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To consider the contribution of the spin–orbit interaction in the extraordinary
wave spectrum we derive a generalization of the separate spin evolution quantum
hydrodynamics. Applying the corresponding nonlinear Pauli equation we include the
Fermi spin current contribution in the spin evolution. We find that the spectrum
of extraordinary waves consists of three branches: two of them are well-known
extraordinary waves and the third one is the spin-electron acoustic wave. A change
of the extraordinary wave spectrum due to the spin–orbit interaction is also obtained.
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1. Introduction
It is demonstrated that the separate spin evolution quantum hydrodynamics

(SSE-QHD) leads to existence of the spin-electron acoustic waves (SEAWs) (Andreev
2015b; Andreev & Kuz’menkov 2015b; Andreev & Iqbal 2016) and allows us to
derive an equation of state for the thermal part of the spin current in the regime
of degenerate electrons (Andreev & Kuz’menkov 2015c), where the distribution of
electrons in the quantum states is caused by Pauli blocking.

The SSE-QHD is generalized to consider the spin current evolution (Trukhanova
2015). An equation of state for the spin current flux (Andreev & Kuz’menkov 2015a;
Trukhanova 2015) is also derived via SSE-QHD (Andreev & Kuz’menkov 2015c).
The Coulomb exchange interaction is included in SSE-QHD in Andreev (2016a).
In this paper, we continue the development and generalization of SSE-QHD and
include the spin–orbit interaction (described in §§ 33 and 83 in Berestetskii, Lifshitz
& Pitaevskii 1982).

The resent progress described above is based on a long study of quantum
plasmas. Let us describe some major results related to this paper. The interest in
semi-relativistic interactions increased after the construction of many-particle quantum
hydrodynamics for the charged spin-1/2 particles with spin–spin interactions, as
accomplished in 2001 by Kuz’menkov and coauthors (Kuz’menkov, Maksimov
& Fedoseev 2001a). First of all, the analysis of the spin–current interaction was
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performed in 2007 (Andreev & Kuz’menkov 2007). The spin–current interaction
gives the force field qnv × Bs/c+Mβ∇Bβc , where Bs and Bc are the magnetic fields
caused by the spins (magnetic moments) and currents, correspondingly (q is the charge
of particles, n is the concentration, v is the velocity field, M is the magnetization,
c is the speed of light, and β is the vector index, and the Einstein summation
convention is assumed). However, more interesting results come from the account of
the spin–orbit interaction considered in Andreev & Kuz’menkov (2009) in 2009 and
Andreev & Kuzmenkov (2011) in 2011. Applications of the hydrodynamic model
derived in Andreev & Kuzmenkov (2011) are presented in Andreev & Kuz’menkov
(2012), Trukhanova (2013b). The spin–orbit interaction is also considered in Asenjo
et al. (2012), along with the Darwin term. However, the Darwin term is considered
in reduced form corresponding to the single-particle motion only, but for a system
of identical particles it makes a different contribution (see the discussion in Ivanov,
Andreev & Kuz’menkov 2015). The complete result for the Darwin term or the
Darwin interaction contribution is presented in Ivanov et al. (2015). There is another
quantum-relativistic force which appears via the simultaneous consideration of the
Coulomb interaction and the semi-relativistic part of the kinetic energy (Ivanov,
Andreev & Kuz’menkov 2014; Ivanov et al. 2015). Let us call it the CI-SPKE. The
Darwin interaction force and the CI-SPKE force have structures similar to each other.
The Darwin interaction force and the CI-SPKE force give contributions which are
equal to each other in the linear approximation of hydrodynamic equations (Ivanov
et al. 2015).

The semi-relativistic part of the quantum Bohm potential is derived in Ivanov et al.
(2014, 2015) along with the current–current interaction (CCI). The CCI leads to three
kinds of terms in the Euler equation: the first of them is qnv × Bc/c, the classic
semi-relativistic forces, and the quantum semi-relativistic forces (Ivanov et al. 2014).
Some works (see for instance Asenjo et al. 2012; Hussain, Stefan & Brodin 2014) are
dedicated to the kinetic model of semi-relativistic effects in plasmas.

Fully relativistic effects are also considered in the literature. The ‘fluidization’ of
the Dirac equation, via the construction of observables from bilinear covariants, was
done by Takabayasi (1955b, 1956a,b, 1957) and is nicely reviewed in Asenjo et al.
(2011). A quantum-relativistic Vlasov equation is derived from the single-particle
Klein–Fock–Gordon (Mendonca 2011) equation and the single-particle Dirac (Zhu &
Ji 2012) equation. It is applied to the calculation of the spectrum of collective
excitations (the Langmuir and electromagnetic waves) in quantum-relativistic
unmagnetized plasmas. Some relativistic effects in quantum plasmas are reviewed
in Uzdensky & Rightley (2014).

One of the most important implications of the SSE-QHD known to date is the spin-
electron acoustic waves (SEAWs). So, let us describe the results obtained during the
SEAW study.

SEAWs are longitudinal waves in spin-1/2 plasmas similar to the Langmuir and
Trivelpiece–Gould waves, which are well-known examples of longitudinal waves. The
SEAWs can be described if we consider the spin-up and spin-down electrons as two
different fluids. Moreover, it is necessary to have different equilibrium concentrations
of the spin-up and spin-down electrons. Hence, the contributions of their pressures
are also different. All of these differences are caused by the partial spin polarization
of electrons. The SEAW was predicted for waves propagating parallel to the external
magnetic field (Andreev 2015b). In this regime, there is one branch of the dispersion
curve of SEAWs. However, there are two branches of the bulk SEAWs in the
oblique propagation regime (Andreev & Kuz’menkov 2015b). Influence of the spin
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polarization on the traditional electrostatic waves is considered in Margulis & Marguli
(1987).

The lower branch of SEAWs has zero frequency at the zero wave vector k= 0. It
becomes a single branch when waves propagate parallel to the external magnetic field
θ = 0, where θ is the angle between the propagation vector and the external magnetic
field. The upper branch is located above the Trivelpiece–Gould wave spectrum. Its
frequency tends to Ωe at k→ 0, where Ωe = eB0/mc is the cyclotron frequency of
the electrons. It becomes the single branch of the SEAWs if waves propagate in
perpendicular direction θ = π/2 (Andreev & Kuz’menkov 2015b). A small Landau
damping of SEAWs propagating parallel to the external magnetic field is demonstrated
in Andreev (2016b), where the SSE quantum kinetics is derived. Properties of the
bulk SEAWs in the electron–positron plasmas are similar to SEAWs in electron–ion
plasmas, but the frequencies are modified due to the equality of the masses of
electrons and positrons (Andreev & Iqbal 2016). The SEAWs in electron–positron–ion
plasmas, where the number of electrons and positrons are different, are also described
in the regime of bulk waves. Plasma shows the existence of three longitudinal waves
with a linear spectrum if waves propagate parallel to the external field: the SEAW,
the positron-acoustic wave, and the spin-electron–positron acoustic wave. Each of
these waves has a sibling in the regime of oblique propagation. These siblings have
dispersion curves located above the Trivelpiece–Gould wave spectrum (Andreev &
Iqbal 2016). In this paper we shift our attention to the SSE’s role in the longitudinally
transverse waves such as extraordinary waves since waves with a transverse field are
important for different applications (see for instance Giannini et al. 2011).

Collective behaviour of quantum-relativistic plasmas interacting with an intense
circularly polarized electromagnetic wave is considered in Mahajan & Asenjo (2016).
It is pointed out that the spin-up–down degeneracy is removed by the electromagnetic
field. A modified dispersion relation for an ordinary electromagnetic wave is found
(see equation (75) of Mahajan & Asenjo 2016). Effects of the spin separation modify
the contribution of the medium in the dispersion relation. Instead of the traditional
plasma frequency square, they found a general term containing the SSE effects.

The nonlinear evolution of the bulk SEAWs propagating parallel to the external
field leads to soliton formation (Andreev 2016a). This soliton is described in terms
of a generalized SSE-QHD containing the Coulomb exchange interaction (Andreev
2016a). Surface SEAWs are described for half-spaced plasma-like media (Andreev &
Kuz’menkov 2016b). In this regime, they appear as longitudinal waves with linear
spectra. If the spin polarization is relatively small, the surface SEAW can linearly
interact with the plasmon branch. This interaction leads to the generation of SEAWs.
The SEAWs in two-dimensional structures are described in Andreev & Kuz’menkov
(2016a). They appear to be similar to the spin plasmons described in Ryan (1991),
Perez (2009), Agarwal et al. (2011), Agarwal et al. (2014).

The hydrodynamic description of spin-up and spin-down electrons was addressed in
Kuzmenkov & Harabadze (2004). However, the difference of pressures for the spin-up
and spin-down electrons was not considered there. Effects caused by non-conservation
of electron number in each subspecies due to the spin–spin interactions were not
included either. A similar model was suggested in Brodin, Misra & Marklund (2010)
and it suffers the same limitations. A complete model is presented in Andreev (2015b).

There is a well-known interpretation of the spin–orbit interaction as a force acting
on a moving magnetic moment in a constant electric field (Berestetskii et al. 1982).
However, the same mechanism can exist in classic electrodynamics, where it is
known as the hidden momentum (see discussion in Griffiths (2012), particularly p. 6).
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The quantum weakly relativistic Hamiltonian for a single particle in an external
electromagnetic field is derived and discussed in Foldy & Wouthuysen (1950) and
Foldy (1952). It is shown (Newton & Wigner 1949) that there is the position
operator with commuting components in Dirac theory. This position operator has
localized eigenfunctions in the manifold of positive energy wave functions. This
position operator is also called the mean-position operator in Foldy & Wouthuysen
(1950).

A specific Lagrangian-based method is introduced in Dixit et al. (2013) for
the analysis of weakly relativistic effects in plasma-like media. The suggested
Lagrangian approach leads to generalized forms of the density and current which
contain high in 1/c terms. The continuity equation directly found from the Noether’s
theorem considers with the short form of the continuity equation mentioned above
(equation (41) in Dixit et al. 2013).

The generalized density and the current can be used for advanced hydrodynamic or
kinetic equations. However, this approach requires more application. Hence, we restrict
our analysis to the traditional means of direct application of the Pauli equation.

Some papers on weakly relativistic effects neglect the relativistic correction to
the kinetic energy in favour of the Darwin interaction (Asenjo et al. 2012; Dixit
et al. 2013). However, the relativistic correction to the kinetic energy makes several
contributions to the equations of motion. One of them is similar to the contribution
of the Darwin interaction (Ivanov et al. 2015). Moreover, the Darwin interaction
between two electrons differs from the Darwin interaction between an electron and
the external field by a factor two, as follows from the well-known Breit Hamiltonian
(Berestetskii et al. 1982; Ivanov et al. 2015).

A fully relativistic spin-1/2 kinetic model is developed in the large scale regime
giving first-order quantum corrections to descriptions of strongly magnetized plasmas
(Ekman, Asenjo & Zamanian 2017). The model is based on separating positive and
negative energy states of the Dirac equation. Hence, it has restriction on the amplitude
of the electromagnetic field generated in plasmas during plasma dynamics.

The Wigner equation including the Zeeman effect and the spin–orbit coupling
and the corresponding extended set of hydrodynamic equations are found in Hurst,
Hervieux & Manfredi (2017).

Overall, existing works on the weakly relativistic models of plasmas deal with the
Foldy–Wouthuysen transformation and corresponding Breit Hamiltonian for the Pauli-
like equation. This paper takes the same path, but the independent evolution of the
spin-up and spin-down electrons is included.

The experimental realization of a spin polarized electron gas of a high degree η=
0.1–0.7 is achieved by means of high intensity laser pulses on a femtosecond time
scale (Del Sorbo et al. 2017). Theoretical analysis of the spin current generation by
short laser pulses is presented in Hurst, Hervieux & Manfredi (2018).

This paper is organized as follows. In § 2 the basic model is described. It contain
the nonlinear Pauli equation with the spinor Fermi pressure contribution and the spin–
orbit interaction. In § 3 the general form of SSE-QHD equations with the spin–orbit
interaction is derived from the nonlinear Pauli equation (NLPE). In § 4 we discuss the
structure of the spin–orbit interaction force field. In § 5 we present the closed set of
SSE-QHD equations arising after introduction of the velocity field. In § 6 we present
a linearized set of hydrodynamic equations. In § 7 we study the contribution of the
SSE and the spin–orbit interaction in the spectrum of extraordinary waves. In § 8 a
brief summary of obtained results is presented.
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2. Model: NLPE with spin–orbit interaction
The spin-1/2 QHD of plasmas can be directly derived from the many-particle Pauli

equation (Kuz’menkov et al. 2001a; Kuz’menkov, Maksimov & Fedoseev 2001b).
This method allows us to include the spin–orbit interaction (Andreev & Kuzmenkov
2011; Andreev & Kuz’menkov 2012) and other relativistic effects (Andreev &
Kuz’menkov 2007; Ivanov et al. 2014; Andreev 2015a; Ivanov et al. 2015). Next, the
QHD equations can be represented in the form of the nonlinear Schrödinger equation
or the nonlinear Pauli equation (Kuz’menkov & Maksimov 1999; Kuz’menkov et al.
2001a; Andreev & Kuz’menkov 2012; Andreev 2014, 2015a).

The set of QHD equations can be presented as the nonlinear Schrödinger equation
(NLSE) (Kuz’menkov & Maksimov 1999). This can be done for spinless particles
(Kuz’menkov & Maksimov 1999) and spinning particles (Kuz’menkov et al. 2001a).
In the latter case we have the nonlinear Pauli equation (Kuz’menkov et al. 2001a).
NLSEs for three-dimensional and two-dimensional degenerate electron gases with
Coulomb exchange interactions are derived in Andreev (2014). The nonlinear Pauli
equation for an electron gas with spin–orbit interaction is presented in Andreev &
Kuz’menkov (2012). The set of two nonlinear Pauli equations for spin-1/2 electron–
positron plasmas with the annihilation interaction is derived in Andreev (2015a).
NLSEs, or more exactly, nonlinear Klein–Fock–Gordon and nonlinear Feynman–
Gell-Mann equations are presented in Mahajan & Asenjo (2014). A discussion of the
nonlinear Pauli equation can also be found in Mahajan & Asenjo (2014).

We want to present a new model and thus we apply a simplified method of
derivation. Hence, readers can focus on new effects instead of rather large equations
existing in the many-particle derivation. A derivation of the SSE model from the
many-particle Pauli equations is presented in Andreev (2016b), where it is done
for the SSE quantum kinetics. We use the nonlinear Pauli equation (NLPE) derived
in Andreev & Kuz’menkov (2012) for spin-1/2 quantum plasmas with spin–orbit
interaction. Following Andreev & Kuz’menkov (2015c) we generalize the NLPE to
include the spinor pressure. We apply the generalized NLPE to derive the SSE-QHD
with the spin–orbit interaction and the Fermi spin current.

The NLPE equation appears as follows

ı h̄∂tΦ(r, t)=
(

1
2m

D̂
2
+ qeϕ + π̂− γeσ̂B−

γe

mc
(σ̂ · (E× D̂))

)
Φ(r, t), (2.1)

where D= p− qeA/c and γe is the magnetic moment of the particles. Equation (2.1)
is coupled to the electro-magneto-static Maxwell equations.

In this equation, the wave function is the spinor function and we present its explicit
form (see § 56 in Landau & Lifshitz 1977): Φ =

(
Φu
Φd

)
. Each of the functions Φu and

Φd can be presented as Φs= aseıφs . The last three terms in the NLPE (2.1) contain the
Pauli matrices σ̂ α. The third term on the right-hand side describes the spinor pressure
contribution π̂=

(
πu 0
0 πd

)
, which is a diagonal second rank spinor. It can be represented

in term of the Pauli matrixes π̂ = πu(Î + σ̂z)/2 + πd(Î − σ̂z)/2, where Î is the unit
second rank spinor Î=

(
1 0
0 1

)
. The explicit form of πs is determined by the equation of

state. In this paper, we consider the degenerate electrons. Hence, πs is determined by
the Fermi pressure πs= (6π2ns)

2/3h̄2/2m. Here, we consider one particle in a quantum
state, instead of two particles with different spin directions in each state (see § 57 in
Landau & Lifshitz 1980).

Equation (2.1) is coupled with the following equations of the field ∇ ·B= 0, ∇×
E= 0,

∇ ·E= 4π(eni − eΦ†Φ), (2.2)
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and
∇×B=

2πqe

mc
(Φ†DΦ + (DΦ)†Φ)+ 4πγe∇× (Φ

†σΦ), (2.3)

where Φ† is the Hermitian conjugate of the spinor wave function. We consider
the field acting on the particle to be caused by the weakly relativistic motion of
other particles. The assumed structure of the electromagnetic field is discussed in
appendix A.

The spin–orbit interaction in the model described by (2.1)–(2.3) is presented
in accordance with the semi-relativistic limit of the Dirac equation and the Breit
Hamiltonian (Berestetskii et al. 1982). The Breit Hamiltonian (Berestetskii et al.
1982) or the Darwin Lagrangian in the classic regime (Landau & Lifshitz 1975)
describes the semi-relativistic interaction of particles. Therefore, model (2.1)–(2.3) is
constructed for the semi-relativistic description of the medium and the corresponding
interaction of the fluid elements.

Considering quantum plasmas with spin–orbit interaction is to work in the weakly
relativistic regime. This regime requires relatively large values of the parameters.
If a degenerate electron gas is under consideration, then concentration is one of
major parameters. The equilibrium concentration of electrons determines the Fermi
velocity vFe =

3
√

3π2n0eh̄/me. If the Fermi velocity is close to the speed of light c,
the system of electrons is in the relativistic regime. If vFe ≈ 0.1c we get the weakly
relativistic regime. If the Fermi velocity is even smaller vFe 6 0.01c then the weakly
relativistic corrections might be negligibly small. However, this depends on the
required accuracy. The relation between the Coulomb interaction and the spin–orbit
interaction is governed by the concentration also. It requires concentrations to be
of the same order as follows from the estimation of the Fermi velocity. Estimation
vFe ≈ 0.1c gives the following value for the concentration ne ∼ 1027 cm−3.

Condition ∇ × E = 0 presented above is not an obvious condition for the weakly
relativistic approach if the Hamiltonian is derived from the single-particle Dirac
equation. However, the properties of weakly relativistic interparticle interaction follow
in more detail from the derivation of the Breit Hamiltonian (in the quantum case) or
the Darwin Lagrangian (in the classic case). They explicitly show that the electric
field is a potential field.

We are going to derive the SSE-QHD from the NLPE (2.1). To this end, it is useful
to present the explicit form of the NLPE via the wave functions of spin-up and spin-
down electrons:

ı h̄∂tΦu =


(

h̄
ı
∇−

qe

c
A
)2

2m
+ qeϕ − γeBz +πu −

γe

mc
(ExDy − EyDx)

Φu

− γe(Bx − ıBy)Φd −
γe

mc
((EyDz − EzDy)− ı(EzDx − ExDz))Φd, (2.4)

and

ı h̄∂tΦd =


(

h̄
ı
∇−

qe

c
A
)2

2m
+ qeϕ + γeBz +πd +

γe

mc
(ExDy − EyDx)

Φd

− γe(Bx + ıBy)Φu −
γe

mc
((EyDz − EzDy)+ ı(EzDx − ExDz))Φu. (2.5)
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These equations describe the evolution of the spin-up electrons and the spin-down
electrons independently. We can represent this evolution in terms of observables. This
representation leads to the hydrodynamic equations.

The semi-relativistic or weakly relativistic approximation assumes that the Coulomb
interaction dominates over the spin–orbit (SO) interaction. If we reach conditions
where the SO interaction is comparable with the Coulomb interaction, we have
reached a relativistic regime. This means that extra effects will occur. These extra
effects do not have any trace in the weakly relativistic regime, but they are comparable
with the SO interaction and the Coulomb interaction in the fully relativistic regime.

3. Hydrodynamic equations: general form
3.1. Continuity equations

To take the first step in the derivation of the SSE-QHDs we define the concentrations
of spin-up and spin-down electrons nu =Φ

∗

uΦu and nd =Φ
∗

dΦd and differentiate them
with respect to time. Applying (2.4) and (2.5) for the time derivatives of the partial
wave functions Φu and Φd, we derive the continuity equations

∂tns +∇js =±
γe

h̄
εzβγ SβBγ ∓

2γe

h̄c
εzµνεµαβEα[Φ∗s′ 6=sr

ν
s DβΦs + c.c.]/2m, (3.1)

where ru = {1, ı, 1}, rd = {1,−ı,−1}, qe =−e for electrons and c.c. means complex
conjugate.

The spin densities presented in the continuity equations have the following
definitions: Sx = Φ

∗σ̂xΦ = Φ
∗

dΦu + Φ
∗

uΦd = 2auad cos 1φ, Sy = Φ
∗σ̂yΦ = ı(Φ∗dΦu −

Φ∗uΦd)=−2auad sin1φ, where 1φ = φu − φd.
The sum of [Φ∗d rαu DβΦu + c.c.]/2m and [Φ∗u rαd DβΦd + c.c.]/2m gives the non-

relativistic part of the spin current tensor Jαβn.r. = (Φ+σ αDβΦ + h.c.)/2m, where
n.r. means non-relativistic and h.c. means Hermitian conjugation.

During the derivation of continuity equation (3.1), we find the explicit forms of the
particle current: jαs = (1/2m)(Φ∗s DαΦs + c.c.)+ (−1)isγeε

zαβnsEβ/mc, where s= u or d
and is is a number that is different for spin-up and spin-down electrons: iu= 2, id = 1.
Below, we use the non-relativistic part of the particle current jα0s= (1/2m)(Φ∗s DαΦs+

c.c.) along with jαs . We introduce the velocity fields vs via the particle currents js ≡

nsvs, with the following explicit form of the velocities vs = (h̄/m)∇φs − (qe/mc)A+
(−1)isγeε

zαβEβ/mc, where φs is the phase of the partial wave function Φs = aseıφs .
Below, we show that the right-hand sides of the continuity equations contain

traditional hydrodynamic variables after the introduction of the velocity fields.
Summing up the partial concentrations ns, we obtain the full concentration of

electrons ne = nu + nd, which should satisfy the continuity equation with zero
right-hand side. However, directly summing the continuity equations (3.1), we find a
non-zero right-hand side of the continuity equation for ne:

∂tne +∇(ju + jd)=
2γe

h̄c
Eαεzµνεµαβ[(Φ∗d rνuDβΦu + c.c.)/2m− (Φ∗u rνdDβΦd + c.c.)/2m],

(3.2)
where the right-hand side is caused by the spin–orbit interaction. Considering the right-
hand side of (3.2), we find that it can be presented as the divergence of a vector −1j.
During this calculation, we have

[Φ∗d rνuDβΦu + c.c.] − [Φ∗u rνdDβΦd + c.c.] = ενzλh̄∂βSλ. (3.3)
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Using ∇ × E = 0, the right-hand side of (3.3) can be written as the
divergence of a vector 1j. This vector 1jβ is a part of the particle current
1jβ =−(2γe/h̄c)Eγ εzµνεµγβενzλh̄Sλ which can be rewritten as

1jβ =
γe

mc
Eγ (εβγµSµ − εβγ zSz). (3.4)

Consequently, the full concentration ne satisfies the continuity equation

∂tne +∇j= 0, (3.5)

where the right-hand side is equal to zero, j= ju + jd +1j, with j is the flux of all
electrons.

The current of all electrons contains the non-relativistic part and the spin–orbit part.
The SSE exists such that a part of the flux of all electrons j becomes the flux for
each subspecies of electrons js and a part of the full flux 1j separates to give the
z projection of spin–orbit torque. So, we have a linear decomposition of the current.
This separation is not made on purpose, but it automatically appears in the derivation.

The difference of the partial concentrations ns is the z-projection of the spin density
Sz = nu − nd. Applying the continuity equations (3.1), we find an equation for Sz

∂tSz +∇(ju − jd)=
2γe

h̄
εzβγ SβBγ −

2γe

h̄c
εzµνεµαβEαJνβ, (3.6)

where
Jαβ =

1
2m
(Φ+σ αDβΦ + h.c.)+

γe

2mc
εαβγ neEγ (3.7)

is the full spin current. The last term in (3.6) presents the z-projection of the spin
torque caused by the spin–orbit interaction. The full expression on the right-hand side
of (3.6) is the z-projection of the full spin torque.

3.2. Euler equations
Application of the NLPE (2.1) to the time evolution of the momentum density of the
spin-up electrons jαu gives the following Euler equations for the spin-s electrons:

m∂tjαs + ∂βΠ
αβ
s = qensEα +

qe

c
εαβγ jβ0sB

γ
+ Fα

SOs

± γens∂
αBz +

γe

2
(Sx∂

αBx + Sy∂
αBy)±

mγe

h̄
εzβγ JβαBγ , (3.8)

where the force field of the spin–orbit interaction Fα
SOu has the following form:

Fα
SOs = ±

γe

mc
εzαβ∂t(nsEβ)∓

2γe

h̄c
εzµνεµβγEβ jναγ

−
qe

2mc
γe

mc
EβBδεαγ δ(Sxε

xβγ
+ Syε

yβγ
± 2nsε

zβγ )+
γe

2m2c
(∂αEβ)

×[±εzβγΦ∗s DγΦs + ε
xβγΦ∗s DγΦs′ 6=s ∓ ε

yβγΦ∗s ıDγΦs′ 6=s + c.c.], (3.9)

where
jαβγ =

1
4m2

(Φ+DγDβσ αΦ + h.c.) (3.10)
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is a part of the spin current flux. The full expression for the non-relativistic spin
current flux is

Jαβγ =
1

4m2
(Φ+DγDβσ αΦ + (DγΦ)+Dβσ αΦ + h.c.). (3.11)

In (3.9), we have dropped the term proportional to ∇ × E, since it is equal to zero
in the semi-relativistic approach.

The momentum current for the spin-s electrons appears during our derivation of
(3.8) in the following form:

Παβ
s =

1
4m
(Φ∗s DαDβΦs + (DαΦs)

∗DβΦs + c.c.)

−
γe

mc
εµγβEγ [Φ∗s′ 6=sr

µ
s DαΦs + c.c.]/2m+ ns∇πs. (3.12)

The last term in the Euler equation (3.8) describes the spin flipping contribution in
the momentum evolution.

3.3. Spin evolution equation
In the SSE-QHD we need to have equations for the evolution of the x and y
projections of the spin density. If we include the contribution of the spin–orbit
interaction they are obtained as follows:

∂tSj +=j + ∂βJjβ
=

2γe

h̄
εjβγ SβBγ + TSOj, (3.13)

where j= x, y, and
TαSO =−

γe

h̄c
εαµνεµγβEγ Jνβ (3.14)

is the spin torque caused by the SO interaction corresponding to the earlier works on
the single-fluid model of electrons (Andreev & Kuz’menkov 2009, 2012).

The spin current is an important characteristic of a medium in spintronics (Sun
& Xie 2005; An et al. 2012; Sinova et al. 2015). In our model, the many-particle
spin current naturally appears in the spin evolution equation. It also appears in the
Euler equation in terms describing non-conservation of the particle number when we
account for the spin–spin interaction. If we account for the spin–orbit interaction, the
spin current appears in the force field of the spin–orbit interaction and in the spin
torque caused by the spin–orbit interaction. Parts of the spin current also exist in the
continuity equation.

Modification of the distribution of electrons in momentum space and the influence
of this on the equation of state under the influence of a strong magnetic field are
described in the literature (see for instance Strickland, Dexheimer & Menezes 2012).
In contrast with these works, we focus on the different occupation of quantum states
by the spin-up and spin-down electrons.

3.4. Discussion of the Euler equations
Let us compare the obtained results with the Euler equation found for the single-fluid
model of electrons considered in Kuz’menkov et al. (2001a), Brodin & Marklund
(2007), Marklund & Brodin (2007), Shukla & Eliasson (2011), Koide (2013) and
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especially Andreev & Kuzmenkov (2011), Andreev & Kuz’menkov (2012) concerning
the spin–orbit interaction. To this end, we need to consider the sum of two Euler
equations to find the Euler equation in terms of the single-fluid model.

Combining Euler equations (3.8), we find the following equation

∂t( jαu + jαd )+ ∂β(Π
αβ
u +Π

αβ

d )= qeneEα +
qe

c
εαβγ ( jβ0u+ jβ0d)B

γ
+ γeSβ∂αBβ +Fα

SO, (3.15)

where

Fα
SO =

γe

mc
εzαβ∂t(SzEβ)+

γe

mc
∂αEβ · εβγ δJδγ −

qe

mc
γe

mc
εαγ δEβBδεβγµSµ. (3.16)

Equation (3.16) is not the complete spin–orbit interaction force for the single-fluid
model. Above we showed that the full particle current consists of three terms (3.5).
If we consider the time evolution of the full particle current j = ju + jd + 1j we
need to include the time evolution of vector 1j. Its explicit form is given by (3.4).
Differentiating (3.4) with respect to time and combining the result with the Euler
equation (3.16) we obtain the time derivative of the full particle current ∂tjα on the
left-hand side. On the right-hand side we have the change in the force field of the
spin–orbit interaction. The second term in ∂t1jα cancels the first term in the force
field (3.16). Thus, we have that the first term in ∂t1jα replaces the first term in (3.16)
and we obtain the final form for the spin–orbit interaction as:

F̄α
SO =

γe

mc
εαβγ ∂t(EβSγ )+

γe

mc
∂αEβ · εβγ δJδγ −

qe

mc
γe

mc
εαγ δEβBδεβγµSµ. (3.17)

Before we present a comparison of our result with the previously obtained equations
in the single-fluid model (Andreev & Kuz’menkov 2012; Ivanov et al. 2015), we
need to mention that the first term in (3.17) can be represented in the following
way. If we take the time derivative we find two terms (γe/mc)εαβγ (∂tEβ)Sγ +
(γe/mc)εαβγEβ∂tSγ = (γe/mc)εαβγ (∂tEβ)Sγ + (γe/mc)εαβγEβ((2γe/h̄)εγµνSµBν − =γ −
∂µJγµ). Other terms can be found in Andreev & Kuzmenkov (2011), Andreev &
Kuz’menkov (2012) except for the last term in (3.17). It can be shown that the last
term in (3.17) can be found in the single-fluid model. However, it was not reported
in the mentioned papers since it was lost during the derivation.

4. Spin–orbit interaction contribution in the spectrum of longitudinal waves
It has been recently demonstrated that longitudinal spin waves, called spin-electron

acoustic waves, can exist in a degenerate electron gas (Andreev 2015b). The oblique
propagation of longitudinal waves reveals the existence of the second or upper
SEAW (Andreev & Kuz’menkov 2015b). Partial spin polarization is required for the
existence of the SEAWs. It is also necessary to apply the SSE-QHD. The SSE-QHD
is generalized in this paper. The explicit analytical contribution of the spin–orbit
interaction in the spectrum of the Langmuir waves propagating perpendicular to the
external magnetic field (the upper hybrid wave) was found in Ivanov et al. (2015).
It was shown that the spin–orbit interaction gives a contribution to the spectrum
of the longitudinal waves. This contribution arises from the following term: Fα

1 =

−(γe/mc)S0zε
αβz∂tδEβ . In this paper, we generalize the force field of the spin–orbit

interaction including the following term: Fα
2 = −(qe/mc)(γe/mc)S0zB0ε

αγ zεβγ zδEβ .
These do not equal to each other. However, in the linear approximation they cancel
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the contribution of each other in the dispersion curves of the longitudinal waves.
Therefore, we do not expect any contribution of the spin–orbit interaction in the
spectra of oblique propagating longitudinal waves: Langmuir, Trivelpiece–Gould,
lower and upper SEAWs. However, the spin–orbit interaction affects these waves if
we do not apply the restriction of considering longitudinal waves. In the general
case they are longitudinal–transverse waves and the spin–orbit interaction gives a
contribution via the transverse part.

5. Hydrodynamic equations with the velocity field
After the introduction of the velocity field in the equations derived above for

SSE-QHDs with the spin–orbit interaction we find a closed set of hydrodynamic
equations. The parts of the spin currents found in the terms describing the spin–orbit
interaction are found via the concentrations and velocity fields of the spin-up and
spin-down electrons. Next, we obtain the following forms of the continuity equations:

∂tns +∇(nsvs)= (−1)is
γe

h̄
εαβzSαBβ −

2γe

h̄c
εzµνεµαβEα

(
1
2
vβs Sν − (−1)is

h̄
4m

∂βns

ns
εzνδSδ

)
.

(5.1)
The last term in the continuity equation is caused by the spin–orbit interaction.
The introduction of the velocity field modifies the right-hand side of the continuity
equation, so it contains the hydrodynamic variables.

The introduction of the velocity field transforms the Euler equations to a form closer
to the traditional form:

mns(∂t + vs∇)vs +∇ps −
h̄2

4m
ns∇

(
4ns

ns
−
(∇ns)

2

2n2
s

)
= qens

(
E+

1
c
[vs,B]

)
+FSSs + F̃SOs, (5.2)

with the thermal or Fermi pressure ps, the force field of spin–spin interaction

FSSs = (−1)isγenu∇Bz +
γe

2
(Sx∇Bx + Sy∇By)+ (−1)is

mγe

h̄
εβγ z(J(M)βBγ − vsSβBγ ),

(5.3)
and the force field of spin–orbit interaction acting on spin-s electrons

F̃α
SOs = ±

γe

mc
εzαβ∂t(nsEβ)∓

2γe

h̄c
εzµνεµβγEβ jναγ

−
qe

2mc
γe

mc
EβBδεαγ δ(Sxε

xβγ
+ Syε

yβγ
± 2nsε

zβγ )

+
1
2
γe

mc
(∂αEβ)[εxβγ v

γ

s′ 6=sS
x
+ εyβγ v

γ

s′ 6=sS
y
+ εzβγ vγs Sz

]

±
h̄

4m
∂γ ns′ 6=s

ns′ 6=s

γe

mc
(∂αEβ)εµβγ εzµδSδ. (5.4)

A presentation of tensor jναγ in terms of the velocity fields is discussed in appendix C.
In terms of the velocity field the spin current tensor is found as follows

Jjα =
1
2
(vαu + v

α
d )Sj −

h̄
4m
εjβz

(
∂αnu

nu
−
∂αnd

nd

)
Sβ . (5.5)
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The relativistic part of the spin current tensor is hidden in the definition of velocity
fields.

In the Euler equations (5.2) we have used a reduced form of the spin current J(M)x
and J(M)y which means Jxα and Jyα correspondingly. Here, the bold symbols indicate
a vector related to the second index in Jαβ .

The existence of the quantum part of the spin current or, in other words, the
quantum Bohm potential contribution in the spin evolution equation was demonstrated
by Takabayasi in Takabayasi (1955a). The contribution of this effect to the wave
properties of quantum plasmas is considered in Trukhanova (2013a), where it is
applied for the spin-plasma waves.

After the introduction of the velocity field, the spin evolution equations have the
following form:

∂tSj +
1
2
∇[Sj(vu + vd)] −

h̄
4m
εjβz
∇

(
Sβ
(
∇nu

nu
−
∇nd

nd

))
+=j =

2γe

h̄
εjβγ SβBγ + TSOj,

(5.6)
where j= x, y.

The electric and magnetic fields entering SSE-QHD equations (5.1)–(5.6) satisfy
the quasi-static Maxwell equations (∇ × E = 0 and (2.3)), where sources of fields
are presented in terms of hydrodynamic variables: Φ†Φ = neu+ ned, (1/2m)(Φ†DΦ +
(DΦ)†Φ)= neuveu+ nedved, and Φ†σΦ = {Sex, Sey, (neu− ned)}. We consider motionless
ions.

The SSE-QHD equations (5.1)–(5.6) are derived from model (2.1)–(2.3) for the
motion of a medium with semi-relativistic interactions of particles. This model does
not describe the propagation of the electromagnetic radiation in the medium and the
action of the radiation on the medium since we have incomplete Maxwell equations.
Next, we promote our model to include the radiation propagation. To this end, we
restore ∂tE and ∂tB in the Maxwell equations. So, the SSE-QHD equations (5.1)–(5.6)
are coupled with the following Maxwell equations ∇ ·B= 0, ∇×E=−(1/c)∂tB,

∇ ·E= 4π(eni − eneu − ened), (5.7)

∇×B=
1
c
∂tE+

4πqe

c
(neuveu + nedved)+ 4π∇×Me. (5.8)

Since we consider degenerate electrons we use the Fermi pressures for spin-up and
spin-down electrons as equations of state: ps = (6π2)2/3h̄2n5/3

s /5m.
Vector = in the spin evolution equations (5.6) is the divergence of the thermal part

of the spin current tensor =α = ∂βJαβth . In accordance with the NLPE equation, as it
was demonstrated in Andreev & Kuz’menkov (2015c), we have

== (πu −πd)γe[S, ez]/h̄. (5.9)

Due to its nature we can also call this the Fermi spin current.
Our model is bound to an independent hydrodynamic description of spin-up and

spin-down electrons which was originally introduced in Kuzmenkov & Harabadze
(2004). However, this model appears to be incomplete (Andreev 2015b). Before, the
final version of the model had been presented in 2015 (Andreev 2015b) some works
based on Kuzmenkov & Harabadze (2004) had been presented. Let us discussed
some of them for a better perspective in the understanding of our results. In § II A
of Zamanian et al. (2010) the authors discussed a two-fluid form of the quantum
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hydrodynamic equations. The spin–orbit interaction was not discussed. Equations were
not demonstrated explicitly, but the authors suggested that ‘However, since the kinetic
equation is linear in f , it is straightforward to divide the electron fluid into two parts
depending on the initial spin state, e.g., up or down relative to the magnetic field’.
However, our analysis shows that the division of hydrodynamic equations into two
fluids is not straightforward even if the spin–orbit interaction is dropped. Otherwise,
the Euler equation presented in Zamanian et al. (2010) for the single-fluid description
of the electrons is the traditional Euler equation for the spin-1/2 quantum plasmas
(Kuz’menkov et al. 2001a).

Considering a kinetic model for spin-1/2 quantum particles, Stefan & Brodin (2013)
started their description with the single-fluid model of electrons, where the spin was
described via an extra argument of the quasi-distribution function. An argument
describing spin is a vector with a fixed module, but it can rotate in three-dimensional
space and its evolution is reduced to a two-dimensional evolution described by angles
in spherical coordinates. It seems that the coherent states for the spin degree of
freedom were used. Hence, the values at θ = 0 or θ =π do not directly correspond to
spin-up and spin-down states. Next, the authors presented an equilibrium distribution
function f0(s, p) and considered the small amplitude transverse perturbations. Waves
propagating parallel to the external field directed parallel to Oz axes was considered
there. An integral form of the dispersion relation for transverse waves with left and
right circular polarization was obtained. An algebraic form of this equation was
obtained after integration was performed in the long wavelength limit. The long
wavelength limit presented by equation (14) of Stefan & Brodin (2013) does not
contain the wave vector. So, there are probably limit values for the frequencies
for two waves at k = 0. Judging by the fact that some terms contain (µ/mc2)2, we
conclude that the calculation and result are presented beyond the limit required by the
weakly relativistic regime mentioned before equation (1) of Stefan & Brodin (2013).

Equation (14) in Stefan & Brodin (2013) is a huge formula with no numerical
analysis. Thus comparison of the contribution of the spin–orbit interaction with our
result is not possible.

6. Linearized SSE-QHD equations
Analysis of wave propagation can be made by a consideration of the linearized set

of SSE-QHD equations:
∂tδns + n0s∇δvs = 0, (6.1)

mn0s∂tδv
α
s + ∂

αδps = qen0sδEα ± γen0s∂
αδBz

+ qen0s
1
c

B0ε
αβzδvβs ∓

qe

mc
γe

mc
n0sB0ε

αγ zεβγ zδEβ

∓
2γe

h̄c
εzµνεβγµjναγ0 δEβ ±

γe

mc
n0sε

αβz∂tδEβ, (6.2)

with the upper sign for spin-up electrons and the lower sign for spin-down electrons,
and

∂tδSj + δ=j =
2γe

h̄
(εjβzB0zδSβ − εjβzS0zδBβ) (6.3)

for the spin evolution, and ∇ · δB= 0, ∇× δE=−∂tδB/c,

∇ · δE=−4eπ(δneu + δned), (6.4)

∇× δB=
1
c
∂tδE−

4πe
c
(n0uδvu + n0dδvd)+ 4πγe∇× δSe. (6.5)

https://doi.org/10.1017/S0022377818000958 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000958


14 P. A. Andreev and M. I. Trukhanova

We neglect the quantum Bohm potential since it gives a noticeable contribution at
large wave vectors close to kmax= n1/3

0 , S0z= n0u− n0d and δ== (π0u−π0d)γe[δS, ez]/h̄,
with π0s = (6π2n0s)

2/3h̄2/2m. The quantum Bohm potential becomes noticeable at
kvFe/ωLe > 1. It corresponds to κ > 103, but all analyses are made for κ 6 1, where
κ = kc/ωLe.

The spin–orbit interaction describes the force acting on the magnetic moment
moving in an external electric field. It exists even for static electric fields. Therefore,
the spin–orbit interaction affects the evolution of electrostatic waves in spin-1/2
plasmas, since electrons possess the magnetic moments affected by the electric field
caused by the charges of the surrounding electrons. We consider high frequency
perturbations and assume that the ions are motionless. Hence, on this time scale,
ions generate an equilibrium electric field compensated by the equilibrium part of
the electric field of the electrons. Relatively small temperatures are considered. Thus,
there is a distribution of spins due to the temperature effects, but the deviations from
the average value are small.

Traditional derivation of the Vlasov equation performed by N. N. Bogoliubov is
made for particles with Coulomb interaction. Hence, the corresponding hydrodynamic
equations contain the Coulomb interaction only. This means that the right-hand side
of the Euler equation contains qnE plus the force field caused by the external field,
where E = −∇φ, which satisfies the Poisson equation. Similar analysis in terms of
the many-particle quantum hydrodynamics (MPQHD) is given in Kuz’menkov &
Maksimov (1999). In spite the fact that the derivations are made for the Coulomb
interaction only, the Vlasov equation, the classic hydrodynamic equations and the
quantum hydrodynamics are applied for regimes where the full set of Maxwell
equations is used. We also need to mention that an averaging of the single-particle
equations, which can be obtained in the literature, is not a satisfactory justification.
Such models do not consider the interparticle interaction at all. These models avoid
existing problem. The same assumption were used in Asenjo et al. (2012) and Stefan
& Brodin (2013), but without any discussion.

Our goal is to study the structure of the spin–orbit interaction in the hydrodynamic
equations with separate spin evolution. This can be done in the weakly relativistic
regime. However, we want to study transverse waves. Hence, the Poisson equation is
replaced by the full set of Maxwell equations. This can be partially justified by the
analysis of external electromagnetic field propagation through plasmas in which the
motion of the charges modifies properties of the electromagnetic field.

7. Dispersion dependence of waves propagating perpendicular to the external
magnetic field

Let us present the dispersion equation for the waves propagating perpendicular to
the external magnetic field

ω2
− k2c2

−

∑
s=u,d

ω2
Ls

ω2 −Ω2
e − k2U2

Fs

× (2ω2
−ω2

Le − k2c2
− k2U2

Fs + αeΩe(2ω2
Le + k2U2

Fs))= 0 (7.1)

found in this paper as a solution of (6.1)–(6.5) in the linear approximation for small
perturbations of the equilibrium state of magnetized plasmas, where αe = γe/qec.
In (7.1) UFs = (6π2n0s)

1/3h̄/m is the Fermi velocity for spin-s electrons.
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The SSE affects the ordinary electromagnetic wave and spin-plasma wave having an
electric field oscillating in the direction of the external magnetic field Bext = B0ez via
the Fermi spin current. This effect is described in Andreev & Kuz’menkov (2015c).
Therefore, we do not discuss the ordinary electromagnetic wave and spin-plasma wave
in this paper.

7.1. Numerical analysis
For the numerical analysis and presentation of our results we use the following
dimensionless parameters ξ = ω/ωLe, κ = kc/ωLe and the following expression
for the equilibrium spin polarization η = tanh(µBB0/εFe), where εFe = TFe/kB =

(3π2n0e)
2/3h̄2/2m is the Fermi energy, and kB is the Boltzmann constant.

The spin–orbit interaction is a relativistic effect modelled in the semi-relativistic
approach. To include its contribution we need to consider relatively large equilibrium
concentrations n0e ∼ 1027 cm−3. As was demonstrated and discussed earlier, the
exchange interaction plays a considerable role if the concentration is below ≈1025 cm−3

(Andreev & Ivanov 2015; Andreev 2016a).
Usually, the dispersion equation for longitudinal–transverse waves propagating

perpendicular to an external field and having an electric field in the plane perpendicular
to the external magnetic field gives two solutions, called extraordinary waves.
However, the dispersion equation (7.1) has three solutions due to the SSE. The
dispersion equation (7.1) also contains the spin–orbit interaction contribution.

The third solution of (7.1) appears due to the SSE. The SSE lead to the appearance
of SEAWs if we consider the regime of longitudinal waves (Andreev 2015b; Andreev
& Kuz’menkov 2015b). Therefore, the third solution is called the extraordinary SEAW.

Next, we need to study the dispersion curves of three extraordinary waves and the
influence of the spin–orbit interaction on their dispersion dependencies. Therefore, we
consider a degenerate quantum plasma with n0e = 1.4 × 1027 cm−3 and B0 = 1011 G.
The cyclotron frequency is smaller than the Langmuir frequency in this regime.

The presented regime of parameters corresponds to temperatures below 107 K.
Required conditions can be found for electrons in neutron stars, where concentrations
and magnetic fields are relatively high and temperatures are below the presented
regime.

We consider this value of the particle concentration for the following reasons.
The spin–orbit interaction is a semi-relativistic effect. Hence, the characteristic
velocity ṽ should be comparable to the speed of light ṽ ≈ 0.1c. The Fermi velocity
is the characteristic velocity for a degenerate electron gas. This problem can be
addressed more explicitly. The Hamilton function for the spin–orbit interaction is
γEp/mc = eh̄Ep/2m2c2. It should be noticeable in comparison with the Coulomb
interaction eϕ, but is smaller than the Coulomb interaction eh̄Ep/2m2c2

≈ 0.1eϕ.
Estimating the electric field as E = −∇ϕ ≈ n1/3ϕ. So the presented estimation is
correct if h̄pn1/3/m2c2 is comparable to 0.1. Estimating the momentum p as the Fermi
momentum pFe, we have that (h̄n1/3/mc)2 is comparable to 0.1. Both estimations lead
to the considered concentrations.

To consider the influence of the spin–orbit interaction on the extraordinary waves we
present figures 1 and 2. The increase of frequency of the upper extraordinary wave and
the decrease of frequency of the lower extraordinary wave in the regime of relatively
small wave vectors are demonstrated in figures 1 and 2, respectively.

The contribution of the spin–orbit interaction in the chosen parameter regime
B0 = 1011 G � Bcr = m2

ec3/(eh̄) = 4.41 × 1013 G corresponding to h̄Ω 6 mc2 and
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FIGURE 1. The figure shows the upper extraordinary wave. The dashed line presents a
wave under the influence of the SSE. The continuous line includes the effect of the spin–
orbit interaction in addition to the SSE. This figure is plotted for n0e = 1.4× 1027 cm−3,
B0 = 1011 G, ηe = 0.11 and temperature T � TFe = 5.9× 107 K. The following notations
are used in figures ξ =ω/ωLe and κ = kc/ωLe.

FIGURE 2. The figure shows the lower extraordinary wave. The dashed line presents SSE
without spin–orbit interaction. The continuous line presents SSE with spin–orbit interaction.
Parameters are as in figure 1.

εFe = 0.01mc2 is relatively small. The contribution of the spin–orbit interaction
increases with the increase of concentration. However, we work in the regime of
parameters corresponding to the semi-relativistic approach in accordance with the
area of applicability of our equations.

8. Conclusions

Generalization of the NLPE containing the spinor pressure contribution has
been constructed to include the effect of spin–orbit interaction. Corresponding
generalization of the SSE-QHD containing the pair of continuity equations, pair
of Euler equations for spin-up and spin-down electrons and equations of the spin
evolution for Sx and Sy projections of the spin density has also been constructed.
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The spin–orbit interaction is an interesting example of quantum-relativistic effects.
Its analysis as presented in this paper is an important step towards the construction
of a quantum-relativistic hydrodynamic model. The presented model is a limit case of
many-particle QHD located on the SSE in a degenerate electron gas.

We have demonstrated extra shifts of the dispersion dependencies of extraordinary
waves under the influence of the spin–orbit interaction.
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Appendix A. Electromagnetic field structure in weakly relativistic plasmas

Considering a system of interacting charged particles, we can focus on the
electromagnetic field acting on a particle. This field is caused by the other particles
of the system. However, we can consider a part of this field to be caused by a single
particle. We have the standard retarding potentials

ϕ(r, t)=
∫
ρ(r′, t− |r− r′|/c)

|r− r′|
d3r′ (A 1)

and

A(r, t)=
1
c

∫
j(r′, t− |r− r′|/c)

|r− r′|
d3r′. (A 2)

Let us analyse these potentials in the weakly relativistic regime, meaning that
particle/particles creating the field move slowly in comparison with the speed of light.
Following, for instance, Landau & Lifshitz (1975), we include that the distribution of
charges does not undergo a noticeable change during time |r − r′|/c. Therefore, we
can expand the density and current into series in |r− r′|/c. Making the expansion up
to the second order, we find the following form of the scalar potential:

ϕ(r, t)=
∫
ρ(r′, t)
|r− r′|

d3r′ −
1
c
∂t

∫
ρ(r′, t) d3r′ +

1
2c2

∂2
t

∫
|r− r′|ρ(r′, t) d3r′, (A 3)

where
∫
ρ(r′, t) d3r′ is the full charge which does not change. Hence the second term

is equal to zero.
Next, we consider the vector potential. This is given by (A 2) which contains 1/c.

Moreover, the Lagrange function governing the evolution of the considered particle (or
corresponding equation of motion) contains A/c in term qAv/c (which corresponds to
the Lorentz force qv × B/c). This shows that we already have 1/c2. Therefore, it is
enough to take expansion of the vector potential up to the zeroth order in |r− r′|/c.
As a result we have

A(r, t)=
1
c

∫
j(r′, t)
|r− r′|

d3r′. (A 4)

Focusing on the field caused by a single charge and using the explicit forms of the
density and current: ρ = qδ(r− r(t)) and A= qv(t)δ(r− r(t)) allows us to perform a
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simple integration in the equations obtained for the scalar and vector potentials and
we then find

ϕ =
q
R
+

q
2c2

∂2
t R, A=

qv
cR
, (A 5a,b)

where R= |r− r′|.
Next, we change these potentials by applying the gauge transformation

ϕ′ = ϕ −
1
c
∂tf , A′ =A+∇f . (A 6a,b)

For the gauge transformation we choose the gauge function

f =
q
2c
∂tR. (A 7)

As a result we find the following potentials:

ϕ′ =
q
R
, A′ =

qv

cR
+

q
2c
∇∂tR. (A 8a,b)

Following the representation of the vector potential requires the following
calculation: ∇∂tR = ∂t∇R = ∂t(R/R) = Ṙ/R − RṘ/R2. Assuming that the point of
observation is fixed while the source of the field is moving, we find R= r− r′(t) and
Ṙ=−v. Differentiating equation R2

=R2 in time t we find RṘ=RṘ=−Rv.
It gives the following expressions for the potentials

ϕ′ =
q
R
, A′ =

q
2cR

(
v +

1
R2

R(vR)
)
. (A 9a,b)

Considering the electromagnetic field caused by a system of particles gives the field
potentials equal to the superposition of the found expressions.

Considering the structure of the electric field following from the found potentials

E=−∇ϕ −
1
c
∂tA. (A 10)

Substituting the found potentials into the general expression for the electric field we
obtain

E=−∇
q
R
−

q
2c2

∂t

(
v

R
+

1
R3

R(vR)
)
. (A 11)

For the analysis of the Maxwell equations we need to consider the curl of the
electric field

∇×E= 0−
q

2c2
∂t∇×

(
v

R
+

1
R3

R(vR)
)
, (A 12)

where ∇= ∂/∂r, v(t) does not depend on r. Calculation gives

∇×E= 0−
q

2c2
∂t∇×

(
v

R
+

1
R3

R(vR)
)
. (A 13)
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Let us represent the last equation in more detail

∇×E=−
q

2c2
∂t

(
v×∇

1
R
+ (vR)R×∇

1
R3
+

1
R3
(∇×R)(vR)+

1
R3

R×∇(vR)
)
.

(A 14)
Including the following properties ∇(1/R)=−R/R3, ∇(1/R3)=−3(R/R5), ∇×R= 0,
and ∇(vR) = v, we find that the second and third terms are equal to zero and the
module of the first term is equal to the module of the last term, but it has opposite
sign. Overall, it gives ∇×E= 0 applied in the main part of the paper.

Appendix B. Spin current
We need to have the explicit form of the spin current tensor components to

recognize their parts in the terms caused by the spin–orbit interaction. Therefore, we
present their non-relativistic parts here:

Jxα
=

1
2m
(Φ∗u DαΦd +Φ

∗

d DαΦu + c.c.), (B 1)

Jyα
=

1
2m
(Φ∗u (−ı)DαΦd +Φ

∗

d ıDαΦu + c.c.), (B 2)

Jzα
=

1
2m
(Φ∗u DαΦu −Φ

∗

d DαΦd + c.c.). (B 3)

Appendix C. Equation of state for jαβγ

An explicit expression for jαβγ defined by (3.10) is equal to the explicit expression
for the spin current flux Jαβγ defined by (3.11) up to the quantum terms similar to the
quantum Bohm potential. Qualitatively speaking, the spin current flux is the average
value of the following quantity: Jαβγ = 〈Sαi v

β
i v

γ
i 〉, where Sαi and vαi are the spin and

velocity of the ith particle. Splitting spin and velocity by the value related to the local
centre of mass and the value related to the thermal motion Sαi = Sα(r, t) + sαi and
vαi = v

α(r, t)+ uαi we find

Jαβγ = Sαvβvγ + Sα〈uβi uγi 〉 + v
β
〈sαi uγi 〉 + v

γ
〈sαi uβi 〉 + 〈s

α
i uβi uγi 〉

= Sαvβvγ + Sαpβγ + vβJαγth + v
γ Jαβth + Jαβγth , (C 1)

where Jαβth and Jαβγth are the thermal spin current and the thermal spin current flux.
For our calculations we need the equilibrium value of jαβγ . This means we need

the equilibrium spin current flux Jαβγ0 = δzαSz(r, t)pFeδ
βγ
+ Jαβγ0,th . For the calculation

of the equilibrium thermal spin current flux Jαβγ0,th we can use the equilibrium spin
distribution functions obtained in Andreev (2016b) for SSE quantum kinetics Jαβγ =∫

pγ pβSα(r, p, t) dp= δzαSz(r, t)pβγ . It is already included in Jαβγ0 . It means Jαβγ0,th = 0.
Consequently, we find jαβγ0 = δzαδβγ SzpFe which gives zero contribution in the linear
evolution (6.2).

Appendix D. Justification of the structure of the SSE hydrodynamic equations
from the SSE kinetic model

There are two regimes for the development of statistical (quantum or classic)
physics: the physical system in thermostat (system interacting with its surroundings,
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but kept at a fixed temperature – the temperature of the larger surrounding object),
where the grand canonical Gibbs ensemble (distribution) is used, and the isolated
physics system (the systems with fixed energy), where the microcanonical Gibbs
ensemble is used.

In the first state, the system is located in the mixed quantum state and it is described
by the density matrix while our system and the thermostat are located in the pure
state and described by the wave function Ψ (R, t) or the equivalent density matrix
ρ(R, R′, t)=Ψ ∗(R, t)Ψ (R′, t).

In the second case, the system is located in the pure quantum state and described
by the wave function. We consider a regime with a fixed full energy of the system
which does not necessarily require the density matrix.

The original paper on the SSE-QHD (Andreev 2015b) is based on the single-particle
Pauli equation. It has the aim of demonstrating the structure of the hydrodynamic
equations which exist for the independent description of the electrons with different
spin projections.

The pressure term existing for the collection of particles does not appear there.
However, it is included there in accordance with the knowledge of the Euler equation
structure.

The appearance of the SSE model from the many-particle wave function is
considered in Andreev (2016b) for the kinetic model. This kinetic model allows
us to present a justification of the SSE-QHD via the calculation of the equations for
the evolution of the moments of the scalar and vector distribution functions. Hence,
it gives a strong background for the model considered in this paper.

The major hydrodynamic characteristics (the material fields) are introduced in
accordance with Andreev (2016b) which is made in the traditional way: na(r, t) =∫

fa(r, p, t) dp, ja(r, t)=
∫
(p/m)fa(r, p, t) dp, S̃ex(r, t)=

∫
Sex(r, p, t) dp and S̃ey(r, t)=∫

Sey(r, p, t) dp.
For the derivation of the evolution equations for the moments of the distribution

functions we use the kinetic equations obtained in Andreev (2016b): for the spin-up
electrons

∂tfe↑ + v · ∇rfe↑ + qeE · ∇pfe↑ +
qe

c
[v,B] · ∇pfe↑ + γe∇Bz

· ∇pfe↑

+
γe

2
(∇Bx · ∇pSe,x +∇By · ∇pSe,y)=

γa

h̄
[Se,xBy − Se,yBx]. (D 1)

For the spin-down electrons it has the same structure as the equation for the spin-up
electrons, but with different coefficients:

∂tfe↓ + v · ∇rfe↓ + qeE · ∇pfe↓ +
qe

c
[v,B] · ∇pfe↓ − γe∇Bz

· ∇pfe↓

+
γe

2
(∇Bx · ∇pSe,x +∇By · ∇pSe,y)=−

γa

h̄
[Se,xBy − Se,yBx], (D 2)

and equations for the spin distribution function (the vector distribution function) are

∂tSe,x + v · ∇rSe,x + qe

(
E+

1
c
[v,B]

)
· ∇pSe,x

+ γe∇Bx · ∇p( fe↑ + fe↓)−
2γe

h̄
(Se,yBz − ( fe↑ − fe↓)By)= 0, (D 3)
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and

∂tSy + v · ∇rSe,y + qe

(
E+

1
c
[v,B]

)
· ∇pSe,y

+ γe∇By · ∇p( fe↑ + fe↓)−
2γe

h̄
(( fe↑ − fe↓)Bx − Se,xBz)= 0. (D 4)

In this subsection v= p/m is an independent variable of the kinetic model. This is
in contrast with other parts of this paper, where v= v(r, t) is the velocity field and it
is a function of space and time.

These equations lead to the quasi-classic limit (with no spin–orbit interaction and
no quantum Bohm potential) of the hydrodynamic equations (3.1), (3.8), (3.13) with
the following definitions of the momentum flux

Παβ
a (r, t)=

∫
pαpβ

m
fa(r, p, t) dp, (D 5)

the pressure
pαβa (r, t)=Παβ

a (r, t)− jαa (r, t)jβa (r, t)/na(r, t), (D 6)
and the spin–current

Jαβa (r, t)=
∫

pβ

m
Sαe (r, p, t) dp, (D 7)

where
Sz

e(r, p, t)= fe↑(r, p, t)− fe↓(r, p, t). (D 8)
Integrating (D 1) and (D 2) over all momentum space and assuming that the

distribution functions fs (in the third, fifth and sixth terms) and the product pαfs
(in the fourth term after integration by parts) go to zero at an infinite value of the
momentum, we find the continuity equations.

Similarly, the kinetic equations (D 1) and (D 2) can be multiplied by the momentum
pα. Next, the obtained equations can be integrated over all momentum space. The
calculations become a bit more complicated. Hence, let us present this calculation,
which also would help in understanding the calculations described above for the
continuity equations. Therefore, we show the following:

∂tjαs = ∂t

∫
dp vαfs =

∫
dp vα∂tfs

= −∇
β

∫
dp vαvβ fs − qeEβ

∫
dp vα∇βp fs

−
qe

c
εβγ δBγ

∫
dp vαvβ∇δpfs ∓ γe∇

βBz

∫
dp vα∇βp fs

−
1
2
γe∇

βBx

∫
dp vα∇βp Sx −

1
2
γe∇

βBy

∫
dp vα∇βp Sy

±
γe

h̄
By

∫
dp vαSx ∓

γe

h̄
Bx

∫
dp vαSy. (D 9)

In the second and fourth terms we have∫
dp vα∇βp fs =

∫
dp∇βp (v

αfs) (D 10)

−δαβ
∫

dp fs/m=−δαβns/m, (D 11)
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where we used ∇βpv
α
= δαβ/m. Similarly we make for the fifth and sixth terms∫

dp vα∇βp Si =

∫
dp∇βp (v

αSi) (D 12)

−δαβ
∫

dp Si/m=−δαβSi(r, t)/m, (D 13)

where i= x, y. In the third term we make the following transformation∫
dp vαvβ∇δpfs =

∫
dp∇δp(v

αvβ fs)−

∫
dp∇δp(v

αvβ)fs

= −

∫
dp (δαδvβ + δβδvα)fs. (D 14)

Next, we multiply the last equation on εβγ δ in accordance with the third term in (D 9)
and find ∫

dp (εβγαvβ + εβγβvα)fs = ε
αβγ

∫
dp vβ fs = ε

αβγ jβ . (D 15)

Finally, we obtain the Euler equation for the spin-s electrons

m∂tjαs = −∇
βΠαβ

s + qensEα +
qe

c
εαβγ jβBγ

± γensBz +
1
2
γe(Sx∇

αBx + Sy∇
αBy)±

mγe

h̄
(JxαBy − JyαBx). (D 16)

In the same way we integrate (D 3) and (D 4) to find the quasi-classic part of the x-
and y-projections of the spin evolution equation (5.6). To find the z-projection we need
to consider and integrate the difference between the kinetic equations (D 1) and (D 2).

Let us mention the area of applicability of the equations derived in this paper.
The SSE-QHD is obtained in the self-consistent (the mean field) approximation for
fully degenerate electrons (the temperature is equal to zero). The SSE-QHD includes
an extra degree of freedom following from the existence of spin. The single-fluid
hydrodynamics of electrons includes the spin via the spin density evolution which
is proportional to the magnetization and can be introduced is classical physics as
well. The SSE-QHD explicitly incorporates the discrete nature of the spin projections
which are presented in the two line structure of the Pauli equation and revealed in the
Stern–Gerlach experiment. Neglecting the SSE we drop the SEAWs which spectrum
is the low frequency part of the electron dynamics at k ‖Bext. At k⊥Bext the SEAW
spectra are located in the relatively small area above the electron cyclotron frequency.
Hence, the single-fluid model of electrons, in a way, is the high frequency regime
of the plasma dynamics. Recovering the ion motion, we see that the SSE dynamics
corresponds to the intermediate frequency range, but it can overlap with the low
frequency area of the ion sound in the limit cases (see for instance Andreev 2015b).
One relativistic effect (the SO interaction) is considered while others, such as the
relativistic part of the kinetic energy, the spin–current interaction, the current–current
interaction the Darwin interaction, are outside of the focus of this paper.

The quantum Bohm potential is not included in the equations demonstrated in
Andreev (2016b) and repeated here. Andreev (2016b) focused on the quasi-classical
effects of the separate spin evolution. However, the method of derivation used there
is shown in Andreev (2012). Andreev (2012) does not give details of the derivation,
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but shows an intermediate form of the kinetic equations, where all electrons are
considered as a single fluid. The quantum terms are shown there. Particularly, an
equation for the traditional distribution function fe contains a term proportional to h̄2

along with (E · ∇p)fe. This term is also traditional for Wigner kinetics. It provides
the quantum Bohm potential contribution to the spectrum of collective excitations. A
similar term appears in the quantum kinetics with separate spin evolutions, but it was
neglected in the published papers.
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