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Basics of fault tolerance

The authors are grateful to Earl Campbell, Andrew Cross, and John Preskill

for reviewing this chapter.

Rough overview (in words)

The error rates of all known realizations of physical qubits and basic operations

are too high to enable implementation of the majority of quantum algorithms

considered in this book. Even if the probability p for each basic operation

to malfunction was minute, we would nevertheless expect an error to occur

in any quantum circuit comprising more than O(1/p) operations. One may

optimistically assume that in the foreseeable future p = 10−6 might be achieved

by certain quantum architectures, such as trapped ions [125, 208]. This, in turn,

limits the size of any quantum circuit that one may hope to reliably execute to

roughly one million basic operations. Such a bound places a severe restriction

on the algorithms that could be run and is orders of magnitude smaller than the

resources needed to implement the quantum algorithms described in the other

parts of this survey.

The theory of quantum fault tolerance [936] and quantum error correc-

tion [935, 952, 444] provides a collection of techniques to deal with imperfect

operations and unavoidable noise afflicting the physical hardware, at the ex-

pense of moderately increased resource overheads. In the basic model for fault

tolerance, one assumes that each elementary component of a quantum circuit

(including the identity gate) may fail with some small but nonzero probabil-

ity, independently of the other components, and classical information process-

ing is noiseless. For concreteness and simplicity, one may choose to model

any noisy component as an ideal component followed by (or, in the case of

measurements, preceded by) some Pauli channel acting on the same subset of
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25. Basics of fault tolerance 315

qubits. Let C be a quantum circuit (possibly with classical input and output)

describing a desired quantum algorithm. Since each component of C may fail,

one should not implement C directly; rather, one needs to implement a differ-

ent quantum circuit F (C), which is a fault-tolerant (FT) version of C. This, in

turn, can be achieved by replacing each qubit in C with a logical qubit encoded

in some quantum error correcting (QEC) code and each elementary compo-

nent of C with a corresponding FT gadget; see Fig. 25.1. The desired quantum

computation will then be realized on the logical level of F (C) without leaving

the protective encoding guaranteed by the QEC code.
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Figure 25.1 (a) A quantum circuit C consists of state preparation, unitary gates,

and measurements. (b) An FT realization of C is a quantum circuit F (C) obtained

by replacing each qubit in C with a logical qubit encoded in some QEC code and

using appropriate FT gadgets interspersed with QEC gadgets in place of each ba-

sic component of C. Note that some gadgets may require considerable resources

(not shown in the picture); see Chapter 26 on quantum error correction and Chap-

ter 27 on logical gates with the surface code for more details.

To realize universal FT quantum computation, it suffices to have state prepa-

ration gadgets (for at least one type of state), measurement gadgets (for at least

one type of measurement), gate gadgets (for a universal set of gates), and QEC

gadgets. One requires that all of these gadgets satisfy certain FT conditions;

see, for instance, [20, 446]. Although the asymptotic scaling of resource over-

heads associated with FT gadgets is manageable (e.g., polylogarithmic in the

inverse of the target logical error rate), the constant prefactors tend to be large,

resulting in the qubit and time overheads that currently constitute one of the

main bottlenecks to practical FT quantum computation. We will discuss this

point in more detail for the implementation of logical gates and quantum error

correction with the planar architecture based on the surface code [626, 343].

Rough overview (in math)

Designing FT gadgets is a challenging task for several reasons. First, FT gad-

gets are usually developed and optimized for a specific QEC code. Second,

even though they comprise imperfect basic components, they are required to

work reliably as long as the number of malfunctioning components is limited.
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316 25. Basics of fault tolerance

Third, FT gadgets may spread errors, however, they must not do so in an un-

controllable way.

Given a set of FT gadgets, one can reliably perform an arbitrarily long quan-

tum computation as long as the physical error rate of each basic component is

below some constant value, often referred to as the FT threshold. This result

is established by the celebrated threshold theorem [10, 625, 636, 20]. To be

more precise, consider the basic model for FT. The threshold theorem asserts

that there exists a constant pFT > 0, such that for any ϵ > 0 and any quantum

circuit C there exists a quantum circuit C̃ that produces an output with statisti-

cal distance at most ϵ from the output of C, provided the physical error rate p

is below pFT. Moreover, C̃ uses a number of qubits and time steps that are at

most polylog(|C|/ϵ) times bigger than the number of qubits and time steps in

C, where |C| denotes the number of basic components in C.

The basic idea behind the proof of the threshold theorem proceeds as fol-

lows. Consider a quantum circuit F (C), which is an FT implementation of C.

Assuming the basic model for fault tolerance described above, for sufficiently

small physical error rate p, the logical error rate for F (C) should be smaller

than p, since F (C) is an FT implementation of C. One can then consider a

quantum circuit F ◦ F (C), which is an FT implementation of F (C), reducing

the logical error rate even further. By repeating this process, one eventually

obtains a quantum circuit C̃ = F ◦ · · · ◦ F (C) with the logical error rate below

ϵ. The resulting FT protocol is based on concatenated QEC codes.

One may improve the scaling of the resource overheads from the threshold

theorem with concatenated QEC codes. In particular, in the asymptotic limit of

large quantum circuits, the ratio of qubits in C and C̃ can be a constant [447]. In

this construction, the FT protocol requires a family of QEC codes that satisfies

certain properties, including the desired scaling of code parameters, computa-

tionally efficient decoding algorithms, and constant-weight parity checks. Such

a family of QEC codes was first provided in [388].

Dominant resource cost (gates/qubits)

At the heart of FT quantum computation, there is usually some QEC code. The

choice of a QEC code affects the relationship between a quantum circuit C
and its FT realization C̃, and the subsequent scaling of the resource overheads.

Therefore, we would like to choose a QEC code for which the encoding rate

(defined as the ratio k/n, where k and n are the number of logical and phys-

ical qubits, respectively) as well as the relative code distance (defined as the

ratio d/n, where d is the minimum weight of any nontrivial logical operator)

are as high as possible. Although for concatenated QEC codes (that feature

in the threshold theorem), both k/n and d/n go to zero as n goes to infinity,
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we know that there exist QEC codes with good parameters, that is, for which

k/n and d/n are asymptotically constant [221]. Moreover, recent groundbreak-

ing results [199, 827, 352, 678] provided constructions of QEC codes that not

only have good parameters but also constant-weight parity checks (thus their

name—quantum low-density parity check codes). The latter property is par-

ticularly important from the perspective of fault tolerance. In fact, all quantum

low-density parity check codes with code distance d = O(log n) have a nonzero

FT threshold [643]. However, experimental realization of these constructions

(in contrast to the surface code) seems to become extremely challenging as

the number of physical qubits increases, at least within the realm of solid-state

qubits constrained by geometric locality of their physical entangling gates.

Another aspect of FT quantum computation that affects the resource over-

heads are the FT gadgets being used. One of the easiest ways to implement

FT gadgets for gates is via transversal gates. By definition, transversal gates

are implemented via a tensor product of single-qubit unitaries (or, more gener-

ally, via a depth-one quantum circuit) and therefore do not spread errors in an

uncontrollable way. Unfortunately, transversal gates are limited by the Eastin–

Knill theorem [370, 1078, 583, 650], which rules out the existence of a (finite-

dimensional) QEC code with a universal set of transversal logical gates. One

strategy to circumvent this limitation is to prepare certain magic states and use

them to realize FT gates [190]; see Chapter 27 on implementing logical gates

for more details and a discussion of other strategies.

To realize FT gadgets for state preparation, QEC, and measurement, one

typically chooses among three FT schemes: Shor’s [936], Steane’s [953], or

Knill’s [634]. Roughly speaking, Shor’s scheme uses simple states (verified

cat states) of the ancilla qubits at the expense of implementing many gates on

the data qubits, whereas Steane’s and Knill’s schemes trade highly complex

states of the ancilla qubits (logical states encoded in the underlying QEC code)

for minimizing the number of gates on the data qubits. To determine the best

choice, one needs to consider the underlying QEC code (e.g., Steane’s scheme

is applicable only to the subset of codes known as CSS codes [221, 952]) and

the quantum hardware restrictions (e.g., lack of extra ancilla qubits). For an

illuminating and detailed discussion of FT schemes, see [446]. There are FT

schemes that do not squarely fit in the aforementioned classification, for ex-

ample, [353, 254, 544]. Also, for QEC codes with additional structure, such as

quantum low-density parity check codes, one may pursue different approaches

toward FT quantum computation; see Chapter 26 on QEC with the surface

code.
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318 25. Basics of fault tolerance

Caveats

Rigorous proofs provide lower bounds on the FT threshold pFT. For instance,

for an FT scheme based on the 7-qubit code, one finds pFT > 2.73× 10−5 [20].

For an FT scheme by Knill [634] that relies on complex ancilla preparation

techniques, one finds pFT > 1.04 × 10−3 [21]. However, these values can differ

by orders of magnitude from the values estimated in numerical simulations.

For instance, the FT scheme by Knill is estimated to have an FT threshold pFT

as high as 5 × 10−2, constituting one of the highest-known FT thresholds. We

remark that these values depend sensitively on the details of the FT schemes

and the assumptions about noise. In particular, to obtain the aforementioned

values we assume the ability to implement gates between any qubits. On the

other hand, if we arrange qubits on a geometric lattice and restrict gates to be

local, then while FT thresholds still exist, their values are significantly reduced.

One can expand the threshold theorem in many ways. Even using the basic

model for fault tolerance, one may choose the failure probabilities for each

elementary component of a quantum circuit differently, for example, the failure

probability of a measurement to be an order of magnitude higher than that of a

gate. One can consider more general noise (which includes systematic errors,

such as overrotations) arising due to a weak interaction between the system and

a non-Markovian environment [20, 986]. In general, although experimental

realizations of quantum computation may not satisfy exactly the assumptions

of the threshold theorem, we expect the main conclusions to hold as long as

the assumptions are not violated too much.

To simplify the analysis of FT schemes, we often assume unlimited clas-

sical computational power that one needs to, for example, process the error

syndrome and infer an appropriate recovery operator in a QEC gadget; a num-

ber of such decoding algorithms have been developed for QEC with the surface

code. It is important not to abuse this assumption by, for instance, solving the

initial problem with an inefficient classical algorithm. At some point, how-

ever, one needs to take into account the finite speed of classical information

processing. If the classical unit that processes the error syndrome is unable to

keep pace with the rate at which this syndrome is being produced, then the

error syndrome will start to accumulate and one will suffer from the so-called

backlog problem [985]. Subsequently, the speed of quantum computing will

be exponentially reduced and the computational advantage of quantum com-

puting will be annulled. This issue will be especially prominent for quantum

algorithms with only polynomial speedups.
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Further reading

• An accessible introduction to quantum error correction and the theory of

fault tolerance can be found in [861].

• A detailed introduction to quantum error correction and fault-tolerant quan-

tum computation can be found in [446].

• A perspective on roads toward fault-tolerant universal quantum computation

can be found in [226].

• The error correction zoo [17] provides a catalog of error correcting codes.
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