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Abstract. A nonlinear development of radial pulsation instability to a 
resonant excitation of nonradial modes is studied. The theory covers the 
cases of axisymmetric (m = 0) modes as well as (m, — m) pairs. Adopting 
a simplified treatment of the mode coupling, it is found that multimode 
pulsation with constant amplitudes is a highly probable solution. An 
observable consequence of the m = 0 mode excitation is randomness of 
pulsation amplitude. The case of an £ = 1 mode is the most important 
because of a small averaging effect and a large excitation probability. A 
significant amplitude and phase modulation is predicted in the case of 
excitation of an £ = l ,m = ±1 pair. This may explain Blazhko-type 
modulation in RR Lyrae stars. If this model is correct, the modulation 
period is determined by the rotation rate and the Brunt-Vaisala frequency 
in the deepest part of the radiative envelope. 

1. Introduction 

One of the most intriguing questions concerning RR Lyrae stars is the nature of 
the long-term modulations that characterize about 20-30% of RRab and 2-3% 
of RRc stars (e.g., Moskalik & Poretti, these proceedings; Kovacs, 2000). The 
modulations of the oscillation amplitudes and phases manifest themselves in the 
Fourier spectra as secondary peaks with frequencies close to the main pulsation 
frequency. There seems to exist two distinguishable cases: one secondary peak 
with frequency either higher or lower than the main frequency and a pair of side 
peaks which, together with the main peak, form an equidistant triplet. 

There are two models proposed to explain the modulations: a magnetic 
oblique rotator (Shibahashi, 2000) and the 1:1 resonance model (Van Hoolst et 
al., 1998). In this paper we develop the resonant model. 

2. Nonresonant properties of oscillation modes 

As was shown by Van Hoolst et al. (1998) and Dziembowski & Cassisi (1999), 
there always exists a very dense spectrum of low-^ nonradial modes in the fre­
quency range of the lowest radial overtones in models of RR Lyrae stars. The 
most unstable modes have frequencies very close to the fundamental as well as 
the first overtone frequencies. Among the low degree modes in the closest vicin­
ity of the radial modes, the £ = 1 modes are the most unstable and thus the 
most important dynamically. 

408 

https://doi.org/10.1017/S025292110001664X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110001664X


Resonant Excitation of Nonradial Modes in RR Lyrae Stars 409 

Small frequency differences between the radial and the closest nonradial 
mode suggest that 1:1 and similar resonances should be taken into account in 
the study of the oscillations. Moreover, this frequency difference, which is an 
important parameter in resonant dynamics, is such a sensitive function of the 
stellar parameters that it is justified to treat it as a random quantity. 

In the simplest nonlinear theory of stellar pulsations without resonances, 
sufficiently high amplitude of one mode may stabilize all other linearly unsta­
ble modes so that they are not present in oscillations. This simple saturation 
mechanism leads to monomode pulsations which are typical for RR Lyrae stars. 

3. Resonant coupling and instability of monomode pulsations 

One of the conditions for the resonant coupling between different modes may 
be written as J2i mi — 0, where rm are azimuthal numbers of the interacting 
modes. For the most important case of £ = 1 it means two possibilities: 

• coupling of the radial mode with an m = 0 nonradial mode, 

• coupling of the radial mode with an TO = 1, m = — 1 pair. 

It turns out that the two cases are dynamically equivalent, i.e., the amplitude 
equations describing the mode amplitudes are in both cases the same with the 
same coefficients and in the latter case yl^i = ^4i,-i. 

Radial monomode pulsations become resonantly unstable when 

|AW| < ^ i ? P o , o | 2 - / ^ (1) 

(Van Hoolst et al., 1998), where K ĴV is a nonlinear growth rate of the nonradial 
mode, R is a resonant coupling coefficient, AQ$ is a radial mode amplitude, and 
the detuning parameter is given by 

A = / Wl'° ~~ W°'° for ra = 0 
1 (wi,i + wi;_i)/2 — wo,o for m = ±1 pair. 

4. Finite amplitude development of resonant instability 

In order to simplify the problem we made some assumptions. The most impor­
tant are the use of adiabatic resonant coupling coefficients and the neglect of 
nonresonant nonlinear frequency changes. The former assumption was used by 
Van Hoolst et al. (1998) and Dziembowski & Cassisi (1999). The latter assump­
tion seems to be justified because the nonlinear frequency change has the same 
sign for both modes and it does not change the frequency difference significantly. 

We first studied double-mode stationary solutions of amplitude equations 
together with their stability with respect to small perturbations. The parameters 
of the equations were calculated for the range of stellar models by Dziembowski 
& Cassisi (1999). A typical solution is presented in Fig. 1. All interesting pairs 
of modes in all models give qualitatively the same solutions. 

The a-branch solution exists if the detuning parameter is smaller than the 
critical value given by Eq. (1) (about 0.6 in the case presented in Fig. 1) and it is 
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Figure 1. Double-mode stationary solutions for the radial fundamen­
tal mode (thick line) and the nearest £ = 1, m = 0 nonradial mode (thin 
line) for a chosen RR Lyrae model. The dimensionless detuning param­
eter ACT is defined as AW/KO,O- The problem is symmetric with respect 
to the change of the sign of the detuning parameter and the presented 
range of this parameter corresponds to the maximum value given by 
the density of the nonradial modes spectrum. Dotted lines indicate 
unstable solutions. For ACT smaller than approximately 0.6 there is a 
pair of solutions denoted by o and b. 

always stable. If the detuning parameter is higher than the previously mentioned 
critical value the monomode solution (not shown in Fig. 1) is stable, according 
to Eq. (1). This means that there always exists at least one stable fixed-point 
solution, either monomode (large Aw) or double-mode (small Aw). 

Direct time integration of the amplitude equations shows that the time-
dependent solutions always converge to one of the stable fixed-point solutions. 

Multimode fixed-point solutions of resonant amplitude equations are char­
acterized by the phase-lock phenomenon (for the general discussion see Buchler 
et al., 1997). In our cases it means: 

• for interaction with an m = 0 nonradial mode, the two frequencies are 
equal, 

• for interaction with an m — ±1 pair, the three frequencies are equidistant. 

5. Observational consequences 

When resonant interaction leads to excitation of an m = 0 nonradial mode, an 
observer would see only one frequency due to the phase-lock phenomenon. The 
only effect of the presence of the nonradial mode is the aspect-dependence and 
thus the randomness of the observed pulsation amplitude. 
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The excitation of the m = ±1 pair leads to the observed triplet-type mod­
ulation, where the side peaks in the spectrum are rotationally split m = ±1 
modes. A simple estimate yields the splitting to be equal to A/2, where f2 is the 
mean rotation rate weighted with the Brunt-Vaisala frequency which is strongly 
peaked in the deepest part of the radiative envelope. Thus, in this model the 
Blazhko period is the measure of the rotation in this region. 

6. Conclusions and future work 

The resonant model presented in this paper predicts many observed features of 
RR Lyrae stars: random occurrence and ranges of the modulations as well as 
lower occurence rate of Blazhko stars among RRc than among RRab stars. 

However, this model has some problems, too. The most important one 
is that it does not predict the strong asymmetry of the side-peak amplitudes 
(Kovacs, these proceedings). Moreover, it does not explain features which have 
been recently observed: larger frequency splittings among RRc than among 
RRab stars (Moskalik & Poretti, these proceedings) and the change of the 
Blazhko-period (Smith et al., these proceedings). 

To understand the nature of the long-term modulations of RR Lyrae stars 
more efforts should be made both theoretically and observationally. The most 
promising are attempts to find the nonradial mode characteristics in line-profile 
variations of RR Lyrae itself (Kolenberg et al., these proceedings). Precise spec­
troscopic observations of other Blazhko stars would also be of great importance. 

Our model also needs some improvements. The most important one is to 
take into account previously neglected coupling coefficients and more interacting 
modes, in particular the whole £ = 1 triplet. 

This paper summarizes the results given by Nowakowski & Dziembowski 
(2001) 
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