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Abstract

When optical fibres are made by first constructing optical-fibre preforms, the fibre
which is pulled from the heated preform is simply a scaled down version of the original
preform structure. The expansion coefficient profile «(r) of the preform, which relates
directly to the fabrication variables, can be determined from non-destructive optical
retardation measurements fi(r) performed on the preform. In addition, the residual
elastic stress distributions in a fabricated preform, which can be used to compare
different fabrication procedures, have simple definitions as linear functional of the
expansion coefficients o(r). Thus, through the use of optical retardation data, an
examination of different manufacturing procedures for preform fabrication is reduced to
a problem in non-destructive testing and analysis. The underlying numerical problem of
evaluating the stress distributions reduces to solving an Abel-type integral equation for
o(r), which involves an indeterminacy, followed by the evaluation of linear functionals
defined on a(r). It is shown how the known inversion formulae for the Abel-type
integral equation can be used formally to reduce the numerical problem of evaluating
the radial stress to the evaluation of a linear functional defined on the data 8(r) which
bypasses the indeterminacy. When only the radial stress is required, the problem of
actually solving the Abel-type integral equation is avoided. Methods for evaluating the
non-radial stresses, which avoid the indeterminacy, are also derived.

1. Introduction

For the monitoring and control of optical fibre fabrication, it is necessary to
relate the properties of the fibres to specific characteristics in the manufacturing
process. This can be done using non-destructive testing and analysis when the
production of fibres is based on the construction of optical fibre preforms which
are then heated and pulled to form the fibres.
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In this manufacturing process, successive layers of doped silica are deposited
within a rotating silica tube to form the cladding, that is, the inner layers. After
the construction of a suitably large number of layers, the process is terminated
with a doped silica essentially different from that used for the cladding since it
eventually forms the core. The tube is then collapsed to form the preform which
thereby consists of axially symmetric cladding layers around a central core.
Presby et al. [9] have found that the final properties of the fibre can be related to
the properties of the preform, except possibly for minor effects of the pulling on
the core.

As a result, the properties of the fibres can be monitored either in terms of the
refractive index profile of the preform (see Chu and Whitebread [5], Marcuse [7]
and Sasaki et al. [10]), or its thermal expansion coefficient profile a(r) (see
Shibata et al. [11]). The use of the latter has the added advantage that the stress
distributions, which are important in the manufacture of single-mode, low-bire-
fringence fibres (see Norman et al. [8]), have simple definitions in terms of a(f).

Since the a(r) profile is related to the intrinsic stress in the preform, laser light
passing through the preform normal to the axial direction experiences a certain
retardation S(r) and this can be measured as a function of the radial distance r
from the centre of the preform. This retardation S(r) can be expressed in terms
of a(r) by the following Abel-type integral equation (see Shibata et al. [11,
Section 2.3]):

f(x) = fRra(r)/ (r2 - x*)1/2 dr for 0 < x < R, (1)
•'x

with

/(*) = (8(x)/D) + 2M,(/?2 - x2)l/2/R2 and

D = AirCEbT/ (A(l - a)), (2)

where R denotes the outer radius of the preform, C, E and a the photoelastic
constant, Young's modulus and Poisson's ratio, respectively, of the medium, \
the wave length of the laser light, AT the effective temperature difference
between room temperature and the softening temperature of doped fused silica
used in the cooling process of preform fabrication, and A/, the first moment of
the expansion coefficient a(r), namely

A/, = (Rra(r) dr. (3)
•'o

What makes this Abel integral equation formalism non-standard is the pres-
ence of the term M, in the definition of the data /(*), since, formally, a(f) is
needed to determine M, and A/, is needed to determine a(r). To-date, rather

https://doi.org/10.1017/S0334270000000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000138


(31 Testing of optical-fibre preforms 129

crude methods, based on assuming that a(r) has a piecewise constant structure,
have been used to cope with this indeterminacy (see Shibata et al. [11, Section
2.3]).

The required intrinsic stress components are then defined as linear functionals
on the expansion coefficient a(r) (see Shibata et al. [11, Section 2.1]):

or(r) = (E AT/ (1 - a)){(l//?2)jT\a(T) dr - (l/r2) fra(r) dr], (4)

a$(r) = (EAT/ (1 - o))[(l/R2)J*ra(r) dr + (l/r2) fra(r) dr - a(r)},

(5)

and

oz{r) = (E AT/ (1 - a))[(2/R2)f\a(r) dr - a(r)), (6)

where ar, ae and az denote the stress components in the cylindrical coordinate
directions r, 9 and z, respectively.

The aim of this paper is to show how the linear functional (4) for the radial
stress distribution ar(r) can be redefined as a linear functional on the retardation
data S(r) which bypasses the indeterminacy discussed above. Thus, when only
the radial stress or(r) is required, the necessity of solving (1) and (2) numerically
for a(r) is avoided. The idea of replacing linear functionals defined on the
solution of some problem by equivalent functionals defined on the data is not
new, and has been exploited in a number of contexts (see, for instance,
Anderssen [2], Goldberg [6] and Anderssen [3]). Methods for evaluating the
stresses ae(r) and az(r), which avoid the indeterminancy, are also derived.
Methods for estimating M, are discussed and compared.

2. Preliminaries

For the Abel equation (1), the inversion formula which will be used is

As an immediate consequence, it follows that

A/, = f\a(r) dr = (2/v)f*f{x) dx, (8)

which illustrates how, in the present context, functionals defined on the un-
known a(r) can be identified as functionals on the data / (*) . The indeterminacy
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associated with Ml and a(r), however, has not been removed; it has only been
transfered to an indeterminacy between A/j and/(x) (see the definition of f(x) in
(2))-

3. The radial stress

To replace the evaluation of the radial stress ar(r), defined in (4), by a
functional defined on the data f(x), it is necessary only to substitute the
right-hand side of (7) for a(r) in (4) to obtain

or(r) = (EAT/(l-o))t[(Ml/R
2)

- r2)"2 dx - vMJl}/ (OT
2)}. (9)

At first sight, it might appear that the indeterminacy could be removed by
simply substituting the definition of f(x) given by (2) in the right-hand side of
(8), but this yields the independent condition

f*8(x) dx = 0, (10)
Jo

which the retardation observations of 8(x) are known to satisfy. It is a conse-
quence of the fact that the total axial stress in the preform must be zero, namely

foz(r)rdrd9 = 0, (11)
o •'o

which follows almost automatically from the definition of oz(r) given by (6). The
definition of f(x), however, can be used to simplify (9). In fact, if it is substituted
for/(x) on the right-hand side of (9), it follows after minor manipulations that

ar(r) = (A/ (2CrV)) J^*S(*) / (x2 - r*)x'2 dx. (12)

Although (because of its dependence on r) this linear functional is indefinite, its
dependence on M, has been removed. As a result, the ad hoc strategies
developed by previous authors (see Shibata et al. [11, Section 2.3]) to cope with
the indeterminacy are not, in fact, needed.

4. The non-radial stresses

Because they involve a(r) explicitly, it would at first sight appear necessary to
solve (1) and (2) numerically (see Anderssen [1]), with respect to given observa-
tional data for the optical retardation S(x) and an estimate of M,, before the
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stress components oe(r) and az(r) could be evaluated. The need to do this,
however, is circumvented the moment it is observed that (1) and (2) can be
rewritten as

K8{x)/D = - fRro2(r)/ (r2 - x2)1/2 dr, K = (EbT)/ (1 - a)
J X

since it follows, on using the inversion formula (7), that

This result, when combined with (12), yields

az(r) = (\/r)d{r\{r))/dr. (13)

A further simple calculation then yields

*•(') = °,(r) ~ o,(r) = d(ror(r))/dr. (14)

As well as showing how to avoid the indeterminacy in the calculation of o2(r)
and og(r), these two results also verify that the basic information about the axial
structure of the preform is contained in or(r).

5. The indeterminacy

The indeterminacy reflects the fact that the formulation (1) and (2) determines
a(r) only up to an arbitrary constant. In fact, if S(x) = 0, then (1) and (2)
combine to yield

Rra(r)/ (r2 - * 2 ) 1 / 2 dr = 2M,(/?2 - x2)1/2//?2.f
* X

It is then a simple matter to show that, if a(r) is a solution, then so is a(r) + K.
It therefore follows that Mt cannot be determined from (1), (2), (3), (4), (5) and
(6) without the introduction of some additional assumption.

If an estimate of A/, is required, one approach is to use the definition of or(r)
in (4). On assuming a value for a(0) (without loss of generality we take
a(0) = 0), it follows from (4) that or(r) itself can be used to estimate M, as

It is clear that the numerical estimation of

ton { _L / " - w ^
- ^ ' / 2
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from observational data will have to be accomplished with some care. Because
of the singular integrands involved, the advantages of product integration should
be exploited (see Anderssen and Jakeman [4] and Anderssen [3]). In passing, it is
noted that (10) represents a necessary condition for the existence of this limit.

An alternative approach to the estimation of M, has been proposed and used
in the applied optics literature. It is assumed that er(r) is constant and known in
the substrate region adjacent to the surface of the preform, that is,

f a(r) for 0 < r < a (core and cladding),
[a for a < r < R (substrate),

where a is const. It follows from (1) and (2) that, for a < x < R,

S(x) = D(a - (2Mt/R
2))(R2 - x2)l/2;

that is, M, can be estimated as

M, = (/?2/2)[a -8(x)/(D(R2 - x2)1/2)] for a < x < R,

or, more generally, as

M, = lim (*2/2)[a(x) - S(x)/ (D(R2 - x2)i/2)]. (16)

Clearly, this procedure is limited by the necessary and sufficient condition
for the existence of the limit (16), namely, 8(x) = K^R2 - x2)l/2 +
o((R2 — x2)l/2), where Ko = constant. The conditions on Mt are less restrictive.
This will be shown in Section 6.

6. Exemplification

Consider the synthetic datum

5(r) = A{\ - r2)" + B(l - r2)0 for 0 < r < 1 and a < /3. (17)

It automatically satisfies the condition 6(1) = 0. The constants A and B are
determined by condition (10) and an arbitrary end condition 6(0) = - 1 . Using
the fact that

^ ^ ^ ^ 0 - -2r1/2. 08)

it follows that
A = T(a + 3/2)r(0 + 1)/CO and B = -Y(p + 3/2)r(a + O/Q, (19)
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where Co = T(p + 3/2)T(a + 1) - T(a + 3/2)1X0 + 1). Again using (18), it is
not difficult to show that

ar(r) = ( y (4Or2r2))C {(1 - r T + ' / 2 - (1 - r 2 / + 1 / 2 } , (20)

where

c = —
r(£ + 3/2)r(a + i) - r(a + 3/2)r(0 + i) •

It then follows naturally from (15) that

M, = C ( 0 - a)/trD (21)

and, from (2), that

fix) = fr(o + 3/2)r(0 + 1)(1 - x2)" - T(/3 + 3/2)r(a + 1)(1 - x2f

+ -r(^)r(« + i)r(0 + i)(0 - a)(i - x2)1/2l/rz)Col.

Further use of (18) now yields, for -1/2 < a < 0,

+ 2M,. (22)

Estimating M, from the constant substrate assumption, it follows from (16)
that, for the synthetic datum (17),

A/, = lim i {air) - (S(r)/ (Z)(l - r 2 ) 1 / 2 ) ) ) , (23)

hm ^^ = { _ (24)
r-*i ̂  _ r2y/2 [ K for 1/2 = a < /3,

and

f2M, f o r l / 2 < a < 0 ,
lima(r)= . ' _ (25)
' - • [2M, + K/D for 1/2 = a < 0,

where

K = r ( 0 + i) / {r(0 + 3/2)r(3/2) - r ( 0 + i)}.

Combining (23), (24) and (25), we obtain

RESULT. For the synthetic datum (17), M, = A/,, // 1/2 < a < 0.
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The above results show that M, exists for -1 /2 < a < y8, whereas Mx only
exists for 1/2 < a < /?, because a(r) is singular at the surface r = 1, when
o < 1/2 and, as a consequence, lim,.^, a(r) fails to exist. This tends to imply
that Mx will yield a poor estimate of Mx when a(r) changes rapidly in the
neighbourhood of the surface r = 1.
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