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1. Introduction. The notation in this paper will be standard and it may be found in
[2] or [8]. Throughout the paper, the notation Ac' B will mean that A is an essential
submodule of the module B. Given an arbitrary ring R and R -modules M and N, we say
that M is weakly AMnjective if and only if every map (p:N^> E{M) from N into the
injective hull £(M) of M may be written as a composition o°q>, where <p:N—»M and
o:M—>E(M) is a monomorphism. This is equivalent to saying that for every map
q>:N—>E(M), there exists a submodule X of E(M), isomorphic to M, such that (p(N) is
contained in A'. In particular, M is weakly R-injective if and only if, for every x e E(M),
there exists X c E(M) such that x e X = M. We say that M is weakly-injective if and only
if it is weakly AMnjective for every finitely generated module N. Clearly, M is
weakly-injective if and only if, for every finitely generated submodule N of E(M), there
exists X c E(M) such that NczX = M.

Any weakly AMnjective module M satisfies the closely related property that, for
every submodule K of N, if N/K embeds in E(M) then N/K embeds in M. Following
[10], we refer to any such module as being N-tight. If M is AMight for every finitely
generated module N, we say that M is tight.

Weakly-injective (tight) modules are closed under finite sums and under essential
extensions. However, they remarkably fail to be closed under direct summands [11]. A
natural question would be to ask for what rings is it true that summands of
weakly-injective (tight) modules are weakly-injective (tight). We show that these rings are
precisely the weakly-semisimple rings. Following [11], a ring R such that every right
/?-module is weakly-injective will be referred to as a right weakly-semisimple ring. It is
not hard to see, following the arguments in [10] and [11], that a ring R is
weakly-semisimple if and only if every right R-module is tight. Weakly-semisimple rings
are right Ql-rings. That is, if R is a weakly-semisimple ring then every quasi-injective
right /?-module is injective (see [3], [4], [5], [8], [9] for background on right Ql-rings). If
R is hereditary and noetherian then R is a right weakly-semisimple ring if and only if it is
a right Ql-ring [11].

The opposite extreme to weakly-semisimple rings consists of those rings over which
the only weakly-injective modules are the trivial ones (i.e. the injective modules). We
show that this happens if and only if the ring is semisimple artinian.

A ring R is said to be a right q.f.d. ring if and only if every cyclic right 7?-module has
finite Goldie dimension. This is equivalent to the requirement for every cyclic right
/?-module to have finitely generated (possibly zero) socle [12]. Examples of right q.f.d.
rings include rings with right Krull dimension. In particular, right noetherian rings are
also right q.f.d. rings. R is a right q.f.d. ring if and only if every finitely generated right
ft-module has finite Goldie dimension [6]. It is easy to see that if R is a right q.f.d. ring
then every right R-module contains, as an essential submodule, a direct sum of uniform
submodules. Right q.f.d. rings have also been studied in [1], and in [13]. Arbitrary sums
of (weakly-)injective right modules over a ring R are weakly-injective if and only if R is a
right q.f.d. ring [1].
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A ring R is said to be right semi-artinian if every (cyclic) right module has non-zero
(and thus essential) socle (see [7], for example). Right semi-artinian rings are called right
socular in [8].

2. Direct summands of weakly-injective modules.

PROPOSITION 2.1. Every completely reducible module over an arbitrary ring R is a
direct summand of a weakly-injective R-module.

Proof. Let M be a completely reducible right R-module. Let us write M = 0[S,] ,
iel

where [5,] represents the homogeneous component of M corresponding to the simple
submodule 5, c M. It follows that, for every i e I, there exists a cardinal N, such that
[5,] = 5jK(). Let X be an infinite cardinal greater than both the cardinality of R and the
number of summands of M. In particular, for every iel, K>K,. Notice that for every
finitely generated right R -module N, if 0 Ua is an internal direct sum of nonzero

aer

submodules of N then the cardinality of T is less than X. Let V = M © E(iW(N)). We claim
that V is weakly-injective. Notice, first of all, that E{V) = £(M(N)) and SocK =
Soc£(K)s0[5 , ] ( K ) s0(5f ' ) ) ( N ) = 0 S r ) . Let N be a finitely generated submodule of

16/ 16/ 16/

E(V). Then the number of simple summands in any decomposition of Soc N is less than
X. Let us say that SocN = 0[[5,]], where [[5,]] denotes the (possibly zero) homogeneous

iel

component of SocN corresponding to 5,. Since, for every iel, the number of simple
summands in [[£,]] is less than X, we conclude that the homogeneous component of
Soc£(K) corresponding to 5, equals [[S,]]©K, for some K, s= (S,)(K). Hence, we get
Soc V = Soc N © T for some T = SocV. Therefore, £(Soc V) = E{V) = E(N) ® E(T),
and E(T) = E(V). Let Y be a submodule of E(T) isomorphic to V and define
X = E(N) © Y. Then

X = E(N) © M © E(M(K)) = M © E(N © M(N)) = M © £(Soc Â  © (Soc M)(N))

= M © £ ( 0 [[S^] © 0 (5,)(K)) = M © £ ( 0 (5,)(N)) = M © E(M^) = V.
\iel iel I \iel I

Since N c X, this concludes our proof.

COROLLARY 2.2. Over a right semi-artinian ring R, every right R-module is a
summand of a weakly-injective right module.

Proof. This follows from the previous proposition since weak-injectivity is preserved
by essential extensions.

PROPOSITION 2.3. Over arbitrary rings, every module is a summand of a tight module.
If R is a right q.f.d. ring, every right R-module is a summand of a weakly-injective right
module.

Proof. Let M be a right module over the right q.f.d. ring R and let X be any infinite
cardinal. Consider the module N = M © £(M(N)). Since E(N) is isomorphic to a
submodule of N, N is tight. In light of Theorem 3.1 ahead, if R is a right q.f.d. ring then
N is weakly-injective.
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THEOREM 2.4. Let R be a ring. Then
(1) direct summands of weakly-injective (tight) right R-modules are weakly-injective

(tight) if and only if R is a right weakly-semisimple ring, and
(2) every weakly-injective (tight) right module is injective if and only if R is

semisimple-artinian.

Proof. If weakly-injective (tight) right R -modules were closed under direct sum-
mands, Proposition 2.1 implies that every completely reducible right R-module would be
weakly-injective (tight) and thus injective. This implies that R is right noetherian (see [8]
or [12]). Then, by Proposition 2.3 and the hypothesis, R is right weakly-semisimple. One
can argue in the same way to prove that if every weakly-injective module is injective then
every right /?-module is injective and hence R is semisimple artinian.

3. Weak-injectivity versus tightness.

THEOREM 3.1. Let R be a right q.f.d. ring. Then every tight right R-module is
weakly -injective.

Proof. Let M be a tight right /?-module over the right q.f.d. ring R. Let N be a
finitely generated submodule of E(M). Since R is a right q.f.d. ring, N contains as an
essential submodule a finite direct sum 0 £/, of uniform submodules. By the tightness of

M, there exists an embedding q?:N—>M. Let K be a complement of (p(N) in M, and let
0 Uj be a direct sum of uniform submodules of M which is essential in K. For
jeli

convenience, assume /, n I2 = 0 and set / = /, U /2. Then E(M) = E(cp(N)) © E(K)
contains as an essential submodule the sum

0 EMU,)) © 0 E(Uj) = 0 £(£/,).
iel, jel2 iel

Now, since R is a right q.f.d. ring, this sum is weakly-injective (by [1]) and therefore there
exists an embedding \p : 0 E(Uj)^> E(M) such that N cffiil i(£(m). Since N is finitely

iel iel

generated, / V c 0 !/;(£(£/,)) for some finite subset / c / . Then E(N) is a summand of
ieJ

0 ip(E(Uj)). Using the Krull-Schmidt theorem, we may then, without losing generality,
ieJ

assume that N c ' 0 •(/;(£;((/,)). It follows that |/i| = |/| and, by the Azumaya-Krull-
ieJ

Schmidt theorem, that there exists an isomorphism p : 0 £(£/,)—>0 xp(E(Uj)). This

isomorphism p extends to another isomorphism p:£(/C)-»£(®ip(£((/ ; )) . The iso-
morphism (p:N—xp(N) extends in turn to an isomorphism <

ieJ
0 E(Ui) = E(y(N)). Let M, = MnE(<p(N)). Then <p(N)c'Mx<z'E(cp(N)). It follows
16/,

that •n = y-i(Bp:M](BK-+ E(M) is an embedding satisfying that N o ) ( M , ® K). Since
Mi © Kc' M, there is an extension f\ :M—>E(M) of r\ such that N t= f](M). Therefore M
is weakly-injective, as claimed.
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The following theorem comes close to being a converse for Theorem 3.1.

THEOREM 3.2. Let R be a ring such that every tight right R-module is weakly -
injective. Then for every cyclic right R-module M, the homogeneous components ofSocM
are finitely generated.

Proof. Suppose N is cyclic and Soc N contains an infinitely generated homogeneous
component [5] = 5(N), where X is some infinite cardinal and 5 is a simple submodule of N.
Let K be a complement of [S] in N. Then N/K is a cyclic module with infinitely
generated homogeneous and essential socle. So, without loss of generality, let us assume
that SocNc'N and SociV = S(N) for some simple submodule ScN and an infinite
cardinal X. It follows that M = 5(N) © £(S(N)) is tight since E(M) = {0} © £(S(N)) c M.
However, S(K) c ' N and the embedding of 5 ( x ) as an essential submodule of E(M) extends
to an embedding q> of N in E{M). If there existed a submodule X <= E(M) such that
q)(N)cX = M, by the modular law, cp(N) would have a summand isomorphic to 5(K).
However this is impossible since (p(N) is cyclic. Therefore M is tight but not
weakly-injective, concluding our proof.

The proof of the above theorem suggests how one can create an example of a tight
module which is not weakly-injective.

EXAMPLE 3.3. Let R be the ring of endomorphisms of an infinite dimensional vector
space V over a division ring D. Then there exists a tight R-module M which is not
weakly -injective.

Proof. The socle of R is essential in R and it consists of a direct sum of X pairwise
isomorphic minimal right ideals, where X = dimo V. So, it follows as in the proof of
Theorem 3.2 that if S is a minimal right ideal of R, the module M = 5(N) © £(S(N)) =
Soc R ffi R is tight but not weakly-injective.
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