
CSIRO PUBLISHING

Publications of the Astronomical Society of Australia, 2003, 20, 300–313 www.publish.csiro.au/journals/pasa

A Distributed Data Implementation of the Perspective Shear-Warp

Volume Rendering Algorithm for Visualisation of Large

Astronomical Cubes

Brett Beeson1, David G. Barnes2 and Paul D. Bourke1

1 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218,

Hawthorn, Australia, 3122
2 School of Physics, The University of Melbourne, Parkville, Australia, 3010

barnesd@unimelb.edu.au

Received 2003 May 23, accepted 2003 August 21

Abstract: We describe the first distributed data implementation of the perspective shear-warp volume

rendering algorithm and explore its applications to large astronomical data cubes and simulation realisations.

Our system distributes sub-volumes of 3-dimensional images to leaf nodes of a Beowulf-class cluster,

where the rendering takes place. Junction nodes composite the sub-volume renderings together and pass

the combined images upwards for further compositing or display. We demonstrate that our system out-

performs other software solutions and can render a ‘worst-case’ 512 × 512 × 512 data volume in less than

four seconds using 16 rendering and 15 compositing nodes. Our system also performs very well compared

with much more expensive hardware systems. With appropriate commodity hardware, such as Swinburne’s

Virtual Reality Theatre or a 3Dlabs Wildcat graphics card, stereoscopic display is possible.

Keywords: methods: data analysis — techniques: image processing — surveys

1 Introduction

Astronomers, by virtue of the software provided to them

for display and analysis, are ordinarily restricted to dis-

playing two dimensional slices of data extracted parallel

to one of the fundamental axes of their dataset. Some

advanced applications exist, such as the kpvslice appli-

cation in the Karma suite of visualisation tools (Gooch

1995), which provides the facility to display non-axial

(and indeed non-planar) slices through volumetric data.

Similar tasks are available in some radio astronomy reduc-

tion packages (e.g. velplot in Miriad). However, the

dominant representations of volumetric data adopted for

analysis or publication are two-dimensional axial slices

(often with information along the non-displayed axes

collapsed by some statistical operation — a moment map)

and one-dimensional profiles such as spectra.

Volume rendering (hereafter VR; Drebin, Carpenter, &

Hanrahan 1988) is an advanced technique for visualis-

ing volumetric datasets, wherein rays are cast through the

data volume to generate a projected view. VR is useful

for data with poorly defined surfaces such as astronomi-

cal data because in general it shows integrated properties

of the data and enables arbitrary projections of the data

into the displayed image plane. In many cases, such non-

axial projections can enable the detection of new structure

and relationships in complex multi-dimensional datasets,

which are otherwise not visible in axial slices, or are con-

cealed or washed out by statistical moment operations.

For example, VR has been shown to be exceptionally use-

ful for inspecting interferometric radio telescope images,

especially as a tool to disentangle the complicated gas

kinematics in disturbed galactic disks (Oosterloo 1995).

Furthermore, interactive rendering in which the volume

can be manipulated (e.g. rotated, translated or magnified in

the viewing space) in near real-time, or where the transfer

function controlling the mapping of data values to colours

or opacities can be modified, can provide a substantially

improved perception of structure in even quite noisy data.

Modern imaging systems, such as radio telescopes, can

produce images having upwards of 100 million voxels. For

smaller images, e.g. a single HIPASS cube (Barnes et al.

2001) covering ∼50 square degrees and having dimen-

sions 170 × 160 × 1024 voxels, a VR application such as

Karma’s xray is satisfactory when running on a work-

station with a few hundred megabytes (MB) of memory.

A present-day CPU can render of order 8 million voxels

(Mvox) per second, so one can expect, and indeed achieve,

frame rates of about 0.3 frames per second (fps) using xray

to render a 28 Mvox HIPASS cube. However, for many

other cases, VR lies squarely in the domain of high perfor-

mance computing (HPC). For example, the entire HIPASS

dataset computed as a single data cube in the Zenithal

Equal Area projection (ZEA; Calabretta & Greisen 2002)

will comprise some 6 × 109 voxels!To volume render such

an image requires of order six gigabytes (GB) of memory

(using only 8 bits per voxel). Even if such a machine were

available, each frame would take at least 10 minutes to

compute.

Direct images are not the only candidates for VR. Sur-

vey projects, for example the Sloan Digital Sky Survey

(SDSS; York et al. 2000, Stoughton et al. 2002), now rou-

tinely collect tens of parameters for hundreds of millions

of objects. For such databases, traditional visualisations

such as two-dimensional scatter plots can and should be

© Astronomical Society of Australia 2003 10.1071/AS03039 1323-3580/03/03300

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 301

augmented with more sophisticated visualisation-aided

data mining techniques. Plotting ∼109 individual points

in a three-dimensional phase space and then projecting

to a particular point of view is a formidable task for

single modern CPU, even one assisted with a geometry

and transform hardware. If, instead, the data points are

first gridded into a coarse volumetric dataset, having, for

example, 256 cells on each of three axes, the resultant

data cube is of modest enough size for a VR algorithm to

be applied and the data manipulated in real time. Some

systems, especially those associated with virtual observa-

tory endeavours, are pursuing this approach. For example,

the datoz2k database system (Ortiz 2003) has a facility

to generate simple VR visualisations of gridded catalogue

data and present them to the user in a web browser.

VR is computationally expensive because the genera-

tion of a single projected view requires the consideration

of all voxels in the data source; the display of two-

dimensional slices generally involves less than one percent

of the voxel data. Fast and cheap hardware solutions do

exist in the form of mass-market computer graphics cards.

Their texture memory can be filled with slices extracted

from the dataset, and then the geometry, transform and

blending features of the card can be used to compos-

ite these textures into a projected view of the volume.

However, this approach is severely limited by the mem-

ory available on present-day graphics cards (typically

≤128 MB), and an inflexible (hardware-coded) blending

function.

Software algorithms, on the other hand, are free to

use main memory (typically ≥ 1 GB) and can give more

extensive coverage of the domain of blending functions.

Several algorithms have been developed for fast VR and

we have chosen the fast and efficient shear-warp (S-W)

factorisation. A few parallel implementations of the S-W

factorisation already exist (e.g. VolPack [Lacroute &

Levoy 1994]; the National Center for Atmospheric

Research’s volsh; Virvo [Schulze & Lang 2002]), but

none distribute the data — all nodes ‘know’ all of the

data. In practice this limits these systems to rendering data

volumes which, in their entirety, fit in a single node’s mem-

ory space. As typical datasets from astronomical surveys

now exceed 1 GB and are growing faster than the memory

of commodity workstations, we explore the first imple-

mentation of the S-W algorithm for distributed data. By

developing a VR application which runs on the nodes of

a Beowulf-type cluster (Sterling et al. 1995), we benefit

in two distinct ways, namely:

1. more processing resources are brought to bear on the

problem, thereby improving minimum rendering time,

and

2. more memory resources are made available, thereby

enabling larger datasets to be rendered.

We have based our work on the Virvo code1, described

in Schulze & Lang (2002) and generously provided to us

1http://www.hlrs.de/organization/vis/people/schulze/virvo/

by Juergen Schulze. From Virvo we use the rendering

core to compute volume renderings of subsets of the data,

modified by us to support the associative operator neces-

sary for distributed data rendering. The remainder of the

system — support for FITS-format data, the data division

strategy and implementation, the correct compositing of

individually rendered images, the design and implemen-

tation of the parallel, multiple-node distributed rendering

tree, the selection and use of suitable compression tech-

niques at different points in the system, and the front-end

control and display software — is entirely new work.

We commence this paper with a brief review of vol-

ume rendering in Section 2. We describe the extension to

distributed data rendering in Section 3, including some

remarks on data division and optimisation strategies. In

Section 4 we describe the essential features of the user

interface to the software we have developed. We char-

acterise its performance and scalability in Section 5 and

finally we provide some sample applications in Section 6.

2 Volume Rendering

There are two distinct operations fundamental to VR

which we now describe. First, a VR operator is required

which, given a set of voxels ordered back to front, will

produce an integrated quantity representative of that set of

voxels. Secondly, an efficient method of calculating lines

of sight through the data volume, and therefore providing

sets of voxels ordered back to front, is required.

2.1 The Volume Rendering and Compositing Operator

A volume is rendered by mapping each scalar voxel

to a colour and opacity (see below) and accumulating

integrated colour and opacity values along multiple con-

ceptual viewing rays through the volume. To enable dis-

tributed data VR, we need to ensure that sub-volumes of

the data may be volume rendered independently and then

composited together to produce the same result as if the

entire volume had been rendered at once. We consider

rendering to be the operation of producing a single out-

put image from multiple input voxels and compositing

to the be operation of producing a single output image

from multiple input images. The same operator is used for

both and must be associative. Note that not all voxel or

pixel compositing operators are associative, for example

the commonly used blending function of OpenGL2 is not.

In a now classic paper, Porter & Duff (1984) present a

number of operators suitable for compositing separately

rendered images and derive the over operator, so named

for the placement of a rendered foreground image over

a rendered background image. We have chosen to use the

over operator as it is associative and suitable for use in both

VR and compositing. We now briefly review this operator

and direct the reader to Blinn (1994) for further details.

We define opacity (α) in the interval [0, 1] with α = 0

and α = 1 representing completely transparent and com-

pletely opaque voxels, respectively. Consider first the

2http://www.opengl.org/

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


302 B. Beeson et al.

Figure 1 The shear-warp for parallel (left) and perspective (right) projections. Figure credit: P. Lacroute.

operation of combining a foreground pixel (F , a vector

of red, green and blue colour components) with opacity

αF , with a background pixel (B). The output pixel (O) is

simply

O = αFF + (1 − αF )B, (1)

evaluated independently for the three colour components.

Equation 1, the painter’s equation, is not associative. This

is easily seen as there is no reference to the opacity of the

background pixel.

We want a VR and compositing operator, ‘&’, such

that for background, middle-distance (M) and foreground

voxels,

(B&M)&F = B&(M&F) (2)

To find the operator &, we set an intermediate image, I, to

be the composition of the middle-distance and foreground

voxels, i.e.

I = M&F, (3)

substitute in the painter’s equation (it must still hold in

the case of a completely opaque background voxel), and

evaluate I. We find that:

αI = (1 − αF ) αM + αF (4)

Ĩ = (1 − αF )M̃ + F̃, (5)

where the tilde above the voxels implies pre-multiplication

by the opacity: X̃ ≡ αX X . Equations 4 and 5 define

the over operator which we adopt for VR and composit-

ing. Note that for αM = 1, these equations reduce to the

painter’s equation. While the over operator is associative,

it is not commutative, so we must preserve the ordering of

voxels during VR and compositing.

2.2 The Shear-Warp and Perspective Shear-Warp

Techniques

There are two distinct approaches to applying a VR

operator to a volume of data:

1. A pixel-order renderer (also referred to as a ray-

caster) loops over all of the pixels in the projected

output image. For each pixel, a list of contributing

voxels is compiled and sorted according to distance

from the image plane and then the VR operator is

applied working from the back to the front of the list.

Pixel-order rendering is suitable for associative but

non-commutativeVR operators and is eminently suited

to parallelisation by scan-line subdivision.

2. A voxel-order renderer (also referred to as a splat-

ter) loops through the data volume and projects each

voxel onto the image plane. It lends itself well to com-

mutative operators, such as max (maximum value),

sum (summed value) and so on, but in general will

be an extremely inefficient procedure for any non-

commutative VR operator (for example, an opacity-

dependent operator).

For a parallelised, distributed data renderer, we note

that pixel-order rendering is not suitable because it would

require all nodes of the rendering cluster to have access to

all of the data. Somewhat paradoxically, voxel-order ren-

dering is also not satisfactory, since it does not efficiently

support non-commutative (i.e. ordered) operators which

we have already established are required for piecewise

rendering and compositing of a large data volume! Fortu-

nately, an elegant and efficient technique (to some extent a

halfway point between pixel- and voxel-order rendering)

exists: the shear-warp factorisation.

The S-W factorisation was first applied to volume ren-

dering by Lacroute & Levoy (1994). This algorithm shears

the volume space and warps the image space, so that view-

ing rays are parallel to a fundamental axis of the data

volume (see Figure 1, left). In the transformed space,

voxels and pixels align, and a VR system can traverse

the volume and the image in order. Furthermore, the tra-

jectories of individual viewing rays no longer need to

be calculated, saving many costly transcendental calcu-

lations. The S-W is easily extended to provide perspective

by including a distance-dependent scaling in the transform

(see Figure 1, right).

3 Distributed Data Volume Rendering

Our distributed data volume renderer is constructed using

the S-W algorithm (with or without perspective) and the

over operator:

1. The data volume is divided into two or more sub-

volumes, each a three-dimensional array of voxels.

2. The S-W algorithm is used to render (with the over

operator) each sub-volume independently with the

same camera and projected onto the same image plane.

3. The over operator is then used again, this time to com-

posite the rendered images, proceeding from back to

front according to the position of the sub-volumes in

the original volume.

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 303

head compositor

compositors

renderers

Figure 2 Example rendering tree with branching factor b = 2 and

number of levels n = 3.

The associativity of the over operator, its use for both ren-

dering and compositing, and the correct sorting of the

rendered images prior to compositing, ensure that the final

composited image is identical to the output of a single-pass

renderer.

3.1 The Rendering Tree

We use a rendering tree with a configurable branching

factor b, similar to the scheme used in VFleet
3, except

that VFleet is a parallel renderer requiring all render-

ing nodes to have access to all of the data. The rendering

tree contains compositors (branch nodes) and renderers

(leaf nodes). For an n-level tree, there are bn−1 render-

ers and 1 + b + b2 + · · · + bn−2 compositors. A simple

example rendering tree with b = 2 and n = 3 is shown in

Figure 2. The connections between nodes represent socket

connections.

The parameters of the rendering tree can be tuned to

suit various configurations of processor speed, physical

network topology and network bandwidth availability. For

slow processors connected by a fast network, a low branch-

ing factor shares the compositing amongst many nodes,

the extreme case being a binary tree with only one more

renderer than compositors. Conversely, a tree of fast pro-

cessors connected by a slower network will benefit from a

higher branching factor which places more load on fewer

compositors, the extreme case here being a single com-

positor with b renderers. For a shared memory machine,

where inter-node bandwidth can exceed 1 GB with sub-µs

latency, the best rendering tree will be likely to be

one which utilises all available processors. We discuss

performance further in Section 5.

3http://www.psc.edu/Packages/VFleet_Home/

3.2 Data Division

The rendering tree structure largely determines how the

volume data should be divided amongst the rendering

nodes. We adopt an iterative division scheme which works

in the following way. The head compositor node (the top

of the tree in Figure 2), divides the entire data volume into

b pieces which it passes to its b children. If the children

are themselves compositors, then they further divide their

own sub-volumes along the longest axis into b pieces for

their b children. Note that the head compositor can, but

need not necessarily, send ‘physical’ arrays of data to the

children. The data volume can be subdivided in advance if

the rendering tree structure is known and each sub-volume

stored on network disk accessible to the rendering nodes,

or even disk local to each node for even faster start-up. The

division scheme produces convex, adjacent sub-volumes,

thereby ensuring correct ordering is possible and yielding

a balanced rendering tree. This strategy could be modified

for use on a cluster with ‘fast’ and ‘slow’ nodes, but care

would need to be taken to ensure that a unique back-to-

front order remains. Note that the volume division must

ensure sufficient information is available to each node to

correctly reproduce edge values. To this end, we divide

volumes as depicted in Figure 3, such that sub-volumes

are always the same size and share at least one plane of

voxels.

3.3 Compositing

With the rendering tree installed and configured, VR can

proceed. The requested viewing angle and image plane

are parametrised and passed all the way down the ren-

dering tree to the renderers. They apply an appropriate

shear to their (sub-volume of) data, possibly applying a

perspective scaling, use the over operator to generate a

projected, volume rendered image and then warp this into

the required image plane. The rendered images are then

sent progressively up the tree where compositors use the

same over operator to combine the b images of adjacent

sub-volumes rendered (or composited) by their children,

using ordering information from their positions. The head

compositor node produces the final rendered image.

3.4 Optimisations

3.4.1 Dynamic Range Compression

On 32-bit architectures, a single floating point value

occupies 4 bytes. This provides a huge dynamic range

(typically of order 1038) which is rarely, if ever, required.

This is especially true in the context of visualisation,

where on a 24-bit display there are (nominally) 16 M

colours available4, of which, under the very best condi-

tions, the human eye can distinguish perhaps up to 1 M

(Halsey & Chapanis 1951). To save a factor of four in

memory requirements (and a similar factor in the num-

ber of processor cycles needed to shear data planes), it

4However, many fewer than 16 M colours are produced in practice by

computer display systems as they fail to produce fully saturated colours,

and ambient light can substantially reduce contrast.

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


304 B. Beeson et al.

Figure 3 Volume division: dividing along an even-length axis (left) and an odd-length axis (right). The

circles represent individual samples (i.e. voxels) in the data volume, which extends into the page.

These
viewing
angles prefer
data stored in rows

These viewing angles
prefer data stored in
columns

Figure 4 The effect of viewing angle on the preferred data storage scheme, illustrated for an axial slice

through a volume.

is straightforward to reduce the dynamic range to 65536

or even 256 by mapping the input floating point data to

16-bit or 8-bit integer values. Provided a careful choice

of mapping is made, this measure will only infrequently

compromise the output of VR.

3.4.2 Shear-Warp Projections

The efficiency of the S-W algorithm is mostly due to the

traversal of the volume data in order. This depends on

the volume data being stored such that the data for each

sheared plane is stored in a single block of physical mem-

ory. For a three-dimensional volume of data, there are three

orthogonal sets of planes which might be sheared, defined

as the planes perpendicular to the first axis, the second and

the third. In the non-perspective S-W, every viewing angle

can be identified with one of these sets which is optimal

for efficient rendering. Figure 4 should help clarify this:

for viewing angles from the bottom (or top) of the figure,

the S-W algorithm can be applied more efficiently with the

data stored in rows, while for viewing angles from the right

(or left) of the figure, the data is best stored in columns.

This voxel set selection as described has the basic function

of keeping the shear ‘rate’ to less than one pixel per plane

(at 45 degrees it is equal to one pixel per plane). In terms

of efficiency this reduces memory requirements during

the shear and reduces the total extent of the sheared axis

(thereby reducing the intermediate rendered image size).

Further, it also improves the correctness of the rendering

by selecting against lines-of-sight which go through more

than two pixels per sheared plane.

Most implementations of the S-W algorithm store the

volume in one order and re-order the data when the

viewing angle demands a new storage order. As real-

time re-ordering is not feasible for sub-volumes larger

than a few Mvox, our implementation stores the three

alternately-ordered copies of the sub-volume data on each

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 305

rendering node. While this triples memory requirements,

it can substantially improve the interactive response of the

system during rapid changes to the viewing angle5.

3.4.3 Window-Encoding Images

Images are sent from renderers to compositors and from

compositors to compositors, quickly consuming network

bandwidth. To improve transfer speed, each image can be

window-encoded before it is sent upwards to a compositor.

This involves computing the bounding box of non-blank

pixels and only sending this sub-image. We do this by pro-

jecting each corner of the volume into the image plane.

Very often the sub-volume rendered by a renderer or com-

posited by a compositor will only project to a small part of

the final image, so substantial savings can be made using

window-encoding.

3.4.4 Minimal Compositing

The brute force method of compositing is expensive since

every pixel in the b input images must be considered.

Performance can (obviously) be improved considerably

by only compositing the non-blank image sections. This

is accomplished by using the window-encoding informa-

tion already computed for the network transfer of images

and choosing not to decode the full-size images. In this

way the rendering tree composites only sub-images of

sub-volumes.

4 Display and Control

4.1 The User Interface

Volume rendering is often used to explore data — the

user will modify the transfer function and move the view-

point in order to identify and visualise different features

of the data. A user interface is required, which we have

chosen to de-couple from the rendering tree for the very

important reason that the user may not be in the same

physical location as the cluster that is available to render

their data (see Figure 5). Additionally, the user’s work-

station may well be slow compared to available cluster

nodes, and so computation on the workstation is kept to the

minimum necessary to display the rendered image and to

control rendering parameters such as the transfer function

and viewing angle. We also note that separating function

and interface allows future interfaces to re-use existing

functional codes.

As the network connection between the user’s work-

station and the VR cluster may be slow compared to the

cluster interconnect, it is prudent to run-length encode

the image produced by the head compositor before it is

sent to the user interface for display. Run-length encoding

(RLE) entails replacing runs of repeated data values with

the data value (or values) and a repeat count. For exam-

ple, the sequence kavababababyt might be replaced by

kavab+3yt. Since a final rendered image might have large

5For cases where memory resources are precious, this optimisation could

in principle be switched off.

head compositor

compositors

(remote) workstation

Figure 5 The top of a rendering tree running under the control

of a (possibly remote) workstation. Typically the cluster nodes will

interconnect via a fast, low-latency network, while the workstation

will communicate (only) with the head compositor via standard

ethernet. The workstation may be a different architecture to the

cluster nodes, which themselves may be a heterogeneous collection.

but irregular patches of black (due to pixels whose lines-

of-sight do not penetrate any of the data volume), RLE

offers a good compromise between compression speed

and compressed image size (i.e. network transfer time).

The only other network traffic sent between the interface

and the rendering tree is limited to a small set of instruc-

tions issued in response to user activity, such as load data

and rotate.

The rendered image is displayed in the main window

of the interface, which is written in Tcl script using the

Tk widgets. Tcl and Tk were chosen for their availabil-

ity on a wide range of systems (such as Unix, Microsoft

Windows, Mac OS X) and also for the ability to use Tcl

scripting to produce movies following calculated ‘flight

paths’, or sequences of volume renderings of one dataset

after another. Tcl is actually quite fast for an interpreted

language and our choice of Tcl does not impact at all on

rendering frame rates.

In the interface, the user can drag the mouse to rotate the

volume, or rather, to move the camera around the volume.

This system of direct volume movement is far more intu-

itive than setting camera angles manually as is required in

Karma’s xray, but calls for frame rates of a few frames per

second to be usable. Our distributed system can meet this

requirement for relatively large volumes (see Section 5).

Our combined system of distributed data VR and the Tcl

user interface is christened dvr, standing for ‘distributed

volume renderer’.

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


306 B. Beeson et al.

Figure 6 Example rendering of a synthetic dataset (left), and the transfer function used (right), showing the combination of a ramp and blank.

The thick blue line indicates the combined effect, with the blank taking precedence over the ramp.

4.2 Perspective and Stereo Rendering

The camera control in the user interface allows the user

to switch on perspective rendering. Perspective is gen-

erally not necessary for middle and distance views, but

becomes essential for nearby views and views from within

the volume itself. The perspective shear-warp projec-

tion (see Figure 1) could more accurately be called the

scaled shear-warp projection, as the only substantial dif-

ference from the parallel shear-warp projection is in the

application of a distance-dependent scale factor during

the shear. In practice, the scaled shear-warp is slower

than the parallel shear-warp because of the additional

resampling of the volume data. However, the scaling

operation produces an intermediate image, whose reso-

lution can be chosen to provide an accurate rendering,

or a faster, coarser rendering. Consequently, when a per-

spective render is selected, our system allows the image

quality to be reduced while the volume or camera is in

motion to provide higher frame rates. When the user stops

manipulating the volume, a higher fidelity image can be

rendered.

With appropriate hardware dvr can produce and display

stereoscopic volume renderings. We use a non-symmetric

camera frustum for off-axis stereoscopic rendering, which

produces coincident projection planes for both eyes6. The

two views are rendered independently by dvr, one after

the other, and the user interface combines the images for

display, either on a 120 Hz frame-sequential stereo sys-

tem with active LCD shutter glasses or a dual display

passive stereo system viewed with Polaroid glasses. We

note that perspective rendering is essential for meaningful

stereoscopic display.

4.3 The Transfer Function

The most important tool provided to the user is the transfer

function editor, which controls the mapping from scalar

voxel values (S) to colour (F , a vector of red, green and

6An introduction to the subtleties of stereographics can be found at

http://astronomy.swin.edu.au/∼pbourke/stereographics/stereorender/

blue colour components) and opacity (αF ):

S(x, y, z) → {F(x, y, z), αF (x, y, z)} (6)

Our implementation of a transfer function editor, as shown

in Figure 6 with a sample rendering, is now described.

Certainly many other schemes are imaginable and could

be implemented to replace the existing one. The X-axis

of the transfer function graph extends over the the scalar

data domain, which for 8-bit data is [0, 255]. A histogram

of the voxel values can be displayed in the background

of the transfer function graph to assist with interpretation

and construction of the function.

To control opacity, or the ‘see-throughness’of the data,

the user is able to select and place various alpha pins in the

top panel of the transfer function editor. In this area, theY-

axis represents opacity in the range [0, 1]. The alpha pins

include: straight lines (‘ramps’) whose slope and position

can be controlled; trapezoidal functions (‘hats’) whose

height, width and edge slope can be controlled and whose

special cases include the tophat and triangle functions;

and blanks whose width and position can be controlled.

Where multiple pins are used and overlap, the maximum

opacity is adopted, except that blanks, which make voxels

totally transparent, have precedence over all other pins.

In Figure 6, the effective opacity function as a result of

combining a ramp and blank is marked in blue.

The coloured bar along the X-axis shows the map-

ping S(x, y, z) → F(x, y, z), which is modified using

colour pins, shown as vertical dashed lines. Each colour

pin defines a colour using red, green and blue values

in the range [0, 255] and colours are linearly interpo-

lated between the pins. The colour pins can be moved,

effectively compressing or extending the gradient between

adjacent pins. Colour pins can also be added or removed

and several popular colourmaps are provided with pre-

configured pin colours and positions. A particularly effec-

tive way to use the colour and alpha pins is to provide

strong colour gradients and moderate opacity over the

‘interesting’ (signal) part of the voxel value domain, with

gradual gradients and low or zero opacities over the

remainder of the domain (typically the noise).

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 307

Figure 7 Example rendering of a synthetic dataset (left) and the transfer function (right) which in this case is a simple trapezoid function.

The thick blue line indicates the nett opacity transfer function.

In Figures 6 and 7, we show the effect of two different

transfer functions on a synthetic dataset. The data volume

is a rectangular prism, with scalar value zero at its centre,

increasing linearly with radius to 255 at the centre of the

faces perpendicular to its longest axis. The transfer func-

tion of Figure 6 comprises a ramp which sets scalar values

of zero to be completely opaque, scalar values of 255 to be

completely transparent and intermediate scalar values to

be partially transparent. In addition, a blank is used which

overrides the ramp and renders scalar values 64 to 128 to

be completely transparent. The resultant volumetric ren-

der shows the highly opaque centre of the volume and

the transparent outer part of the volume. In Figure 7, the

transfer function is a trapezoidal function centred on scalar

value 164, with a narrow top and wide base. This has the

effect that only scalar values in the range 128–200 have

any appreciable opacity and only a shell of the volume

data is visible in the rendering.

5 Performance

We remind the reader that this project was motivated by

a present and perceived future need to render volumetric

datasets larger than typical workstation memories at inter-

active frame rates. We have described a technique which

enables us to break apart the data volume into a num-

ber of smaller pieces which are rendered independently

as overlapping images then composited together to pro-

duce the final view. We now consider the performance of

our system, which can broadly be broken down into the

following areas: single-processor rendering performance,

network transfer (and compositing), and scalability. Since

the controlling interface of dvr is written in Tcl script,

we were able to acquire accurate and repeatable measure-

ments of the performance of dvr by writing and running

a short script to load a particular volume, configure the

viewport and submit frames for rendering.

5.1 Single-Processor Rendering Performance

A single 2 GHz Pentium 4 CPU can render at

∼7 Mvox s−1. This is measured using our rendering core

(i.e. the over operator) applied to a dataset where every

voxel contributes to the output image. A volume such

as this, containing no fully opaque or completely trans-

parent voxels, is suited to performance testing because

the time to render the volume will generally be indepen-

dent of the viewing angle. Practical applications of VR

to noisy astronomy datasets will, however, usually entail

a transfer function which arranges for many fully opaque

or completely transparent voxels, in which case the core

rendering speed may be substantially improved.

5.2 Network Transfer and Compositing

For distributed data rendering, image transfer time may

contribute significantly to the overall rendering time and

will depend on the network structure. For our tests we

used the Swinburne Centre for Astrophysics and Super-

computing facility, which is a Beowulf-class cluster of

Intel architecture machines running Linux. The cluster

network is 1000 Mb s−1 ethernet (‘Gigabit’) and the clus-

ter is connected to the front-end interface machine by

standard 100 Mb s−1 ethernet (‘100 Meg’).

For our relatively fast network, Figure 8 shows that

the application of window-length encoding to inter-

mediate images (Section 3.4) yields unmeasurable image

propagation times (i.e. less than one ms). Without com-

pression, it would take ∼10 ms to send the intermediate

images (500 × 500 pixels) over Gigabit. The window-

length encoding and decoding operations take ∼1 ms

each. Compositing, including the implicit handling of the

window-length encoded images, takes around 10 ms per

input intermediate image with our optimisations. Speeds

are dataset and viewpoint dependent: views within the

volume produce large images which cannot be window

encoded, while images with contiguous colour runs (e.g.

distant views of the volume) are efficiently run-length

encoded.

5.3 Scalability

We can estimate the largest volume that can be rendered

with N processors, given a base voxel rendering rate of

Rvox in voxels per second. Ignoring parallelisation costs

(e.g. the increase in network traffic and in the number

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


308 B. Beeson et al.

compositor

renderers

(remote) workstation

time to render: 0.045 s

time to (WL) encode: <0.001 s

time to send: <0.001 s

time to composite: 0.040 s

time to (RL) encode: <0.001 s

time to send: 0.080 s

time to decode: 0.014 s

total time: ~0.180 s

Figure 8 Breakdown of approximate time accrued in rendering, transferring and compositing a 500 × 500

image and delivering it to the display node. A fast cluster network is assumed, such that the main contributor

to the rendering time is the transfer of the final rendered image to the display node over a standard network

link.

of compositing processes with N), a cubic data volume

of sidelength l can be rendered at a rate of r frames per

second according to:

l3 = Rvox

N

r
(7)

For our measured Rvox ≃ 7 Mvox s−1, a required rate of

five frames per second and 16 rendering processors, we

deduce that a volume of dimensions 280 × 280 × 280 can

be rendered interactively. For a binary tree, a total of

31 processors would be required (16 renderers and 15

compositors) and we point out that this could easily be

accommodated on the relatively commonplace 16-node

dual processor cluster. Even with our distributed system,

a Gvox volume (i.e. 1024 × 1024 × 1024 voxels) is still

expected to require approximately 150 rendering proces-

sors to produce frames at the rate of one per second.

However, real-life frame rates are likely to be much better

than this because often only a small fraction of voxels are

unblanked and contribute to the VR transfer function.

To verify the scalability of our system, we generated

cubic data volumes between 643 and 10243 in size and

rendered them using between 3 and 31 nodes. The data

volumes were filled with random data, a flat transfer func-

tion was applied, and a camera path was selected so that the

rendered image completely filled the 512 × 512 pixel out-

put image for all viewing angles. These conditions ensure

consistent worst case performance because all voxels must

be rendered and no encoding or compositing savings are

possible.Table 1 shows the resultant frame rendering times

averaged over ten frames, as well as an indication of the

parallel efficiency as a function of volume size. Parallel

efficiency measures the rendering performance per node

Table 1. Measured total rendering time in seconds and par-

allel efficiency for fully-sampled, cubic volumes on the Swin-

burne facility

The rendering tree is a binary tree in all cases (e.g. 7 nodes

comprises one head compositor, two compositors and four

renderers)

Volume size Number of nodes Parallel efficiency

3 7 15 31
for 31 c.f. 3 nodes (%)

643 0.20 0.18 0.28 0.41 5

1283 0.46 0.32 0.30 0.40 11

2563 2.8 1.5 0.81 0.56 48

5123 21 11 5.54 3.9 52

10243 290 85 43 21 134

for the 31-node case as a percentage of that for the 3-

node case. Table 1 shows that for small volumes, parallel

rendering is very inefficient and not worthwhile, but for

volumes upwards of 2563 voxels parallel rendering offers

an excellent performance gain with efficiencies of ∼50%.

For a binary rendering tree, the maximum parallel effi-

ciency is ∼75% (rather than 100%) because for small

trees two-thirds of the nodes are rendering nodes while

for large trees only half of the available nodes will be

rendering with the remainder attending to the generally

less demanding task of compositing. The 10243 volume

shows an unusually high efficiency simply because there is

insufficient memory in the small rendering tree configura-

tions to keep even the sub-divided volume data in physical

memory and so the low-node configurations suffer from

expensive swapping to disk.

In Table 2 we briefly show the effect of rendered

image size on rendering rate. Internal timings showed

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 309

Table 2. Time (in seconds) to render output

frames of different sizes for an input volume of

1283 rendered with a binary tree spanning seven

nodes

Rendered image size Frame rendering time (s)

100 × 100 0.32

256 × 256 0.36

512 × 512 0.44

the rendering time itself to be steady at ∼0.25 s per

frame, independent of the rendered image size. The gains

for smaller images therefore arise almost exclusively

from the encoding and compositing optimisations already

discussed.

Finally we tested the ability of our system to han-

dle a very large volume. We generated a filled volume

of dimensions 2048 × 2048 × 2048 and rendered it using

a tree comprising one head compositor and 32 rendering

nodes. Rendering the same camera path as for the above

tests, ensuring that the 512 × 512 output image was fully

sampled, yielded an average frame rendering time of 85 s.

While this is not an interactive frame rate, it lies within a

factor of two of our predicted rendering rate (Equation 7)

and to our knowledge is the largest dataset volumetrically

rendered by an otherwise interactive system. This chal-

lenging rendering task consumed >800 MB of memory

on each of the 32 nodes.

5.4 External Comparisons

Here we compare our distributed data volume rendering

rate with recent results from the high performance com-

puting scene. Snavely, Johnson, & Genetti (1999) present

timings for the SampleRay rendering code (based on

MPIRE7) running on two different supercomputer archi-

tectures, the Cray T3E and the Tera MTA. They rendered

a 2563 sub-volume of the Visible Male dataset, from the

Visible Human Project8, using between one and sixteen

processors of a shared memory system rather than a clus-

ter. They rendered to output images 400 × 400 pixels in

size. In Figure 9 we plot their timings against our most sim-

ilar tests from Table 1, i.e. a filled 2563 volume rendered

to fill a 512 × 512 pixel output image. The comparison is

extremely favourable to our system, despite the fact that

tests on our system were deliberately configured to give

worst-case values, and the obvious advantage of their

shared memory system for extremely low latency inter-

process communication,

The TeraVoxel project at the California Institute of

Technology9 has as its goal the capture and visualisa-

tion of fluid volumes at up to 10243 volume elements

per second. Using specialised volume rendering hardware

7MPIRE (Massively Parallel Interactive Rendering Environment) is

a distributed VR system available on Cray and SGI platforms with

specialised hardware; http://mpire.sdsc.edu.
8http://www.nim.nih.gov/research/visible/visible_human.html
9http://www.cacr.celtech.edu/projects/teravoxel/

0.1

1

10

100

0 10 20 30 40

SampleRay (Cray T3E)

SampleRay (Tera MTA)

dvr (Pentium4 cluster)

Number of processors

R
e
n
d
e
ri
n
g
 t
im

e
 (

s
)

Figure 9 Rendering time comparison between the SampleRay

renderer running on Cray T3E and Tera MTA systems and our

dvr renderer running on a cluster of Pentium 4 workstations. The

SampleRay timings are from Snavely et al. (1999) for a 2563 cutout

of the Visible Male dataset (The Visible Human Project) rendered

into a 400 × 400 output image; the dvr timings are taken from

Table 1 for rendering a filled 2563 volume into a 512 × 512 output

image.

(eight VolumePro 500 systems built by TeraRecon inter-

connected with HP-Compaq’s Sepia for hardware-based

compositing), they have successfully rendered a 5123 data

volume at 24 frames per second which is more than 100

times faster than our worst-case measurements for a 7-

node rendering tree! This leaves no doubt about the merits

of specialised hardware over general clusters for this kind

of work, but other than being fiendishly expensive and sin-

gular in purpose, this hardware system, like most volume

rendering systems that we know of including SampleRay,

is not a distributed data system as all nodes must store

the entire dataset in memory. In practice, today’s research

groups seem considerably more likely to have access to

Beowulf clusters than to facilities like the TeraVoxel sys-

tem, and so software implementations of VR such as ours

which run on commodity hardware should remain useful

for at least a few years.

6 Applications

The potential applications of dvr are many and varied.

Here we give three examples drawn from theoretical and

observational astronomy. In addition to these examples,

dvr has also been used to render multidimensional pulsar

search and timing data collected at the Parkes 64 m radio-

telescope and magnetic resonance images of the human

brain. Any volumetric data can be visualised with dvr

once it is converted to the appropriate, simple input format.

6.1 Spectral Line Data Cubes

The work described in this paper was motivated by

the need to visualise spectroscopic data acquired using

the Multibeam facility at the CSIRO’s Parkes radiotele-

scope. However, it might equally have been prompted

by the need to display spectral line data from synthesis

radiotelescopes such as the Australia Telescope Compact

Array, or from integral field unit multi-object spectro-

graphs which are becoming commonplace on the world’s

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


310 B. Beeson et al.

major optical telescopes. In each case, an intermediate

product of the data reduction process is the spectral line

data cube, a 3-dimensional volume of data whose axes are

(normally) latitude and longitude on the sky and one of

frequency, wavelength or derived radial velocity. Spectral

line data cubes typically comprise 107–109 voxels and so

lend themselves well to distributed data volume rendering.

As an example, we present in Figure 10 a new volume

rendering of a deep neutral Hydrogen (Hi) emission image

of the Fornax cluster of galaxies. The 1482 × 380 voxel

data set has been kindly provided to us by M. Waugh in

advance of its publication. We show only one projection of

the data but with different transfer functions to highlight

different components of the data. In Figure 10, galaxies

appear as ‘blobs’ extending diagonally bottom-left to top-

right which corresponds to the frequency or line-of-sight

velocity axis of the data cube. The feature extending all the

way along this axis is the radio continuum source FornaxA

which induces baseline ripple in spectra taken in its vicin-

ity. The two angular coordinates on the sky lie at right

angles to this axis, i.e. diagonally bottom-right to top-left

and into the page.

Hi emission images of galaxy clusters such as Fornax

are extremely sparse. That is, the overwhelming major-

ity of the voxels in the data cube are noise and only a

Figure 10 Volume renderings of the deep Hi Fornax galaxy cluster cube showing the capacity of different transfer functions to emphasize

different features. Top-left: simple ramp-function which applies close to zero opacity to the noise and complete opacity to the highest values

reveals most of the spectral line sources in the data plus the strong continuum source Fornax A. Top-right: a top-hat of moderate opacity placed

over strong negative values brings out the negative values present in the baseline ripple induced by Fornax A. Bottom-left: a top-hat of very

low opacity placed over the noise illuminates the entire data volume and is complemented by a top-hat of very high opacity placed over only

the highest voxel values, revealing the neutral hydrogen bright members of the cluster. Bottom-right: two top-hats, but with reduced opacity in

the noise regime and a wider top-hat covering the source emission regime; the colourmap has also been modified.

tiny fraction of the volume data contains astronomically

interesting values. This is in stark contrast to Hi emis-

sion images of our own Galaxy, its satellite Magellanic

Clouds and its population of discrete, high velocity clouds

which can be found over most of the sky. Images of these

features can be beautiful, but very complicated and diffi-

cult to interpret without advanced visualisation software.

In Figure 11, we present a volume rendering of an Hi emis-

sion image of the galaxy NGC 3109, including Galactic

and high velocity gas. The data were taken from Barnes

& de Blok (2001) and the complex nature of the field is

immediately evident in the volume rendering.

6.2 N-Body Cosmology

Traditionally, N-body data is visualised by individually

projecting the N points to the 2-dimensional plane of the

screen and colouring the points according to some prop-

erty other than position, for example, mass or line-of-sight

velocity. In such displays, foreground particles generally

obscure background particles and integrated line-of-sight

quantities are not easily assessed. To display the true

volumetric nature of N-body realisations, a VR system

such as dvr is needed. To this end, we obtained a sin-

gle time-step realisation of the Universe generated by

the multi-level adaptive particle mesh (MLAPM; Knebe,

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 311

Green, & Binney 2001), comprising some two million par-

ticles, each tagged with a measure of the local density.

We gridded the sampled densities into a 2563 volume and

submitted the data to dvr for rendering. A script was used

to control the camera movement and the resultant movie

(composited from 130 frames) is available in QuickTime

NGC 3109 (403 km/s)High velocity gas (~200 km/s)

Galactic gas (~0 km/s)

Figure 11 Perspective volume rendering of an Hi emission image

of the galaxy NGC 3109, Galactic gas and the intervening (in

velocity space) high velocity gas.

Figure 12 Four views of a single time-step realisation of the Universe generated by the MLAPM code (Knebe et al. 2001). Two million

samples of the matter density in the Universe were smoothed into a 2563 volume and rendered using dvr.

format from http://www.aus-vo.org/software.html. Four

frames from the animation are shown in Figure 12.

The application of VR, and specifically of dvr, to

cosmological studies presents interesting possibilities for

future work. For example, the periodic boundary condi-

tions which constrain most N-body simulations allow the

data to be translated within the bounding box of the sim-

ulation and wrapped from one edge to the opposite edge,

to provide a different but equally valid realisation. With

some careful thought, the shear-warp algorithm may lend

itself to a modification whereby the shear is replaced with a

shear-and-wrap (thence the ‘shear-wrap-warp’algorithm),

such that in addition to controlling the view direction, the

user is able to choose different translations of the simu-

lation realisation within a VR environment. One possible

implementation of this scheme within a distributed data

system like dvr would be to divide the data only along the

axis nearest the view direction such that each node has a

set of data spanning two axes of the volume.

6.3 N-Body Galaxy Formation and Evolution

As a second example of using VR to visualise the results

of N-body simulations, we present the final time step

in an interaction between the Milky Way galaxy and a

satellite galaxy. A parallel tree smoothed particle hydro-

dynamic code (Kawata 1999) was used to simulate a

point-source satellite galaxy inducing a high-latitude warp

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


312 B. Beeson et al.

Figure 13 Four views of the final time-step of a simulation of the perturbation of the Milky Way disk by an intruder dwarf galaxy, generated

by a smoothed particle hydrodynamic code (Kawata, Thom, & Gibson, in prep.). 100 000 particles were smoothed into a 1283 volume and

rendered using dvr.

in the disk of the Milky Way galaxy (Kawata et al. 2003,

in prep.). The simulation included 200 000 halo parti-

cles, 80 000 disk particles and 20 000 bulge particles. The

bulge and disk particles were gridded into a 1283 vol-

ume which was rendered using dvr. A 130-frame movie

is available in QuickTime format from http://www.aus-

vo.org/software.html and four frames from the animation

are shown in Figure 13.

7 Conclusion

We have described the extension of the shear-warp VR

algorithm with perspective to a distributed data volume

rendering system. Sub-volumes of the data are distributed

to rendering nodes which produce intermediate images for

compositing. Rendering and compositing uses the asso-

ciative over operator to yield a valid final image. Our

software, dvr, performs exceedingly well compared to

other state-of-the-art systems, including shared memory

supercomputers, and we have reported the first successful

volumetric rendering of an 8 Gvox volume with non-

specialised hardware. dvr is available for download from

the software section of the Australian Virtual Observatory

website, http://www.aus-vo.org.

Acknowledgments

We acknowledge the Victorian Partnership for Advanced

Computing for supporting this project through a 2002

Expertise Grant. We express our gratitude to Juergen

P. Schulze for sharing his rendering core with us and allow-

ing us to redistribute it. We also thank P. Lacroute and

M. Levoy for kindly giving us permission to reproduce

Figures 1 and 2 from Lacroute & Levoy (1994) and

D. Kawata and A. Knebe for allowing us to use their new

N-body simulations as example data sets. Finally we thank

the referee for valuable comments on the manuscript and

for pointing out the possible use of boundary conditions

in simulation realisations.

References

Barnes, D. G. et al. 2001, MNRAS, 322, 486

Barnes, D. G. & de Blok, W. J. G. 2001, AJ, 122, 825

Blinn, J. 1994, IEEE Computer Graphics and Applications, Septem-

ber 1994, 83

Calabretta, M. R. & Greisen, E. W. 2002, A&A, 375, 1077

Drebin, R. A., Carpenter, L. & Hanrahan, P. 1988, Computer

Graphics, 22, 65

Gooch, R. E. 1995, in Astronomical Data Analysis Software and

Systems V, ASP Conf. Series vol. 101, eds. G. H. Jacoby &

J. Barnes, (San Francisco: ASP), 80

Halsey, R. & Chapanis, A. 1951, J. Optical Soc. of America, 41,

1057.

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039


A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 313

Kawata, D. 1999, PASJ, 51, 931

Kawata, D. 2003, in preparation

Knebe, A., Green, A. & Binney, J. 2001, MNRAS, 325, 845

Lacroute, P. & Levoy, M. 1994, in SIGGRAPH ’94: Conference

Proceedings, ed. S. Cunningham, (New York: ACM), 451

Oosterloo, T. 1995, PASA, 12, 215

Ortiz, P. F. 2003, http://barbara.star.le.ac.uk/datoz-bin/datoz2k

Porter, T. & Duff, T. 1984, in SIGGRAPH ’84: Conference Proceed-

ings, ed. H. Christiansen, (New York: ACM), 253

Schulze, J. P. & Lang, U. 2002, in Proceedings of the Fourth Euro-

graphics Workshop on Parallel Graphics and Visualization, eds.

D. Bartz, X. Pueyo & E. Reinhard, (Aire-la-Ville: Eurographics

Organization), 61

Snavely, A., Johnson, G. & Genetti, J. 1999, in Proceedings of

the High Performance Computing Symposium — HPC ’99, ed.

A. Tentner, (SCS), 59

Sterling, T. L., Savarese, D. F., Becker, D. J., Dorband, J. E.,

Ranawake, U.A. & Packer, C.V. 1995, in Proceedings of the 1995

International Conference on Parallel Processing, ed. P. Banerjee,

(Boca Raton: CRC Press), I:11

Stoughton, C. et al. 2002, AJ, 123, 485

York, D. G. et al. 2000, AJ, 120, 1579

https://doi.org/10.1071/AS03039 Published online by Cambridge University Press

https://doi.org/10.1071/AS03039

