J. Austral. Math. Soc. Ser. B 38(1996), 149-162

GLOBAL ATTRACTIVITY IN TIME-DELAYED PREDATOR-PREY
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Abstract

For a predator-prey model with time-delay due to gestation, criteria are obtained for
persistence and global attractivity. The global attractivity criteria apply only to models
with a decreasing prey isocline.

1. Introduction

Many known biological processes involve a time delay. In particular, in the math-
ematical modelling of population ecological interactions, time delay models have
come into prominence. The recent seminal text of Y. Kuang [18] and the plethora of
references contained therein show this to be the case.

Time delay models are significantly more difficult to analyze than instantaneous
continuous models. Hence, although the existence of equilibria for ordinary differen-
tial equations and time-delayed equations are equivalent, their stability analyses are
more difficult and questions of global stability are extremely more difficult in the later
case. As well, the questions of persistence (to be discussed in Section 3) is also more
difficult.

The question of global stability of equilibria is of particular interest to wildlife
managers. If it is known that a system exhibits such global stability, then ecological
planning based on a fixed eventual population can be carried out. For single species
models [6], [9], [18] and competition models [14], [18], criteria have been developed
to obtain global stability. However in the case of a predator-prey system, felt by many
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to be the most interesting of ecological interactions, although there exist criteria for
global stability in predator-prey models with no delays [7], [8], [17], [19] and criteria
for local stability in predator-prey models with delays [11], there are as yet to the best
of our knowledge no published criteria for global stability in predator-prey models
with delays.

In models with complicated dynamics, the questions of persistence and extinction
are important and fundamental. The definitions will be reviewed in Section 3. In this
case criteria have been established for delay-differential equations in general [12],
[16] and in particular for.population models {3], [4], [5], [18], [20]. Here we obtain
new criteria for our system.

The paper is organized as follows. In Section 2 we describe our model and some
of its properties. In Section 3 the persistence-extinction question is discussed. This is
followed by the question of global attractivity in Section 4. In Section 5 we illustrate
our result with an example, and a brief discussion concludes the paper in Section 6.

2. The model

In [11], a predator-prey model was described incorporating a time delay due to
~ gestation in the predator equation. Here we will consider a general class of such
models which contains the model described in [11] as a special case. (We will
compare our results with those of [11] in Section 5.)
Hence we wish to consider the system

x(@0) = fx@), y@)
y() = g(x(t — 1), (1), 2.1

subject to the initial conditions
x(0) =x0) =0, y(0)=y=0, (2.2)

where T > 0 is a constant time delay and x,(8) is a continuous function from [—7, 0]
to R. x(t) and y(r) represent the biomass of prey and predators, respectively at time
t>0.

In hypotheses (H1)—(H3) below, we outline the general assumptions to make system
(2.1) model a predator-prey system with delay due to gestation:

(H1): f(x,y) and g(x, y) are sufficiently smooth so that solutions to (2.1)—(2.2)
exist, are unique and are continuable for all positive time (see [15]),
H2): fO,y)=g(x,0)=0forallx, y>0, lir(r)l xf(x,0)>0, liI('[)l y~lg(0, y) <0,
x—0t y—0+

H3): of(x,y)/dy < 0,98(x,, y)/dx, > 0, x, x;, y > 0, where we have used the
notation
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x. (1) £ x@t —1). (2.3)

For the purpose of our analyses, we will require (H4) or (H4)' to be satisfied.

(H4): There exist two continuous functions ¢(y) and ¥ (x) from [0, 4+0c0) to R with
¢@(0) = k for some k& > 0 such that

fe, & —9() <0, forallx >0,y >0, x # ¢(y) 24

and

gx, )y —¥(x) <0, forallx >0,y >0,y # ¢y (x). (2.5)

The next hypothesis is more general than (H4) and is only used for uniform persistence.
(H4)Y There exists a K > 0 such that

f(x,y) <Oforallx > K,y >0, (2.6)
and for any x, > 0 there exists y, = y.(x;) > 0 such that
glx,y) <Oforallx € [0, x],y > .. 2.7

Notice that if (H4) is satisfied then x = ¢(y) and y = ¥ (x) are isoclines for (2.1)
and any equilibrium of (2.1) is determined by solving the equations x = ¢(y) and
y = ¥(x). One can see that under assumptions (H1)-(H3), for any given initial
condition (2.2) with x,(0) > 0 and y, > 0, the solution to (2.1) and (2.2) satisfies
x(t) > 0and y(t) > Oforall + > 0. We now establish the following relation between
(H4) and (H4Y'.

PROPOSITION 2.1. Let (H4) be satisfied. Then (H4) is also satisfied with y,(x,) =
max {Y(x)}.

x€[0,x}

PROOE. If y = 0 in (2.4), then f(x,0)(x — K) < Oforall x > 0 with x # K. Thus
f(x,0) < Oforallx > K. Since %(x, y) < Oforallx > 0and y > 0, it follows that

flx,y) < f(x,0) <Oforallx >0and y > 0.

Now, let y, = max{y(x) : x € [0, xy]}. Forany x € [0, x;] and y > y,, we have
y > ¥(x). Consequently (2.5) implies that g(x, y) < Oforallx € [0, x;]and y > y,.
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We conclude this section by a discussion of the significance of (H4). If (H4)
is satisfied then the prey isocline is given by x = ¢(y) and the predator isocline
by y = ¥(x). Hence (2.4) can only be satisfied if the prey isocline is strictly
decreasing. This would be true if system (2.1) is a Lotka-Volterra system [8] or
if for example f(x,y) = rx(1 —x/K) — axy/(b + x) and the isocline given by
y = (r/a)(1 — x/K)(b + x), which is a parabola, is such that the vertex occurs for
x < 0. However, in general the prey isocline is not decreasing for all x > 0, and so
(H4) can only be satisfied for a restricted class of predator-prey models.

3. Uniform persistence

In this section we show that under our assumptions, system (2.1)—(2.2) with positive
initial conditions is uniformly persistent.

We take our definition of uniform persistence from [13]. For the definition of
uniform persistence in a more general setting see [1], [2], [10]. We say that our
system (2.1)~(2.2) exhibits uniform persistence provided the solution (x(z), y(¢)) to
(2.1)—(2.2) satisfies x(t) > 0, y(¢) > 0,¢ > 0 and there exists § > 0 independent of
solutions of (2.1)—(2.2) such that lim glf x(t) > é and li,nl (i)glf y() = 8.

LEMMA 3.1. Suppose (HI1)—(H3) and (H4) are satisfied. If (x(1), y(¢)) is a solution
of (2.1)~2.2) with x4(0) > 0 and y, > 0, then

limsupx(t) < K

1>+00

and

lim sup y(t) < )’*(K),

t—»+00

where K and y,(.) are given by (H4).

PROOF. We let x = rPaxm{x(t)} and X, = max{x, K}. Since f(x,y) < 0 for all
tel—1,

x > K and y > 0, it is easy to show that
0<x(t) <% 3.1

for all 1 = 0. Similarly since g(x, y) < Oforall0 < x < % and y > y,(X;), we can
show that

0 < y(r) < max{y(0), y.(%o)}. (3.2)
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Since y(¢) is bounded, it follows from (2.6) that

limsup x(¢) < K.

1—+00

Consequently it follows from (2.7) that

limsup y(t) < y.(K).

1—>+00

We now prove our result on uniform persistence. Some additional conditions are
needed so that the boundary equilibria of system (2.1)—(2.2) do not attract any positive
solutions of (2.1)—(2.2).

THEOREM 3.2. Suppose that (H1)~(H3) and (H4) are satisfied. Assume that there
exists Ko > 0 such that f(x,0)(x — Ky) < O for all x > 0 with x # Ky. If
g0,y <Oforally >0, f(x,y) > 0for x > 0and y > O sufficiently small, and
g(Ky, 0) > 0, then system (2.1)—2.2) is uniformly persistent.

PROOF. By Lemma 3.1, we know that system (2.1)—~(2.2) is dissipative. We wish to
use the technique developed in [1], termed BFW, to show the uniform persistence.
Consider system (2.1)+2.2) defined on the boundary x = 0or y = 0. If y = 0, then
(2.1) becomes

x(#) = f(x(®),0). (3.3)

This ordinary differential equation has two equilibria x = 0 and x = K, where the
second one attracts all positive solutions of (3.3). If x = 0, then (2.1) becomes

y(@) = g(0, y(®)). (3.4)

Since g(0, y) < Oforall y > 0, every positive solution y of (3.4) satisfies lim y(t) =
t—>+4-00

0. Thus, there are only two boundary equilibria, E,(0, 0) and E, (K, 0) for (2.1). The
condition g(Kp, 0) > 0 implies that the equilibrium E, does not attract any positive
solution of (2.1), that is, there is no positive solution (x(¢), y(¢)) of (2.1) satisfying
rLi{rnoo(x(t),y(t)) = (Ky, 0). Since f(x,y) > 0for0 < x << land0 < y << 1,

there is no positive solution of (2.1) approaching E,(0, 0). Consequently, by applying
the results contained in the main theorem of [16], system (2.1) is uniformly persistent.

The followng corollary gives related results.
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COROLLARY 3.3. Suppose (H1 )—(H4) are satisfied. If ¥ (0) < 0and ¢ (K) > 0, where
K is defined in (H4), then system (2.1)~(2.2) is uniformly persistent. In particular,
any positive solution (x(t), y(t)) of (2.1)~(2.2) satisfies

limsupx(t) < K

1—>+00

and

li 1) < .
l,rffip y(®) < x’e‘?&’é]“”("”

PROOF. Since it follows from Proposition 2.1 that (H4) implies (H4Y, it then follows
from (2.4) that ¥ (0) < O implies y(0, y) < O forall y > 0 and ¥(K) > O implies
g(K,0) > 0, where K in Theorem 3.2 equals K in this case. Finally, the condition
¢(0) = K > O implies that f(x,y) > Ofor0 < x << land 0 < y << 1.
Therefore, all conditions in Theorem 3.2 are satisfied and consequently, system (2.1)—
(2.2) is uniformly persistent. The inequalities in Corollary 3.3 follow from Lemma
3.1.

4. Global attractivity

In this section we will show that under assumptions (H1)—(H4), system (2.1)—(2.2)
contains a globally asymptotically stable equilibrium. We remind the readers that
hypothesis (H4) implies that there exists a strictly decreasing prey isocline, which is
a substantial restriction. Nevertheless, this is the first result to be published showing
global attractivity for predator-prey systems with time delay due to gestation.

Before stating and proving our theorem, we require the following lemma.

LEMMA 4.1. Suppose (HI1)—(H4) are satisfied. Let (x(t), y(t)) be a positive solution
of (2.1)2.2). Assume that there exist some positive constants &y, po, tho and qo such

that
8o < liminfx(¢) < limsupx(¢) < po 4.1)
t=>+c0 t—>+00
and
to < liminf y(z) < limsup y(¢) < qo. “4.2)
[—>+oc0 t—>+00

If qo and iy are respectively the maximum and minimum of ¥ (x) on the interval
[0, po) and 8y and p, are respectively the maximum and minimum of ¢(y) on the
interval [1Ly, qol, then

8o < liminfx(¢) < limsupx(¢) < po 4.3)
I=>+c0 t—+400
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and

Ho < liminf y(r) < lim sup y(f) < qo. (4.4)
I—+00

t—=+o00

PROOEF. For any given € > 0, it follows from the assumptions that there exists Ty > 0
such that

Sg—€ <x(t) < pyg+e forallt > Ty. 4.5
Consider the second equation of (2.1)
y@y=gx(@—1),y¢) fort=Th+r. (4.6)
It follows from (H4) that, for¢t > Ty + ©
g(x(t —1),y) <0
for y > max{y(x) : x € [6p — €, po + €]}, and
8(x(t~1),y)>0
for0 < y < min{y(x) : x € [§p — €, po + €]}. Consequently, if
go = max{y(x) 1 x € [§ — €, po + €]} 4.7
and
fig = min{y (x) : x € [8y — €, po + €]}, 4.8)
then it follows from (4.2) that

i < liminf y(1) < limsup y(1) < ;. (4.9)
=400

{—+00

Taking the limits above as ¢ — 0%, we have proved (4.4), Now, for any € > 0 there
exists T; > 0 such that

flo—€ < y(t) <go+e€ forallz > T,.
Consider the first equation of (2.1)
x(t) = f(x@),y@))  fort =T. 4.10)
It follows from (H4) that, whent > T,

fx,y®)) <0 4.11)
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for x > max{p(y) : y € [fio — €, §o + €]} £ p§, and
fl,y@®) >0 4.12)

for 0 < x < min{p(y) : y € [ —€,§0 + €]} £ §5. In fact, for any [x,, x] C
(p§, +00) and [Xy, X,] C (0, §5), there exists a constant § > 0 such that t > 7; and
x € [x;, x,] imply

fx,y@) >34 4.13)

and ¢ > T, and x € [X,, X,] imply

fx, y@®) < =8. “4.14)
Consequently, as a solution of (4.10), x (¢) satisfies

5 < liminfx(t) < limsupx(¢) < p;. (4.15)
t—>+00

t—>+00

Taking the limits above as ¢ — 0%, we have verified (4.3).

In our next theorem we connect the global attractivity of the positive equilibrium
for system (2.1) with the global attractivity of a fixed point for a specified mapping.

THEOREM 4.2. Suppose that (H1)—(H4) are satisfied with ¢ monotone decreasing and
Y monotone increasing. Assume Y(0) = 0 and ¢ (K) > 0. Let 0(x) = o(¢¥(x))
be a mapping from [0, K] to R. Ifo((0, K1) C (0, K] and there exists a fixed point
xo € (0, K] of the mapping o which is globally attractive (that is, for any x € (0, K1,
o"(x) — xo as h — +00), then system (2.1)~2.2) has a unique positive equilibrium
(x0, ¥ (x0)) and this equilibrium attracts all positive solutions.

PROOF. First of all, it follows from the monotonicity of ¢ and i that the mapping
o is monotone decreasing. By Corollary 3.3 one can see that system (2.1)—(2.2) is
uniformly persistent. Consequently for any positive solution (x(z), y(¢)) of (2.1)-
(2.2), there exist positive constants &, po, o and go with py < K such that

8o = liminfx(¢) < limsupx(t) = po (4.16)
1—+00 1400
and
o = liminf y(z) < limsup y(t) < qq. 4.17)
1—>+00 t—+00
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It follows from Lemma 4.1 that

o(po) < lim+infx(t) < limsupx(t) < o () 4.18)

=400
and
¥ (&) = liminf y(¢) < limsup y(r) < ¥ (po), (4.19)
{—>+o0 1~>+00

where o (py), 0(60), ¥ (8) and ¥ (po) equal iy, gy, 8o and Po in Lemma 4.1 respect-
ively by the monotonicity of ¢ and 0.
Consequently, (4.16) and (4.18) yield

0 (po) <80 < po < 5(d). (4.20)
Since py < K by Corollary (3.3), it follows from the assumption that 0 < o (p,) <
0(8) < K. Therefore, by the assumption o ((0, K1) C (0, K] and the monotonicity
of o, (4.20) yields

02(8) < 0(po) <0 (&) < o*(po). (4.21)

Combining (4.20) and (4.21), we have

o2(8) < 8 < po < *(po). (4.22)
It follows step by step that

0%"(80) < & < po < 3™ (po) (4.23)

for any positive integer n, where o* is the k-th interaction of the mapping o. Taking
the limit of (4.23) as n — +00, it follows from the global attractivity of o that

50 = Do = Xp. (424)

Consequently, (4.16) becomes liT x(t) = xp and (4.19) becomes liT y(t) = ¥{xg)
(=400 1= +00
for any positive solution (x(z), y(¢)) of (2.1)+(2.2) .

REMARK 4.3. If in (H4) ¥ (0) < 0 and there exists K’ < K such that ¢ (K') = 0,
then in order to satsify the condition in Theorem 4.2 we can redefine ¥ (x) = O for
x € [0, K']. Certainly under this redefinition, (H4) is still valid.
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REMARK 4.4. Under the assumptions of Theorem 4.2, the positive equilibrium of
system (2.1) is determined by solving the equations x = ¢(y) and y = i (x) for x and
y. Consequently, the positive equilibrium of system (2.1) is determined by the fixed
point of the mapping o. Precisely, if x, € [0, K] is a fixed point of the mapping o,
then (xg, ¥ (xo)) is an equilibrium of system (2.1). Of course, (xy, ¥ (xp)) is a positive
equilibrium, since xo = K implies ¥ (xp) > 0 and x4 € (0, K) implies the (xg, ¥ (x5))
is not a boundary equilibrium. Finally, since 0 (0) = K and 0 (K) < K there always
exists a fixed point of ¢ in (0, K].

The following corollary gives a more easily computable criterion for global at-
tractivity.

COROLLARY 4.5. Suppose the assumptions of Theorem 4.2 are satisfied except that
the conditions on o are replaced by |0'(x)| < 1 for all x € (0, K. Then there exists
a unique positive equilibrium (xy, ¥ (x0)) of (2.1)—(2.2) which attracts all positive
solutions.

PROOF. Since ¢ (0) = K, the assumption |o'(x)| < 1 for all x € (0, K] and the
monotonicity of o imply o ((0, K]) C (0, K]. By Remark 4.4, there always exists
a fixed point x, in (0, K] for the mapping o, and this fixed point yields a positive
equilibrium (xo, ¥ (xo)) for system (2.1)—(2.2). Since the fixed point x, of o is globally
attractive, the proof now follows from Theorem 4.2.

5. Application

In this section, we will discuss an application of our results to a biological model
considered in [11]. Consider the model

(5.1)

x(@®) =x@®)gx @) — y"()p(x(1)
y&) =y@(=s+cy@)" ' pxt — 1)) —q(y®))).

This model prescribes predator-prey interactions with mutual interference, density-
dependent predator death rate and time lag due to gestation. In (5.1), x(¢) represents
prey density at time ¢, y(t) represents predator density at time ¢ and t is a constant
time delay. The following conditions have been discussed and justified in [11]

(i) g0 >0 %<0

(i) 3K > Osuchthat g(K) = 0and g'(K) <0
(i) p0)=0, 2£>0
iv) 0<m<1

v) g0 =0, %>o0.

dy
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(We add the condition g'(K) < O to ensure that the carrying capacity for the prey-only
model is unique.)

The local stability of the positive equilibrium of system (2.1) was discussed in [11].
Here we obtain criteria for global attractivity.

Define
d

H(x,y) = xdi(x) +g(x) = y" —p(x)

X dx
N(x,y) =-my" 'p(x) <0

d
0w,y =P 50 (5.2)

and
mdP(y) _

R(x,y)=(m—Dcy" 'p(x) — y T S 0.
y

THEOREM 5.1. Assume HR > —N Q for all0 < y < (g(0)/p' (O™ and 0 < x <
K. Then there exists a unique positive equilibrium for system (5.1) which is globally
asymptotically stable.

PROOF. Since N(x,y) < 0 and Q(x,y) > 0, the inequality HR > —N Q implies
H(x,y) > 0and R(x,y) < Ofor0 <x < Kand 0 < y < (g(0)/p’(0O)'/™.
Therefore, one can solve x = ¢(y) from the equation

xg(x) —y"p(x) =0 (5.3)

for0 <x < Kand0 <y < (g(0)/p’(0)!/™. Itis easy to see that p(0) = K > 0,
@(y) = 0 and ¢(y) is strictly decreasing for y € [0, 9], where we denote

= (80)/p'©O)"". (5-4)

Similarly, one can solve y = v (x) from the equation

y(=s = q() —cy" ' p(x)) =0 (5.5)

for0 <x < +4+ooand 0 < y < j. Itis easy to see that y(0) = 0 and (x) is strictly
increasing for x € [0, +00). Now, if we define ¢(y) = 0 for y > y, then (H4) is
satisfied. If o (x) = ¢ (¥ (x)) then

o'(x) = (WENY' (x)
=__N(x,)’) . —Q(X,)’) - N(xa)’)Q(x,J’)
H(x,y) R(x,y) H(x, y)R(x,y)

(5.6)

https://doi.org/10.1017/50334270000000540 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000000540

160 Yulin Cao and H. 1. Freedman [12]

forx € (0, K]land y = ¥(x) < y and o’'(x) = O for ¥ (x) > y. By the assumption
HR > —N(Q, we have

-l1<o'(x) <0 for x € (0, K. 6.7

Consequently, Corollary 4.5 yields the global attractivity. By Theorem 5.2 in [11],
the positive equilibrium is clearly locally stable, proving the theorem.

If m = 1, we need the following assumption to ensure the existence of a positive
equilibrium, namely

pk) > 2. (5.8)
C

For simplicity, we also assume the following.

(HS): y = y(x) can be solved from the equation
s +q(y) = cp(x) (5.9)
for all x € [K, +00) for some K < K.

THEOREM 5.2. Suppose m = 1 in system (5.1). Assume HR > —NQ for all 0 <
y < |g0)/p'(0) and 0 < x < K. If (5.8) and (H5) are satisfied, then there exists a
unique positive equilibrium for system (5.1) which is globally asymptotically stable.

PROOF. Let K > 0 be the smallest value such that y = ¥ (x) > 0 can be solved
from (5.9) for x € (K, +00). Itis easy to see that y(I? ) = 0. Now, we define
y = ¢¥(x) = 0forx € [0, K) (also see Remark 5.3). Similar to the proof of Theorem
5.1, we can show the result.

6. Discussion

In this paper we have considered a predator-prey system with time delay due to
gestation and have derived criteria for uniform persistence and for global attractivity
of a positive equilibrium.

The results in this paper may by some careful analysis be extended in several ways.
First the same results as in Theorem 4.2 would hold if y(¢) in the first equation of (2.1)
is replaced by y(r — 1;). This may be of mathematical interest although its biological
significance is unclear.

Secondly, results similar to Theorem 4.2 should be valid in the case that 7 is state
dependent, that is, T = t(y(¢)) or T = 7(x(¢)) provided r(-) is locally Lipschitzian.
We would also require a Lipschitzian intitial function in (2.2).
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The critical assumption (H4) required for the global attractivity is somewhat re-
strictive. It would be of interest if one could replace (H4) with a less restrictive
assumption allowing for a prey isocline which both increases and descreases as was
done in [17] in the ODE case.

Finally, it would be of interest if our results could be extended to food chains.
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