, a finite volume of a second fluid,
which is denser (density p) and more viscous (viscosity w) than the ambient fluid, is
released. This will create a porous media gravity current driven by the density difference
Ap = p — po. Under the assumption of negligible macroscopic capillary effects and the
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Figure 1. Schematic diagram of a gravity current in an homogeneous porous medium over an impermeable
and rigid curvilinear surface.

absence of Saffman—Taylor instability at the interface, the denser fluid maintains a sharp,
well-defined interface with the ambient fluid as it propagates in the creeping flow regime.

2.2. Low-dimensional model for local evolution

2.2.1. Pressure and velocity fields

We first establish the hydrostatic pressure field in the local coordinates (s, n), where s
denotes the tangential direction along the curvilinear surface and # is the direction normal
to it. For convenience, we neglect the effect of the lighter ambient fluid and express the
pressure as

P =po+ Apg cos0(hy, + fn —n), 2.1)

where pg is a reference pressure and 6 is the angle between the local normal direction
n and the global vertical direction z. Here, &, denotes the fluid thickness measured along
the normal direction and f,, = f(s)/cos 6 represents the projection of the surface elevation
(given by f(x) in the global coordinate) onto the normal direction.

The local pressure gradient along the tangential direction is thus given by

P Ay 3f, 3
— = Apgcosd— + Apg cos 0 — + Apg(h, + f, —n)— (cosb), (2.2)
as as as as

Interface slope Surface slope Surface curvature

showing that the local pressure gradient comprises contributions from the interface slope,
the surface slope and the curvature of the surface.
To evaluate the surface slope term, we apply the chain rule

afn 1 f b G )_s( 1 ) 1 f b fGs )( sin 6 ) % 23)

s cosO ds cos 6 cos 8 ds 20 ) as
Introducing the local surface curvature defined as
20
K(s)=——, (2.4)
as

this expression becomes

% 1 8f 4 f(s) s1n9/<(s)

2.5
ds  cosf ds cos2 9 2.5)

For the surface curvature term, the derivative of cos 6 with respect to s is given by

ad a0
—(cos ) = —sinf@ — = — sin Gk (s). (2.6)
as as
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Thus, the final expression for the tangential pressure gradient is

oP oh 1 9 in 0
— = Apg cos O — 4+ —f + f sin O (s) — Apg(hy + fu —n)sin Ok (s).
ds ds  cosf s cos2 6
2.7

In the normal direction, the pressure is assumed to be in hydrostatic balance

oP

— =—Apgcosh. 2.8)

on

This hydrostatic condition implies that the pressure gradient in the n direction serves only
to maintain local static equilibrium, rather than driving fluid motion with a significant
velocity in the normal direction. Consequently, the flow is effectively confined to the
tangential direction, allowing us to neglect the contribution of the normal pressure
gradient.

Substituting the tangential pressure gradient into Darcy’s law for the creeping flow
regime,

KoP

_ 220 2.9
Us w 35 (2.9)

we obtain the local velocity field

U :—Kipg [0059 <8h” + ;Bf + —f SinGK(S)) — sin Ok (s) <hn + CL —n):| .

ds | cosf ds cos2 6 0s6

(2.10)
That is,

KA oh ) in 6
Uy = — ] cos—= + a—f + (M —sin Ok (s) (hn + L — n))
pol——=x

as cos 6 cos 6
Interface slope  Surface slope Curvature-driven terms
(2.11)
2.2.2. Local evolution
We substitute the local velocity field into the local mass conservation equation
pdm 9 T dn=0 2.12)
— usdn =0. .
ar  as Jy, ’
Evaluating the integral term, we obtain
hn+ fu oh oh
/ cos 6 —" dn = h, cos  —, (2.13)
fa as as
hntfu g f of
—dn=h,—, 2.14
/ : as " " ds ( )
htfa T £ sin 6 hn  h2
/ SSIOCE) 0k (s) iy + £, —n) | dn = singxe(s) (L — M)
; cos 6 cos 6 2
(2.15)
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Thus, the local evolution equation is given by

oh, KApg 9 dh, af . fhy  RH2
— — | hpcos 6 hy—— 0 — ). 2.16
¢ ot n as [ ncos as + " s + sin Bic(s) cos 2 (2.16)

This local evolution equation reveals that the fluid dynamics is governed by three distinct
physical mechanisms. First, the term h,cos 0h, /ds represents classical gravity-driven
spreading, where gradients in fluid thickness induce pressure differences that drive the
flow. Second, the term h,df/ds embodies topographic forcing, whereby variations in
the curvilinear surface elevation generate additional pressure gradients to drive the flow.
Third, the curvature-driven terms, represented by sin 6« (s)(fh,/cos 6 — h,% /2), capture
more effects arising from the interplay between fluid and surface geometry. Therein, the
component fh,;,/cos 6 represents a centripetal effect due to fluid motion along curved
streamlines. This effect tends to resist the flow in convex regions (where « > 0) and
to assist it in concave regions (where « < 0). The term —h2 /2 accounts for hydrostatic
pressure variations induced by thickness gradients in regions of curvature, tending to drive
the flow towards areas of lower curvature. These curvature-induced effects can lead to
complex flow behaviours near transitions between convex and concave sections.

2.3. Towards global evolution

2.3.1. Current height in global coordinates

While the local evolution equation effectively describes fluid motion relative to the
curvilinear surface, practical applications are primarily concerned with the overall global
performance. Therefore, it is essential to transform the governing equation from local to
global coordinates.

We begin by relating the vertical fluid thickness, /,, measured vertically from the
curvilinear surface to the fluid interface, to the thickness measured along the surface
normal, &,,. Since A, is naturally aligned with gravity and the global coordinate system, it
is advantageous to express 4, in terms of /. Their relationship is given by

h, = hpcos 6 + B h2 + Oh2), (2.17)

where the first term, /,cos 6, represents the geometric projection from the normal to the
vertical direction, and the second term, ﬁxzh%, is a curvature correction that accounts
for the bending of the interface. Here, k, denotes the local curvature of the interface,
defined as

8%h./0x>2
K;= p—Yrh (2.18)
[1+4 (3h./0x)?]

Under the thin-film approximation, i.e. dh;/dx ~h,/L. <1, where L. is the

characteristic horizontal length scale, the interface curvature simplifies to
2h,  hy,
K, ~ ~—
ax2  LZ
The dimensionless parameter 8 (typically g ~ O(1)) quantifies this first-order curvature

correction. As aresult, the second term is negligible compared with the leading-order term
h,, and we are justified in using the simplified relation

h; =hpcos 0, (2.20)

which preserves the essential geometric projection while neglecting higher-order effects
that have minimal influence on the overall flow behaviour in the thin-film regime. Since
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the surface is assumed to be rigid (i.e. time-independent), the time derivative transforms
as
dhy, 1 0k,

= —. 2.21
ot cosf ot ( )

2.3.2. Transform to a global evolution model
To assess the relative importance of surface slope versus curvature effects, we non-
dimensionalise the two terms by defining the following dimensionless variables:

s*=s/Le, [N =F0)/Le, REGH) =ha@)/Le, (") =k(s)Le.  (2.22)

If the slope of a curvilinear surface is small overall, we introduce a small parameter €,
defined as the maximum value of the dimensionless surface slope,

e=|df*/dx*| « 1, (2.23)
and for a small angle 8, we have
tan @ ~ 0 ~ |df*/dx*|, (2.24)
which implies that
0 ~e¢, (2.25)
and we further obtain
02
cos@wl—iwl, sinf ~ 0 ~e. (2.26)
Because the curvature is defined as
do
K=—, (2.27)
ds

and over a characteristic length L., the typical change in 6 is of order €, we can estimate

A6
K~ l S (2.28)
L. L
€
k*=xL.~—+L.=¢. (2.29)
Lc
Thus, the key geometric quantities scale as
O~¢€, cosf=~1, sinh~e, k" ~e. (2.30)
For the spatial derivative, we obtain
0 (L. f* af* af*
of _3Wef _of7 9" 2.31)
as d(Lcs*) dJs*  ox*
Consequently, the slope term transforms to
af af”
h”& =L.h} Py (2.32)
and the curvature term becomes
h h2 * % h* 2
sin Ok (s) Shn ) = L, sin0x*(s¥) u — % . (2.33)
cos 6 2 cos 6 2
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To quantify the relative importance of two terms, we examine their ratio by considering
the abovementioned geometric approximations,

* % *\2 *\2
sin Ok *(s™) (ﬁ— (hy) ) €€ (f*h:_(hL)

cos 6 2 2 ) ( X h;) *
~e =) ~ e,
LOf" h¥ e 2

n
" 9s*

(2.34)
where the final approximation follows the thin-film approximation /), < 1.

This analysis reveals that when € f* < 1, which is satisfied for moderate surface heights
(f* < O(1)) and small slopes (¢ <« 1), the curvature term represents an O(€?) correction
to the slope term O(e) contribution. Therefore, the local evolution equation can be
simplified by omitting curvature terms, resulting in the following global model:

oh, 9 oh, df
L PR LAY 2.35
ot y8x|:z(8x+dx):| (2.35)

where y = K Apg/¢u. This simplified equation captures the essential physics in global
coordinates through two mechanisms: a nonlinear diffusion term %,dh,/0x representing
gravity-driven spreading, and a topographic forcing term h.df/dx describing the
influence of surface gradients. This derivation approach can also be applied to the situation
of viscous gravity currents, while we merely made an assumption about the limited slopes
and neglected curvatures (Di & Huppert 2024).

2.3.3. Finite-volume release
For finite-volume releases, the volume conservation for viscous fluid is expressed as

xf(t) )
¢/ h, dx:d)/ h,dx =g, (2.36)
0 0

where g represents the total fluid volume. Therein, considering that the front of the porous
media gravity current denoted by x ¢ (¢) is unknown, we map the current domain [0, x 7 (7)]
onto a fixed domain [0, /], with x = corresponding to the right end.

The right boundary condition is imposed as

h;(l,1) =0, (2.37)

indicating that no fluid extends beyond x =1.
The left boundary condition is given by
=0, (2.38)

ohe  df
ox  dx /|,

which, derived from the governing equation, ensures a no-flux condition at the origin.
For the initial condition, the released fluid is commonly configured as a rectangular
profile with height ig and length xo (where xo = q/(¢ho)) at time ¢t =0, i.e.

ho, 0<x < xo,
h;(x,0)= (2.39)
0, x>xgp.
2.4. Extension to axisymmetric propagation
For axisymmetric propagation over curvilinear surfaces, we can follow a derivation similar
to that used for the two-dimensional propagation. The hydrostatic pressure and velocity
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fields in the local coordinate (s, n) remain the same, but the mass conservation equation
should be modified to account for axisymmetry. It becomes

oh 19 hn+ fu
p— + —— (r / usdn) =0, (2.40)

ot r os

where the operator 1/7 - 9(r - )/ds reflects the variation of the annular cross-sectional area
with radius.
Accordingly, the local evolution equation in global axisymmetric coordinates is

oh, KApgl d oh 9 h h?
p—0 = pg——[rcos@(hn—n+hna—f)+rsin9/<(s)<fn —")],

at u ras as s cosf 2
(2.41)
and the corresponding global equation becomes
oh; 19 oh, df
| rh | 4+ L 2.42
ot yr8r|:r2<8r+dr ’ (242)

where the term h;0h;/0r captures radial spreading due to gravity, and h,d f/dr represents
the leading-order topographic forcing.

We transform the domain from the current front [0, 7 7 (#)] to the right end » =/, and the
conservation of volume requires

ry(t) 1
d)/ 2rrh,dr =¢/ 2nrh,dr =gq. (2.43)
0 0

The boundary conditions include

ho(l,t)=0 (2.44)
and
=0. (2.45)

oh.  df
or dr /)|,

The initial condition is taken to be a cylindrical volume of fluid with height Ay and
radius rg (where ro = \/q/¢pmhg) at time t =0,
ho, 0<r <o,

h(r,0) = { (2.46)

0, r>rg.

At this point, we have completed the theoretical framework for porous media gravity
currents over rigid curvilinear surfaces, with the boundary and initial conditions specified
for both two-dimensional and axisymmetric finite-volume releases.

3. Non-dimensionalisation
3.1. Dimensionless form

We consider sinusoidal surfaces as typical examples of the curvilinear topography
commonly encountered in geological formations, which often represent gently undulating
surfaces, defined by

fx)=A[1—-cos(dx)] 2D), f(r)=A[l—cos(Ar)] (axisymmetric). 3.1

where the wavelength is given by 2 /4 and the total vertical variation is 2A.
To analyse the sinusoidal surfaces within our theoretical framework, we non-
dimensionalise the system using scalings
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Se=1/4, Sp=A, S =@yl2Al, (3.2)

which leads to the dimensionless variables X =x /Sy, H=h;/S, and T =¢/S;.

To ensure that the global model remains valid, we verify that our scalings are consistent
with the fundamental approximations. Taking the characteristic length as L, =1/4, we
require, first, that the dimensionaless surface height, defined as

ff=f&x)/L.= fA=AA[l —cos(Ax)], (3.3)

remains moderate (i.e. f* <O(1)), ensuring that the surface variations are small
compared with the wavelength.
Second, the surface slope should be small,

€ =|df/dx| =|AA sin(Ax)| K 1. (3.4)
Third, the fluid thickness remains small throughout the flow evolution,
h* =hy(x)/L. ~h, A< 1, (3.5)

thereby justifying the thin-film approximation. When constraints are satisfied, the
curvature effects contribute only high-order corrections, which can be omitted in the
global model. Under these scalings, the sinusoidal surfaces are rendered in dimensionless
form as

F(X)=1—-cos(X) (2D), F(R)=1—cos(R) (axisymmetric). (3.6)

The model for two-dimensional propagation of finite-volume releases then becomes

oH a oH dF
=< |H|\=—=<*+-=<])]|> (3.7)
aT 00X X dX

subject to the volume constraint

L
/ HdX =N, (3.8)
0

and boundary conditions
8H+dF 0 (no fl dition), H(Xp,T)=H(L,T)=0 (3.9)
—+ = =0 (no flux condition), ,T)= , T)=0, .
axX " dx J|y_, d

and the initial condition

Hy, 0< X< N/H,,
H(X,0) = (3.10)
0, X >N/H0.

Similarly, the model for axisymmetric propagation of finite-volume releases becomes

oH 1 9 [ oH dF
— - ——|RH|—+—)|=0, (3.11)
oT ROR | dR dR
subject to the volume constraint
L
2 / RHdAR=N, (3.12)
0
the boundary conditions
8H+dF =0, HRp,T)=H(L,T)=0 (3.13)
aR dR R:O - ’ F> - ’ - ’ .
1016 A16-9
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and the initial condition
Hyp, 0< R</N/(mH)y),
H(R,0)= (3.14)
0, R > /N /(m Hy).

3.2. Physical interpretation

The dimensionless governing equations reveal two dimensionless parameters: the volume
ratio N and the initial height Hp. Therein, the volume ratio N quantifies the relative
magnitude of the released fluid volume compared with the characteristic volume
associated with one wavelength of the sinusoidal surface.

For the two-dimensional case, it is defined as

2 /A
N=gq/pA,, with As=/ Al —cos(Ax)] dx =27 A/, (3.15)
0

where A represents the characteristic area of the topography.
For the axisymmetric case, we define
2 /A
N =4rn3q/pV,, with V,=2r7 / rA [l —cos(Ar)] dr =473A/2%, (3.16)
0
where Vj is the three-dimensional characteristic volume of the topography.

Physically, the dimensionless parameter N governs the overall flow regime. When
N « 1 with Hy ~ O(1), the fluid volume is too small to overcome the topography, leading
to local topographic trapping that is largely influenced by the topography. As N increases
to order unity (N ~ 1), a rich interplay between gravity-driven spreading and topographic
forcing occurs. For even larger N, the flow dynamics gradually resemble those over a flat
surface.

For dimensionless parameter Hy, a small value indicates that the initial release spreads
over multiple wavelengths, whereas Hp~ O(1) suggests a more concentrated initial
release that dominates the early-time dynamics. However, as gravity redistributes the fluid,
the current thickness eventually decreases and the flow evolves into a thin-film regime.

4. Computational fluid dynamics approach

In this section, we present a more sophisticated CFD model for numerical validation of
low-dimensional models. We first present two universal CFD models for two-phase flow
in non-porous and porous media. By combining these two models, we develop a CFD
model for macroscopic sharp interface flow in porous media. This CFD model is then
used to simulate porous media gravity currents to provide validation of low-dimensional
models.

4.1. The volume of fluid model

We begin with the volume of fluid model for classical two-phase flows with a sharp
interface. Its incompressible version, as proposed by Hirt & Nichols (1981), is

V.u=0, (4.1)
9 v
36 v, (puu)=—Vp+uViu+pgtov- (%) va, (4.2)
ot Va|
9 %
V. @) +V- |a—a)(Clu =) ] =0. (4.3)
ot V|
1016 A16-10
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This model adopts a single-field formulation where both phases share common velocity
(w) and pressure (p) fields. The spatial distribution of the two fluids is characterised
by a volume fraction o, where o =1 denotes regions fully occupied by fluid 1 and
o =0 indicates the presence of only fluid 2. At the interface between fluids, surface
tension o induces capillary effects, while the local density and viscosity are determined
through linear interpolation, p = p1o + p2(1 — @) and u = w1 + w2 (1 — «). To maintain
a numerically sharp interface between the fluids, the model incorporates a compression
factor C.

4.2. Macroscopic generalised two-phase flow model

Two-phase flows in porous media exhibit fundamentally different behaviour across
multiple length scales. At the pore scale, the volume of fluid model, for instance, may
be used to capture interfacial dynamics and local flow patterns. However, practical
engineering applications, which typically span larger spatial domains, necessitate
macroscopic models derived through upscaling. For instance, the volume-averaging
method (Quintard & Whitaker 1988; Whitaker 1998) establishes a framework for upscaling
by volume-averaging pore-scale phenomena over representative elementary volumes.

Many different models have been proposed, starting from the classical generalised
Darcy’s law to more complex models incorporating more dynamic and phase interaction
effects (Davit & Quintard 2019). In this study, the assumed physical constraints lead to a
two-phase flow regime characterised by a macroscopic sharp interface (i.e. a very small
capillary fringe compared with the relevant characteristic lengths). As a consequence,
the development of the model may start with a classical formulation of the macro-scale
momentum equations incorporating a classical generalised Darcy’s law, since the details
of the two-phase flow model will play a negligible role outside the macro-scale interface.
Various arrangements of the variable field (saturation, pressures, velocities) may be used,
e.g.: (1) a two-field formulation that resolves separate Darcy velocities for each phase
(Horgue et al. 2015); (ii) a single-field formulation based on the total filtration velocity
(Carrillo, Bourg & Soulaine 2020). The latter can be expressed as

V.U=0, (4.4)

d (pU)
at

ket ko \ 7!
+V-(PUU):—VP+MV2U+pg—¢kO_1 (MLI+ML2) U
1 2

-1
1 M1 2% JP,
+ |:ko : (— + —) (Mo, — Mao) — — Pc} VS,

krl kr2 80[1
4.5)
Y
SV (US)+ Y - ($15U,) =0, (4.6)
(M M p1My  paM>
U =gt (M M) wp (0202t
r ] |: S S5 S1 S 5
Mlsz MZSI Ml M2
VP.—|———] P.VS|. 4.7
+(Sl+S2) C(Sl 52)c l] ()

This single-field formulation characterises macroscopic flow by the intrinsic averaged
velocity U and pressure P, while the fluid distribution is represented by saturations S;
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(i=1,2) within the porous medium. The model incorporates both the intrinsic
permeability ko and relative permeability k,;. The fluid mobility M; is defined as the
ratio of these permeabilities, M; = kok;; /it;. The model requires closure relations for the
macroscopic capillary pressure P.(S1) and relative permeability functions k;; (Sy).

4.3. Macroscopic sharp-interface flow model

Given the negligible macroscopic capillary effects and gravity segregation effects, the
macroscopic interface between fluids in porous media gravity currents can be treated as
sharp. Drawing parallels with the volume of fluid model, we modify the single-field Darcy
formulation through strategic reconstruction of the macroscopic capillary term and relative
velocity in the saturation equation. This yields the following sharp-interface model for
macroscopic flows in porous media:

V.-U=0, (4.8)
9 (pU) 2 —1 Vs
P + V. (pUU)=—-VP +uVU+ pg—dpuK 'U+ 0.V - VS| Vs,
4.9)
8S+V USH+V- |pSA—-9)(CIU vs =0 (4.10)
ot Ivs| )| ’

This formulation offers a significant advantage in that it eliminates the need
for empirical closure relations describing macroscopic capillary effects and relative
permeability, making it particularly well suited for macroscopic sharp-interface flows in
porous media. The effective surface tension at the macro scale is denoted by o.f¢, which
is neglected in the assumption of porous media gravity currents, and K is the intrinsic
permeability scalar in this study. Because porous media gravity currents characteristically
propagate at low Reynolds numbers, inertial corrections are neglected. We implement this
model within the open-source CFD software OpenFOAM® for numerical simulation of
porous media gravity currents.

5. Numerical validation

We perform CFD simulations using the macroscopic sharp-interface flow model and
compare the results with predictions from low-dimensional models. For the physical
parameters of the porous medium, we adopt values from the literature (Acton, Huppert
& Worster 2001; Lyle et al. 2005), where an homogeneous porous medium was generated
in a bead-filled tank, yielding a porosity of 0.37 and a permeability of 6.8 x 10~ m?.
Glycerol is used as the working fluid, with a dynamic viscosity of © =1.5 Pa.s and
density p = 1.26 x 103 kg m 3.

Our numerical domain is designed to be 0.15 m in the horizontal direction and 0.05 m
vertically. For the bottom sinusoidal surfaces, we employ the same parameters as used in
our previous study on viscous gravity currents (Di & Huppert 2024), with a wavelength
27 /A =0.05 m and amplitude A =0.002 m. This configuration results in A1=0.25 < 1,
which satisfies the small-slope and limited surface amplitude conditions required by the
low-dimensional models. The laboratory-scale settings ensure that the flow remains in the
creeping flow regime where Darcy’s law applies, thereby justifying the use of the CFD
model for numerical validation.

We impose atmospheric conditions at the top and right boundaries, a symmetry
condition at the left boundary and a no-slip condition at the bottom boundary. Local mesh
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t=100s

t=1000 s

Figure 2. Numerical comparison of two approaches to current profiles for a two-dimensional porous media
gravity current over a sinusoidal surface (Case 1). Dotted yellow line, numerical solution.

t=1000s

Figure 3. Numerical comparison of two approaches to current profiles for a two-dimensional porous media
gravity current over a sinusoidal surface (Case 2). Dotted yellow line, numerical solution.

refinement near the bottom is employed to the wall regions. The initial condition consists
of a glycerol volume released from the origin, with its upper surface conforming to the
bottom profile to ensure a consistent initial rectangular configuration relative to the sur-
face. Here, we examine three initial configurations with a release length of xo(rg) = 0.05
m (i.e. Xo(Ro) = 1) and heights of hyp = 0.01, 0.02 and 0.03 m (i.e. Hy =15, 10 and 15).

Numerical accuracy is ensured via grid independence studies, where simulations
were conducted using four mesh resolutions (120000, 240 000, 360 000 and 480000
cells). Convergence is assessed by comparing the current profile and the front position,
using MATLAB® image processing for post-processing. An intermediate resolution of
240000 cells was found to offer an optimal balance between accuracy and computational
efficiency. All simulations were performed on a workstation equipped with Intel Xeon
E5-2678 processors using 12 CPU cores, with typical runs requiring approximately
30 hours to simulate 1000 s of physical time.

Figures 2, 3 and 4 illustrate the evolution of two-dimensional porous media gravity
currents for three cases with increasing initial heights, while keeping the initial release
length constant. This corresponds to increasing the released fluid volume, which not only
drives the propagation of the current further, but also enhances the gravitational potential
energy available during the initial deformation.
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Figure 4. Numerical comparison of two approaches to current profiles for a two-dimensional porous media
gravity current over a sinusoidal surface (Case 3). Dotted yellow line, numerical solution.

In Case 1, with the lowest initial height, the CFD results and the low-dimensional
model predictions agree very well over time. The low initial height ensures that the initial
configuration closely satisfies the thin-film approximation. Consequently, the fluid quickly
reaches a regime in which the low-dimensional model is valid. Moreover, owing to the
finite volume, once the fluid fills the first two troughs of the topography, the interface
becomes nearly flat relative to the global coordinate, which limits further propagation.

In Case 2, the increased initial height leads to noticeable discrepancies at early times
(e.g. at t =50 s). Here, the CFD model still exhibits an influence of the initial fluid shape,
whereas the low-dimensional model rapidly develops a monotonically decreasing interface
that propagates further to the right. As the flow continues to evolve, the predictions of both
models gradually converge.

In Case 3, where the initial height is further increased, the differences between the two
models become even more pronounced at early times. For instance, at t = 50 s, the CFD
results clearly reflect the initial configuration, and even at ¢t = 100 s, the influence of the
initial shape persists. Only after a sufficiently long time does the flow evolve towards the
thin-film regime, at which point, the predictions of the low-dimensional model begin to
match those of the CFD simulations.

Overall, these examples demonstrate that although a higher initial fluid height intensifies
the dynamic influence of the initial conditions, as time increases, the released fluid
eventually leads to a state where the thin-film approximation is well satisfied. The results
of axisymmetric propagation of the same initial released dimension are displayed in
Appendix A.

Figure 5 quantitatively compares the evolution of the current front as predicted by
low-dimensional models and captured by CFD simulations. For the smallest release
volume, both approaches show excellent agreement. However, as the initial fluid height
increases, discrepancies begin to emerge, with the low-dimensional model slightly
overestimating the propagation rate. This divergence is primarily due to significant vertical
deformation in the early-stage dynamics leads to enhanced viscous dissipation, but cannot
be fully captured by the horizontal Darcy’s law in low-dimensional models, whereas the
Navier—Stokes formulation in the CFD simulations resolves these effects more accurately.

It should be noted that this study focuses on finite-volume releases. In this regime,
both the low-dimensional and CFD models predict that the fluid ultimately reaches an
equilibrium state, consistent with energy minimisation principles, in which the finite
volume is confined within the troughs of the sinusoidal surface. In contrast, under
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Figure 5. Numerical comparison of two approaches to dimensionless current fronts for a porous media
gravity current over a sinusoidal surface in both two-dimensional and axisymmetric propagations.

constant-flux injection, the continuous input of fluid sustains a dynamic, non-equilibrium
state as the fluid persistently overcomes topographic variations. Therefore, it would be in-
teresting to explore the applicability of the low-dimensional approach to this flow pattern.

6. Discussion

The validity of low-dimensional models relies on three fundamental constraints. First,
the thin-film approximation ensures that vertical pressure gradients dominate. If the
fluid thickness becomes comparable to the characteristic horizontal length, the neglected
dynamic terms would need to be incorporated. Second, the small-slope assumption
underpins the simplifications made during the transformation between local and global
coordinates. Third, the assumption of a small ratio between the surface amplitude and
the characteristic length (i.e. for a sinusoidal surface with amplitude A and wavelength
L. =1/4,the condition A1 < 1 must hold) justifies neglecting curvature effects. Together,
these constraints are key to the derivations presented earlier.

When the surface slopes or amplitudes become large, the underlying geometric
approximations no longer hold. In such cases, the complete relationship between the
vertical and normal interface heights, as well as the full curvature effects, requires
the inclusion of higher-order terms. In fact, retaining the full curvature effects in the
local equation introduces significant mathematical complexity when transforming the
formulation to global coordinates. This complexity can hinder the consistent coupling
of boundary conditions in the global framework, suggesting that a rigorous treatment of
strong curvature effects is best confined to the local coordinate formulation. Nevertheless,
in many practical situations, although local surface slopes or curvature may be significant,
their effects decay rapidly with distance; thus, the violations of the underlying approxima-
tions remain localised, and the global model can still yield accurate predictions over the
majority of the domain (e.g. the linear-exponential surfaces discussed in Appendix C).

In addition to the geometrical approximations, low-dimensional models are built upon
several fundamental physical assumptions. First, a clear scale separation between the pore
size and the curvilinear surface is required, which justifies treating the porous medium as
a continuum and applying Darcy’s law. Second, the use of a macroscopic sharp-interface
approximation effectively reduces the complex multiphase system to a single-phase flow
problem. This simplification is supported by the assumption that the released fluid is
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significantly more viscous than the ambient fluid, thereby suppressing mixing, dissolution
and diffusive processes at the interface. Although this means that the model cannot capture
such interfacial phenomena, the resulting low-dimensional framework offers substantial
computational efficiency compared with full multiphase CFD simulations. This efficiency
is particularly advantageous for rapid assessments of large-scale scenarios where detailed
numerical simulations would be prohibitively expensive.

We suggest that experimental validation of the low-dimensional models could be
pursued using a Hele-Shaw cell, which has long served as an effective analogue for two-
dimensional porous flows. In such an experiment, a precisely engineered curved bottom
would be required, formed by two narrowly spaced parallel plates to create the flow cell.
To maintain the creeping flow regime central to Darcy’s law, the working fluid should be
sufficiently viscous (e.g. glycerol or silicone oil) while still providing a substantial density
contrast to drive gravity currents. The initial configuration must be carefully designed: the
top gate should conform to the curved bottom profile, while the side walls remain vertical,
to ensure the proper release of the initially rectangular fluid volume onto the curvilinear
surface. The evolution of the interface can be monitored using imaging processing for
quantitative comparison with the predictions of low-dimensional models. It should be
noted, however, that experimental measurements may also capture effects not accounted
for in the theoretical framework, such as surface tension, variations in the gap width and
transient effects during rapid gate removal which could influence the early-stage released
dynamics.

7. Relevance to CO; geological sequestration

Although our numerical simulations were performed at laboratory scales, the fundamental
dynamics captured by low-dimensional models can extend naturally to engineering-scale
scenarios, such as CO; geological sequestration. In practice, CO; is injected under
constant-flux conditions. Once injection ceases, the system behaves as a finite-volume
release. Under such conditions, the flow is governed by the same topographic trapping
mechanisms that the finite-volume framework describes. Moreover, even over kilometre-
scale distances, the balance between viscous forces and gravity, central to the thin-film
approximation, remains valid, ensuring that the key physical processes are effectively
captured. This provides a foundation for applying low-dimensional models to study
supercritical CO, flow over wavy cap rocks in realistic geological formations. Such
conditions are discussed in detail by Huppert & Neufeld (2014).

For quantitative analysis, we consider supercritical CO, flow with physical properties
from Pegler et al. (2013): a density of p =700 kg m~>, a dynamic viscosity of
nw=6x10"> Pa.s and an ambient brine density of py=1000 kgm~3, within a
geological formation characterised by a porosity ¢ =0.4 and a permeability K =1 x
1012 m?. Following Woods (2015), we represent cap rocks, distorted by compaction and
tectonic stresses, as sinusoidal surfaces with wavelengths 27 /4 = 10, 15 m and amplitudes
A =0.5,1 m. To assess the applicability of low-dimensional models, we compute the
constraint AA. For a 10 m wavelength, A4 is 0.31 and 0.63 for amplitudes of 0.5 m and 1
m, respectively; for a 15 m wavelength, A2 takes on lower values of 0.21 and 0.42. These
results ensure that low-dimensional models remain valid for predicting the supercritical
CO, propagation. For supercritical CO; volume, we set the initial released dimensions at
10 m x 20 m, corresponding to an area of 200 m? in a two-dimensional configuration and
a volume of 283.2 m? in an axisymmetric configuration.

Figure 6 illustrates the propagation of supercritical CO, over both flat and wavy
cap rocks under finite-volume release conditions. Unlike the continuous, monotonically
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Figure 6. Comparison of supercritical CO; over horizontal flat and wavy cap rocks in both two-dimensional
and axisymmetric propagations.

increasing propagation observed over a flat surface, the flow over wavy cap rocks exhibits
a step-like pattern. This behaviour arises because the fluid gradually fills the troughs as
it propagates to the right, then rapidly flows downhill upon reaching the crests of the
sinusoidal surface, and subsequently accumulates slowly once more in the troughs. Over
time, the step region expands, indicating that the current front decelerates and requires
increasingly longer periods to fully fill the troughs until eventually all the fluid becomes
trapped.

A comparative analysis of different cap rock geometries reveals that a wavy cap
rock with a smaller amplitude (0.5 m) and a longer wavelength (15 m) permits greater
propagation, whereas cap rocks with a larger amplitude (1 m) and a shorter wavelength
(10 m) more effectively restrict the flow. These findings suggest an inverse relationship
between the surface characteristic volume and the dimensionless release volume, N;
a larger characteristic surface volume corresponds to a smaller N, thereby reducing
propagation. Notably, for the 15 m wavelength, the propagation eventually stagnates,
indicating complete topographic trapping within the troughs, in contrast to the unbounded
spreading observed over flat surfaces.

Further, our results indicate that in two-dimensional propagation, the current is more
sensitive to variations in amplitude than to wavelength, suggesting the dominant influence
of amplitude. In axisymmetric propagation, however, while amplitude remains important,
the effect of wavelength becomes more pronounced, i.e. longer wavelengths facilitate
greater radial propagation. This distinction arises because the dimensionless volume
N scales linearly with wavelength in two-dimensional flow (3.15), but quadratically
in axisymmetric configurations (3.16). In radially spreading currents, annular troughs
with increasing circumference impose progressively larger volumetric demands with
radius, unlike the constant cross-sectional area in two-dimensional propagation, thereby
accentuating the wavelength sensitivity in axisymmetric propagation.

In the context of CO, geological sequestration, where millions of cubic metres of
supercritical CO; are injected for long-term storage over thousands of years and may
migrate several kilometres within subsurface strata, two primary mechanisms enhance
storage security: capillary trapping within the porous medium and dissolution into the
formation brine. In this light, wavy cap rocks not only serve as local structural traps by
confining supercritical CO, within their troughs, but also extend the residence time of
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supercritical CO3, thereby enhancing the effectiveness of these stabilising processes. This
suggests that naturally occurring wavy cap rock geometries can improve long-term storage
security in practical CO, sequestration.

8. Future outlook

Our theoretical framework for porous media gravity currents over curvilinear surfaces
extends the seminal contributions of Huppert & Woods (1995) and Lyle et al. (2005). By
capturing essential topographic effects, it lays a foundation for understanding the complex
physics of subsurface flows, with particular relevance to CO, sequestration. However, in
practical applications, there are other factors that need to be studied.

One critical challenge is the migration of supercritical CO, through fractures or low-
permeability zones in cap rocks. Although previous studies (Neufeld, Vella & Huppert
2009; Neufeld et al. 2011) have explored fissure leakage over flat surfaces, the coupling
between leakage pathways and wavy cap rocks remains poorly understood. In such settings,
the local geometry of the sealing formation can alter pressure distributions and divert flow
towards or away from leakage points. A deeper understanding of these interactions is vital
for developing robust risk assessment strategies.

Confinement effects introduce another complexity when combined with curvilinear
boundaries (Pegler, Huppert & Neufeld 2014; Zheng et al. 2015). In contrast to flat
confined systems, the curvilinear boundaries generate variable effective geometries. This
alteration influences both the pressure gradients that drive horizontal flow and the
maximum hydrostatic head that limits propagation. Future studies should quantify how
the geometric modifications affect flow dynamics under confinement.

With permeability varying between horizontal and vertical directions (Hinton &
Woods 2018; Benham, Bickle & Neufeld 2021), the alignment of preferential flow paths
with the local topography can change spatially. This directional dependence makes the
effective permeability a function of both position and orientation, potentially amplifying
or mitigating the influence of surface slope and curvature on pressure distributions.
Addressing this anisotropy is essential for further accurately predicting flow patterns.

Moreover, while low-dimensional models assume a sharp, macroscopic interface,
realistic geological settings often involve multiphase flow with complex interfacial
dynamics (Golding et al. 2011; Golding, Huppert & Neufeld 2017). Incorporating factors
such as relative permeability and capillary pressure into low-dimensional models with
curvilinear boundaries is necessary to capture the interplay between gravity and capillary
forces, as well as processes like mixing, dissolution and instabilities that are critical for
long-term CO, trapping.

In summary, future research should focus on integrating these coupled mechanisms into
low-dimensional models that remain computationally tractable for large-scale geological
applications. Investigating how cap rock geometries interact with features such as leakage
pathways, confinement and anisotropy will be key to advancing our understanding and
predictive capability in CO; sequestration scenarios.

9. Conclusions

In this work, we have developed a comprehensive theoretical framework for porous media
gravity currents propagating over curvilinear surfaces. By analysing the flow dynamics
from local perspectives, we derived a local evolution equation that explicitly incorporates
the effects of surface geometry through both slope and curvature terms. This local model
reveals the interplay between the fluid and the underlying curvilinear topography.
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Building on the local model, we performed a scaling analysis to transform into
a global model. In doing so, we identified the key constraints, namely the thin-film
approximation, small surface slopes and moderate surface amplitudes, that justify the
neglect of higher-order geometric and curvature effects. As a consequence, the global
model is predominantly governed by leading-order slope effects, thereby capturing the
essential physics of the flow.

Our non-dimensionlisation further demonstrates that the evolution of finite-volume
porous media gravity currents is primarily controlled by a key dimensionless parameter.
This parameter, defined as the ratio of the released fluid volume to the characteristic
volume of the curvilinear surface, delineates distinct flow regimes ranging from
topography-dominated behaviour to volume-dominated dynamics.

The validity of low-dimensional models has been confirmed by numerical comparisons
with computational fluid dynamics simulations based on a more sophisticated macroscopic
sharp-interface flow model. The practical utility of low-dimensional models is applied to
CO, geological sequestration scenarios. The results reveal that for finite-volume releases,
wavy cap rock geometries can enhance trapping capacity compared with conventional flat-
surface approximations, highlighting the critical role of topographic features in subsurface
flow modelling. In the future, we will investigate the constant-flux condition, because
this pattern more closely resembles those encountered in CO; sequestration to reflect the
role of wavy cap rocks, thereby enhancing understanding on long-term CO; sequestration
performance.
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Appendix A. Numerical validation on axisymmetric porous media gravity currents
over sinusoidal surfaces

To numerically validate the axisymmetric propagation of porous media gravity currents,
we employ an efficient approach that models only a thin wedge-shaped sector of the
full three-dimensional domain, thereby substantially reducing computational overhead.
In our simulations, a mesh comprising 480000 cells was used. As shown in figures 7,
8 and 9, low-dimensional models and CFD simulations exhibit excellent agreement in
axisymmetric propagation. Notably, under identical release criteria, the axisymmetric
current propagates more slowly than in the two-dimensional case. These CFD results cor-
roborate our analysis in the context of CO; geological sequestration, attributing the slower
propagation to the increased volumetric demand required for radially spreading flows,
which highlights the pronounced geometric influence on axisymmetric flow dynamics.

Appendix B. Porous media gravity currents over horizontal flat surfaces

Before investigating porous media gravity currents over curvilinear surfaces, we consider
both propagation over a horizontal flat surface, corresponding to the classical low-
dimensional models (Huppert & Woods 1995; Lyle et al. 2005),

dh 0 doh

2 (%) 2o, Bl
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dh 10 dh
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t=600s t=1000 s

Figure 7. Numerical comparison of two approaches to current profiles for an axisymmetric porous media
gravity current over a sinusoidal surface (Case 1). Dotted yellow line, numerical solution.

Figure 8. Numerical comparison of two approaches to current profiles for an axisymmetric porous media
gravity current over a sinusoidal surface (Case 2). Dotted yellow line, numerical solution.

t=300s

Figure 9. Numerical comparison of two approaches to current profiles for an axisymmetric porous media
gravity current over a sinusoidal surface (Case 3). Dotted yellow line, numerical solution.
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Figure 10. Numerical comparison of two approaches to current profiles for a porous media gravity current over
a horizontal flat surface in both two-dimensional and axisymmetric propagations (+ = 600 s). Dotted yellow
line, numerical solution.
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Figure 11. Numerical comparison of two approaches to dimensionless current fronts for a porous media
gravity current over a horizontal flat surface in both two-dimensional and axisymmetric propagations.

We conduct numerical simulations of a finite-volume glycerol release (0.05 m x
0.02m) using both low-dimensional and CFD models. Figure 10 presents the current
profiles obtained from both approaches at t =600 s, illustrating the evolution from
an initial square configuration to a porous media gravity current and demonstrating
strong agreement between the models. Moreover, the close correspondence in the time-
dependent dimensionless front position, as shown in figure 11, further validates our
numerical framework prior to its extension to curvilinear surfaces. Minor discrepancies
observed across three mesh resolutions can be attributed to the thin-film approximation
employed in the low-dimensional models, which does not fully capture the vertical viscous
dissipation during the initial fluid collapse, which is effectively addressed by the fully
volume-averaged Navier—Stokes formulation in the CFD simulations.

Appendix C. Porous media gravity currents over linear-exponential surfaces

We also explore the propagation over linear-exponential surfaces, as in our previous study
on viscous gravity currents (Di & Huppert 2024). These surfaces are defined as

f(x) =axe ™ 2D), f(r) =are”"" (axisymmetric). (Ch)
We identify the following scalings that emerge from the surface geometry:
Se=1/b, Sp=a/b, S; = (yab)~'. (C2)

Here, 1/b represents the characteristic horizontal length scale where the exponential decay
becomes significant, while a/b captures the characteristic height of the surface.
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Figure 12. Numerical comparison of two approaches to current profiles for a porous media gravity current
over a linear-exponential surface (+ = 600 s). Dotted yellow line, numerical solution. (a) Two-dimensional
propagation; (b) axisymmetric propagation.

Accordingly, the dimensionless forms for these surfaces are
F(X)=Xe X (2D), F(R) = Re R (axisymmetric), (C3)

and the dimensionless released volumes are defined as

o
N=gq/pA,, with Ae:/ axe b* d)c:a/b2 (2D), (C4)
0

o0
N=4nq/$V,, with V,=2x / ar*e™ dr =4mwa /b (axisymmetric). (C5)
0

For instance, by assigning the surface parameters ¢ = 1 and b= 10m~!, we examine
three cases of fluid evolution over linear-exponential surfaces. Figure 12 qualitatively
illustrates the current profiles in both two-dimensional and axisymmetric configurations
at t =600 s. In Case 1, a glycerol volume of 0.03 m x 0.02 m (X¢(Rg) =0.3, Hy=0.2)
is released on the left side of the peak, forming a horizontal macroscopic sharp interface
that accumulates in the left vacancy of the linear-exponential surface. Without a pressure
source from the origin, the current eventually stops evolving. In Case 2, the release volume
increases to 0.08 m x 0.02 m (Xo(Ro) =0.8, Hy = 0.2), enabling the fluid to bypass the
peak and begin flowing downslope. In Case 3, with a larger release volume of 0.15 m x
0.02 m (Xo(Ro) = 1.5, Hp =0.2), the initial fluid extent exceeds the peak, resulting in a
current that collects near the origin, while its front advances downslope.

Figure 13 quantitatively compares the current front between the low-dimensional and
CFD models. The strong agreement between the two approaches across all cases further
confirms the validity of our framework for porous media gravity currents over curvilinear
surfaces. In Case 1, the current front remains nearly stationary over time, reflecting
the stagnation within the left vacancy; in Cases 2 and 3, the advancing front indicates
continuous propagation driven by the interplay between current thickness and surface
slope. In summary, propagation over the linear-exponential surface provides a local view of
the relationship between the released volume and the peak, leading to various evolutions.

It is worth noting that although the linear-exponential surface exhibits steep slopes
near the origin, i.e. potentially violating the small slope assumption of our theoretical
framework, the numerical validation confirms that the low-dimensional models remain
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Figure 13. Numerical comparison of two approaches to dimensionless current fronts for a porous media
gravity current over a linear-exponential surface in both two-dimensional and axisymmetric propagations.

robust. This robustness arises because the region of steep slopes is limited to the origin,
which is smaller than the overall horizontal extent of the current. Consequently, the
primary assumption remains valid at the global scale, ensuring that the main flow
dynamics is captured and that the low-dimensional models yield reliable predictions.

Appendix D. Extension to generalised surfaces
D.1. Axisymmetric power-exponential surfaces
We define a generalised axisymmetric power-exponential surface as

f@r)y=arme ", (D1)

where the parameters m (m > 1) and n (n > 1) are constants that determine the specific
shape of the surface. Using the scalings

Se=1/DV", Sp=a(S)", S =(S)>""/(Ba), (D2)
the dimensionless model is written as
oH 1 0 0H dF
— ———|RH|—+—]|=0, (D3)
oT ROR oR dR
L
2 / RHdAR =N, (D4)
0
0H dF
—_—+ — —0=0, D5
(8R+dR)|R_O (D5)
H(Rp, T)=H (L,T)=0, (D6)
Hy 0< R<+/N/(THy),
H(R,0) = / (D7)
0 R > /N /(w Hp),
where the dimensionless power-exponential surface is
F(R)=R"e K. (D8)
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The definition of N is
v 2l [(m+2)/n] q
on Vee

with the volume of the power-exponential surface

’

L 2ma
Vge =21 A rar™e dr:nb(mT)/nF[(m‘l‘z)/n]-

D.2. Arbitrary curvilinear surfaces

Extending sinusoidal surfaces to arbitrary axisymmetric continuous surfaces

j
@)=Y Ai[1—cos(4r)].

i=1
Letting j = 3, the curvilinear surface is written as
f(r)y=A1[1—=cos(A1r)]+ Az [1 —cos(A2r)] + Az [1 — cos(Azr)],
where A3 > A> > A;. Using the scalings
Se=1/A1, Sy=A1. S =1/(BAjA1),

we write the dimensionless model as
oH 1 9 oH dF
— ———|RH|—+—]|=0,
T ROR oR dR
L
27 / RHdAR =N,
0
oH N dF | _0
9R ' dr)'*0T7

H(Rp,T)=H (L, T)=0,

Hy 0< R <+/N/(mHy),
0 R > /N /(x Hp),
where the dimensionless curvilinear surface is

F(R)=1—=cos(R) + P [1 —cos(Q2R)] + P3 [1 — cos(Q3R)],

H(R,O):{

Py=Ay/A1, Qr=A2/4y,

Py=A3/A1, Q3=A13/4;.
The definition of N is
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where Vi is the volume given by the first wavelength of the primary term, A{[1 —
cos(A1r)], calculated as

2/
Vi =271A1/ r[1 —cos(Ar)] dr =43 Ay /A3, (D23)
0

Similarly to our previous study on viscous gravity currents over curvilinear surfaces
(Di & Huppert 2024), we reveal that the flow system for a finite-volume viscous fluid
in porous media over a curvilinear surface is also jointly governed by the dimensionless
surface shape F'(R) and the crucial dimensionless number N.
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