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Abstract

Population-based structural health monitoring (PBSHM) provides a means of accounting for inter-turbine correl-
ations when solving the problem of wind farm anomaly detection. Across a wind farm, where a group of structures
(turbines) is placed in close vicinity to each other, the environmental conditions and, thus, structural behavior vary in a
spatiotemporal manner. Spatiotemporal trends are often overlooked in the existing data-based wind farm anomaly
detection methods, because most current methods are designed for individual structures, that is, detecting anomalous
behavior of a turbine based on the past behavior of the same turbine. In contrast, the idea of PBSHM involves sharing
data across a population of structures and capturing the interactions between structures. This paper proposes a
population-based anomaly detection method, specifically for a localized population of structures, which accounts for
the spatiotemporal correlations in structural behavior. A case study from an offshore wind farm is given to
demonstrate the potential of the proposed method as a wind farm performance indicator. It is concluded that the
method has the potential to indicate operational anomalies caused by a range of factors across a wind farm. The
method may also be useful for other tasks such as wind power and turbine load modeling.

Impact Statement

In light of the rapid growth of the offshore wind sector, monitoring strategies for wind farms becomes more
crucial than ever. This paper introduces a mapping method for anomaly detection across a wind farm, which is
premised on the idea of population-based structural healthmonitoring. Thewake effect across awind farm results
in spatiotemporal correlations between turbine behaviours, which are captured by the mapping method. A case
study is included to demonstrate the method’s ability to detect performance anomalies arising from various
causes. The method may also be adapted in future to tasks such as power maximisation and load reduction for
wind farms.

1. Introduction

Population-based structural health monitoring (PBSHM) allows the health monitoring of a structure to
be improved or enabled by using data from other structures within the same population (Worden et al.,
2015; Bull et al., 2020; Gardner and Worden, 2020; Gosliga et al., 2020a,b; Lin et al., 2020b; Worden,
2020; Wickramarachchi et al., 2021). A wind farm demonstrates a localized homogeneous population,
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where a population of nominally identical structures is located in close vicinity to each other, allowing
them to share the same environment. According to thewake effect, spatiotemporal correlations exist in the
environmental and operational conditions across a wind farm, which in turn affect turbine behavior. Such
spatiotemporal variations may cause some turbines to be more prone to damage than others in the same
farm; for example, a turbine subject to more turbulence fluctuations may be more severely affected by
fatigue loading. However, the majority of existing methods for wind farm anomaly detection adopt a
single-structure approach, which detects future anomalies based on the past behavior of the same turbine,
without considering the interactions between turbines. This paper addresses this limitation by proposing a
population-based anomaly detection method that accounts for the spatiotemporal variations across a
wind farm.

Anomaly detection using wind turbine supervisory control and data acquisition (SCADA) data has
been investigated over the last decade for the purposes of both wind integration studies and predictive
maintenance. The former studies the effect of integrating wind power into existing electrical systems,
where anomaly detection techniques are used to remove abnormal wind power data in order to obtain an
accurate overview of the statistical properties of real turbine production (Dowds et al., 2015). The latter is
a proactive, cost-effective maintenance strategy that predicts when maintenance should be performed,
based on a data-driven assessment of turbine conditions. In this context, anomaly detection techniques are
used to detect turbine performance anomalies, especially as early signs of failure (Tautz-Weinert and
Watson, 2016). This concept of anomaly detection in predictive maintenance coincides with that of
damage detection in structural health monitoring (SHM), where, in SHM, the type of anomalies to be
detected refers to structural damage that potentially leads to failure (Farrar and Worden, 2013). None-
theless, the methodologies and approaches are the same across various application domains (Chandola
et al., 2009). This paper, therefore, aims to develop a novel method of anomaly detection in the field of
SHM, specifically in the subdivision of PBSHM, which is applicable to detecting performance anomalies
across a wind farm.

In the context of SHM, the spatial and temporal variations caused by the wake effect are referred to as
environmental and operational variations (EOVs), which are confounding factors that influence both the
damage-sensitive features and structural responses in a causal relationship (Farrar and Worden, 2013).
The existing data-based approaches to detecting anomalies disguised in EOV are classified into two
categories. The first category removes the confounding influence from the data using methods such as
projection and cointegration, whereas the second category models the structure in the data, for example,
capturing the relationship between EOVs and structural response (Cross, 2012; Farrar andWorden, 2013).
This paper focuses on the second approach—EOV modeling—in order to exploit the EOV data that are
available in the SCADA system. However, the existing methods are not directly applicable to the current
problem, as they adopt a single-structure approach. Hence, the authors propose a method with an
additional spatial dimension (Lin et al., 2020a,b) to the existing EOV modeling methods, which focus
mainly on temporal changes in EOV and structural response. This proposed method addresses EOV
modeling in PBSHM, especially for anomaly (damage) detection in a spatiotemporal setting.

Power-curve monitoring is a method of wind farm performance indication that, like EOV modeling,
models the correlation between the environment (wind speed) and performance (power). Previous studies
have developed power-curve monitoring as a technique in both PBSHM (Papatheou et al., 2015; Bull
et al., 2020) and SHM (Rogers et al., 2020). A power curve describes the dependency of power generated
by a wind turbine upon ambient wind speed. Theoretically, turbines with the same design and config-
uration should show a similar shape of the power curve. It is assumed that a power curve significantly
distorted from the normal shape indicates anomalous turbine performance. The power-curve methods
model the temporal variations of power in relation to wind speed, while accounting for the spatial
variations as part of the population variance, which also consists of manufacturing tolerances and varying
operational settings (Papatheou et al., 2015; Bull et al., 2020). To exploit the availability of EOV
measurements, a new approach is to model the spatial and temporal correlations within a population,
which is the focus of this paper.
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There are studies of SCADA-based anomaly detection that address the farmwise spatiotemporal
correlations, but only in a limited number of cases—using multilevel statistical analysis (Gonzalez et al.,
2018) or a pattern recognition algorithm called symbolic dynamics filtering (Yang et al., 2018). However,
none of these approaches model the functional relationship between environmental variables and turbine
performance. Therefore, this paper brings the idea of EOV modeling into SCADA-based anomaly
detection, with a particular focus on the spatiotemporal correlations in data.

As previouslymentioned, the proposedmethod is not limited to being a performance indicator for wind
farms. Since most anomaly detection methods can be used across various application domains (Chandola
et al., 2009), the proposed method, too, has the potential to be used for damage detection if a damage-
sensitive feature, such as natural frequencies, is used. The only prerequisite for the proposed method is to
assume spatial and temporal correlations across a population of structures.

The layout of this paper is as follows. Section 1.1 provides an overview of the existing physics-based
methods that model the spatiotemporal variations inside a wind farm and outlines the difference between
the proposed method and the physics-based models. Section 2 defines the mapping method proposed in
this paper, with detailed descriptions of the algorithm used, the functional relationships captured, the
discrepancy measures, and the detection thresholds. A case study is given in Section 3, demonstrating the
model’s capability as awind farm performance indicator. Section 4 discusses the limitations of themethod
and potential improvements, and Section 5 provides concluding remarks for the paper.

1.1. Related work

Physics-based models, which simulate the spatiotemporal variations across turbine arrays caused by the
wake effect, have been developed for decades. Models of this type are referred to as wake models. The
existing wake models can be subdivided into two main categories: analytical and numerical. Analytical
wake models generally aim to compute only the relative drop in wind speed or power of a downstream
turbine with regard to its upstream neighbor, whereas wake models employing computational fluid
dynamics (CFD) provide an estimate of the entire vector field of flow velocity across awind farm, together
with estimates of other quantities, such as pressure or temperature, by numerically solving the Navier–
Stokes equations (Archer et al., 2018).

Wake effect within wind farms, in short, describes the phenomena that involve reducedwind speed and
more intensified turbulence after the wind passes through a turbine rotor. The physics behind such
phenomena includes how the wind drives the motion in a turbine rotor and, subsequently, the rotation in a
gearbox and/or generator. This process is dependent on factors such as atmospheric properties (e.g., air
density), wind flow characteristics (e.g., wind speed), turbine design specifications (e.g., blade aero-
dynamics and drivetrain losses), and control settings (e.g., blade angle of attack). The effect of thewind on
the turbine, in turn, results in disruption to the wind flow, forming a wake behind the rotor, which is
composed of slower and more turbulent wind. The flow field immediately downstream of the turbine is
also significantly influenced by the interaction between the rotor and tower/nacelle, with those phenom-
ena yet to be fully understood (OBrien et al., 2017). Further downstream, the wake expands, meanders
(having a fluctuatingwake trajectory at any time instance), and finally dissipates. Apart from the operating
conditions of its parent turbine, the wake progression is also affected by the ambient environment and the
existence of other wakes (OBrien et al., 2017; Archer et al., 2018). The level of complexity involved in
the creation and progression of a single wake is already very difficult to model physically, not to mention
the combined effect of multiple wakes in a wind farm. Hence, existing physics-based models are often
designed by confining the scope of the problem to fit specific applications.

One of the most important applications of wake models is in the optimization of wind farm layout. The
task is to find a farm layout that yields the best overall power production out of all potential candidates
while considering technological, economic, environmental, ecological, esthetic, and social constraints.
The standard approach to this task includes the assessment of all candidate layouts, which would only be
practical using computationally inexpensive analytical models. However, model accuracy tends to
deteriorate once turbine layouts and/or environmental conditions differ from the benchmark scenarios.
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The major types of analytical wake models were evaluated for operational wind farms of a range of sizes,
terrains, and layouts in a review given by Archer et al. (2018).

Given the trend toward increased turbine sizes to meet the higher demand for wind energy, a second
important application of wakemodels is the improvement of blade design. A larger turbine requires blades
that are longer and yet more lightweight. Such new blade designs, however, can be prone to aeroelastic
deformation, which inevitably complicates the structure of a turbine wake, especially under the combined
effect of individual blade control and rotor–tower interaction (OBrien et al., 2017). CFD-based wake
models are the only options with the potential to provide sufficient accuracy. Not surprisingly, the
extremely large computational resources required by CFD-based models make them infeasible for most
industrial implementations, and even some research cases. Because of cost limitations, such numerical
models are only available for the simplest environmental and operational conditions. According to a
review by O’Brien et al. (2017), the development of advanced 3D numerical approaches to wake
modeling is still “in its infancy,” with enormous potential as well as formidable challenges ahead.

Since the aforementionedwakemodels aremainly created for design purposes, thesemodels need to be
adapted or repurposed for application to SHM, that is, to create a model that can assess current structural
conditions based on monitoring data. Assuming that it is possible to repurpose the models, difficulties
may arise from high computational burden (if using CFD-based models) or from poor accuracy
(if analytical models are chosen), especially in scenarios when turbulence is playing a bigger role. For
these reasons, a data-based model, such as the one used in the mapping method, is more likely to produce
predictions that supply the accuracy required for monitoring purposes at a relatively lower cost. A data-
based framework also allows for more flexible choices of features, so that damage-sensitive features can
be used in place of power. As far as the authors are aware, the mapping method described in this paper
marks the first venture in the field of SHM to create a data-basedmodel for the spatiotemporal correlations
resulting from the wake effect in wind farms.

2. The Mapping Method: A Spatiotemporal Anomaly Detection Method

The current work proposes a method that maps the spatiotemporal variations in EOVs onto an EOV-
affected feature; thus, the proposed method is given the namemapping method.A key assumption is that
the spatiotemporal pattern in the chosen feature will be maintained unless performance anomalies
(including damage) occur. The method consists of two steps. First, a data-based model is trained to
capture the normal spatiotemporal pattern, which is then used to predict the normal turbine behavior
during a test period. Second, the discrepancy between the test predictions andmeasurements is quantified,
and anomalies are detected when the discrepancy value is above a preset threshold.

2.1. A model based on Gaussian process regression

To model the normal spatiotemporal pattern across a wind farm, a flexible regression algorithm is
required. In this work, the model of choice is Gaussian process regression (GPR).

Over the last decade, GPR-basedmethods have gained huge popularity in the SHMcommunity (Cross,
2012; Papatheou et al., 2015; Bull et al., 2020; Lin et al., 2020b; Rogers et al., 2020). As a probabilistic
model, a GPR is able to provide a predictive distribution, which indicates both the mean predicted values
and their confidence interval (Rasmussen and Williams, 2006). In the context of PBSHM, the predictive
distribution also accounts for the population variance, that is, the difference between individual structures
within a population that arises from benign sources, such as turbulent boundary conditions and manu-
facturing tolerances, so that a general form can be established acrossmultiple structures of the same “type”
(Bull et al., 2020). Another advantage of GPR lies in the fact that it is nonparametric and well suited for
learning complex relationships, as opposed to a parametric model whose complexity may be restricted by
a predefined functional form.

As an extension to multivariate Gaussian distributions that describe random variables of finite
dimensions, a GPR is held over functions, with the function values f Xð Þ specified at a potentially infinite
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number of inputsX. The fact that aGPR can provide consistent inferences over any finite number of points
makes it a powerful tool to learn functional relationships (Rasmussen and Williams, 2006). A GPR is
specified by a mean and a covariance function:

f Xð Þ� GP m Xð Þ, k Xð ,X0Þð Þ: (1)

Conventionally, the mean function is assumed to be zero to simplify the formulation, and the covariance
function takes the form of squared exponential (SE), which is the most commonly used kernel in
describing smooth data variations:

kSE X,X0ð Þ ¼ σ2f exp � 1

2l2
X�X0j j2

� �
: (2)

The process of model training involves the optimization of hyperparameters, which, according to Eq. (2),
include process variance σ2f and input length scale l. Note that characteristic length scales are used in the
current model, meaning that each input dimension is assigned a different length scale; for input data with a
dimension D, there is a total of D length scales l1,…, lD. These hyperparameters are optimized here by
maximizing the marginal likelihood via gradient-based optimization methods (Rasmussen andWilliams,
2006).

With the optimized hyperparameters, a predictive distribution corresponding to the unseen inputs, X∗,
can be given by specifying the predictive mean vector, f

∗
, and covariance matrix, cov f∗ð Þ:

f
∗ ¼ K X∗,Xð Þ K X,Xð Þþσ2nI

� ��1
y, (3)

cov f∗ð Þ ¼ K X∗,X∗ð Þ�K X∗,Xð Þ K X,Xð Þþσ2nI
� ��1

K X,X∗ð Þ, (4)

where K �, �ð Þ denotes a covariance matrix obtained from Eq. (2), and σ2n is the noise variance associated
with the noisy observations y. Since the goal here is to predict the noisy target y∗, the covariance for noisy
predictions should be cov by∗ð Þ ¼ cov f∗ð Þþσ2nI:

Formore details onGPR formulation/implementation, readers are referred to Rasmussen andWilliams
(2006).

2.2. Functional relationships captured by the model

As mentioned earlier, the mapping method aims to capture the spatiotemporal correlation between the
EOVs and turbine performance. The choices of features are given as follows: power is chosen as the
target feature, since it is a direct result of environmental variations as well as operational control, and,
consequently, a direct measurement of turbine performance; features representing the EOVs include the
spatial coordinates at all turbine locations and the wind speed at a subset of locations. A GPR model is
trained to predict the power time series at all turbine locations in a wind farm, from the corresponding
spatial coordinates and wind speed at a subset of locations. In other words, the model intends to capture
the wind–power relationship and how it is affected by the wake-induced correlation across space
and time.

Thewind–power correlation can be summarized by a power curve, with an example shown in Figure 1.
It is seen that power is strongly correlated with wind speed, forming an approximately sigmoidal (or cubic
within a specific range) relationship. The shape of the curve is piecewise as a result of the turbine control
strategy; thus, the modeling of a full power curve is a complicated task in itself. The use of a simple GPR
model, without incorporating physical knowledge or partitioning the input space, might result in reduced
accuracy in regions of control intervention (e.g., above-rated power; Rogers et al., 2020). Therefore, it is
unlikely that a simple GPR is able to capture the full wind–power correlation as well as the spatiotemporal
correlation induced by wakes. As a result, the data used in the following analysis belong to a restricted set
of operating conditions, in which thewind speed variations are kept within the range in-between the cut-in
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and rated values (Figure 1). An extension tomodeling the full wind–power correlationmay be useful once
the current model is proved valid.

At the risk of repetition, it should be clarified that power-curve monitoring is not part of the aim of the
mapping method (and the turbine-by-turbine wind–power correlation is not modeled directly). Instead,
wind speed and power are the chosen features that represent EOVs and structural response, respectively.
The aim of the mapping method is to achieve EOV modeling in a spatiotemporal setting, and the aim of
this paper is to demonstrate the potential of this method as a performance indicator for a wind farm.

The GPR model not only captures how power changes with wind speed temporally, but how this
correlation varies spatially. The spatial aspect comes from the wake effect in the wind farm, which affects
wind speed and power in a similar manner. As illustrated in Figure 2, themaximum power output in a farm
is found at the front row of turbines; the power levels decrease as the wind progresses further downstream
across the farm. This spatial correlation is modeled by using as input variables (a) the spatial coordinates
of all turbine locations and (b) the wind speed time series at a fixed set of reference locations. The
reference locations are selected to ensure that the model learns the spatial and temporal correlations
through interpolation (i.e., to avoid extrapolation).

Figure 1. An example of a power curve.

(a) 42° (b) 300 °

Figure 2. Example power variations across the Lillgrund wind farm corresponding to different wind
directions, which are indicated by the blue arrows.
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Figure 2 also shows that the spatial pattern is sensitive towind direction, which changeswith time. This
time-varying spatial pattern is also captured by the model.

To conclude, theGPRmodel captures (a) the correlation betweenwind speed at reference locations and
power at each output turbine, (b) how the wind–power correlation varies spatially, and (c) how the spatial
pattern changes with wind direction (which is time-varying).

2.3. Discrepancy measures and thresholds

After establishing a model of normal condition, the expected normal turbine performance during a test
period can be predicted, and the discrepancy between the prediction and themeasurement is computed. As
a population-based method, the mapping method detects anomalies via comparisons across the structures
in a population. Therefore, for each turbine, the difference between the predicted and measured power
time series needs to be summarized into a single discrepancy value to facilitate the comparison between
turbines. Two discrepancy measures are used for the purpose of this study, namely normalized mean-
squared error (NMSE) andmean standardized log loss (MSLL), which are error metrics commonly used
for model quality evaluation in the literature of GPR.

The NMSE is given by

NMSEs ¼ 100
Tσ2y∗

XT
t ¼ 1

y∗t,s� f
∗
t,s

� �2
, (5)

where y and f denote the measured and predicted (mean) target variables, respectively. The superscript ∗

indicates the test dataset, and the subscripts t and s denote the time instance t ¼ 1,…,T and the turbine
index s ¼ 1,…, S. The mean-squared error term is normalized by the term 100=σ2y∗ . σ

2
y∗ represents the

variance of the measured target variable in the test set across all turbines, in order to remove error
sensitivity to the scale of testing data. The scaling factor 100 converts the error values into percentages. A
score of 100%means that the predictions are equivalent to the targetmean of the test data. The threshold of
NMSE is therefore set to be 100%, below which the model provides better predictions than the mean of
test data and is assumed to have captured some correlations between input and output. Note that the
calculation of NMSE does not include the information about GPR predictive variance.

The second metric, MSLL, includes both the mean and variance of the GPR predictive distribution in
its formulation (Rasmussen and Williams, 2006):

MSLLs ¼ 1
2T

XT
t ¼ 1

log 2πσ2ŷ∗t,s

� �
þ

y∗t,s� f
∗
t,s

� �2
σ2ŷ∗t,s

0B@
1CA� 1

2T

XT
t ¼ 1

log 2πσ2y
� �

þ y∗t,s�y
� 	2

σ2y

 !
: (6)

The first term in Eq. (6) is the negative log probability that indicates how likely the target measurements
are to be predicted using the trained model. Here, the GPR-predicted variance for a noisy target is
σ2ŷ∗t,s ¼ diag cov by∗ð Þð Þ ¼ diag cov f∗ð Þþσ2nI

� 	
. The second term in Eq. (6) represents the (negative log)

probability obtained by treating the training mean y and variance σ2y as the model. It standardizes the first
term such that MSLL> 0 if the GPR predictions are worse than the trivial model of training mean and
variance. The threshold of MSLL is set to be 0, below which the model prediction is considered
acceptable.

In the analysis that follows, it is demonstrated that the abovementioned discrepancy measures, NMSE
and MSLL, and their corresponding thresholds can be used for anomaly detection.

3. A Case Study on an Offshore Wind Farm

The objective of this case study is to demonstrate the potential applicability of the mapping method to the
problem of wind farm anomaly detection using SCADA data. Section 3.1 summarizes the data used for
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model training and testing. It is followed by testing results which demonstrate (a) themodel’s capability to
predict power production with adequate accuracy (Section 3.2) and (b) the potential to use the model as a
performance indicator for wind farms (Section 3.3).

3.1. Datasets

The SCADA data are collected from an offshore wind farm, Lillgrund. In this study, time series data refer
to a series of mean values summarizing every 10-minute section of the raw data streams. Detailed
description and analysis of the wind farm can be found in Jeppsson et al. (2008) and Dahlberg (2009).

A GPR-based model of normal condition is trained to predict power from spatial coordinates and wind
speed, as mentioned in Section 2.2. One of the inputs to the model is the spatial locations, which are given
as the Cartesian coordinates of each turbine position. Another input feature is the wind speed at a number
of reference turbines. A set of 10 reference turbines is randomly selected across the wind farm, by
manually choosing the minimum distance among them such that they are (roughly) evenly distributed
across the entire space. For the purpose of this preliminary study, the only criterion behind the selection is
to (visually) ensure that the reference locations are spread across the wind farm in order to avoid
extrapolation in space, since a standard/zero-mean GPR model tends to predict less accurately during
extrapolation (Cross and Rogers, 2021). More advanced methods for reference selection, such as Latin
hypercube sampling, may be considered for future studies. The chosen reference locations are indicated
by the rectangles in Figure 3.

The training and testing datasets are selected based on the following criteria. First, the data on wind
speed and power used in the case study are confined to the range between cut-in and rated values
(Figure 1), for the reasons mentioned in Section 2.2. Second, the GPR model includes the effect of
multiple wind directions as part of the definition of normal condition; thus, the training data cover a range
of wind directions. It is noted that the training data are selected so as to avoid rapid/extreme fluctuations in
wind directions. If wind direction changes too rapidly, the turbines may not be given enough time to
respond to the change, and the resulting spatial pattern may not be reflective of the wind direction. Given
that the mapping method aims to capture how spatial patterns change with wind directions, data
describing steady changes in wind directions are necessary for model training. A summary of the training

(a) NMSE (b) MSLL

Figure 3.Maps of (a) NMSE and (b) MSLL averaged across a testing data period (of 2 hours 40 minutes)
that describes normal operational conditions. The incomingwind direction is indicated by the blue arrow,
and the reference turbine locations are marked with the blue rectangles. The turbine numbers (1–48) are

also indicated, outside the circles.
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and testing datasets used in the case study is given in Table 1. Note that the numbers of data points for the
training period in Table 1 correspond to the numbers obtained after subsampling the original SCADAdata
by a factor of 2 (in order to reduce computation time), whereas the testing data are not subsampled. Thus,
to make test predictions, the model interpolates not only in space but in time. The training data correspond
to about 25.5 hours’worth of data for all 48 turbines in the Lillgrund wind farm, and the test datasets 1 and
2 correspond to 2.8 and 2.2 hours’worth of data, respectively. Note that the individual data sections are the
longest continuous periods during which the mentioned criteria (of wind speed, power, and wind
direction) are satisfied.

3.2. Capability to predict normal power production

The trained GPR model is used to predict the power output during a testing period, when all turbines are
operating under normal conditions. This example refers to Test Set 1 in Table 1. The differences between
measurements and predictions are summarized by the maps of NMSE andMSLL shown in Figure 3. It is
seen that no specific spatial pattern can be found in the NMSEmap (Figure 3a), whereas theMSLL results
tend to get better toward the downstream side of the farm (Figure 3b). Such a spatial trend in the MSLL
values is arguably caused by the calculation of the MSLL requiring an indirect comparison of the mean
and variance between training data andGPR predictions; that is, the two terms in Eq. (6) correspond to the
log loss obtained by comparing the testing data with GPR predictions and training statistics, respectively.
Since the predicted mean power levels tend to decrease in the direction of the wind, the MSLL values
change in the wind direction as well, but the way the MSLL changes depends on how far away the
predictions are from the training mean. Note that the confidence levels of model predictions remain
roughly constant throughout the farm. Overall, the error values are well below the corresponding
thresholds (100% for NMSE; 0 for MSLL). At reference turbine locations, that is, where wind speed
measurements are provided as the model inputs, there is a tendency to obtain relatively better NMSE
results, while whether reference inputs are provided does not seem to affect the MSLL values. The
difference between the two error metrics mainly stems from the fact that only the mean predictions are
used in the NMSE, whereas both the predictive mean and variance are included in the calculation of
the MSLL.

Examples of time series predictions are visualized in Figure 4, where the GPR prediction constitutes a
mean and a confidence interval (given as three times theGPR predictive standard deviation σŷ∗ ). Figure 4a
illustrates one of the best predictions, excluding those at reference turbines. It is seen that the mean
prediction follows the measured trend almost exactly, even at regions of relatively wider confidence
intervals (from Data Point 11 onward). Figure 4b demonstrates the model prediction with a medium level
of errors, where there are periods of mismatch between the mean prediction and the measurement, but the

Table 1. A summary of training and testing datasets.

Normalized wind
direction range

Normalized wind
speed range

Normalized
power range

Number of
data points

Duration
(hr)

Training sets 0.09–0.22 0.18–0.81 0.15–0.91 336 2.3
0.10–0.22 0.24–0.91 0.21–0.95 312 2.2
0.21–0.34 0.06–0.90 0.09–0.93 408 2.8
0.23–0.36 0.28–0.98 0.18–0.95 360 2.5
0.51–0.64 0.05–0.94 0.08–0.94 1,080 7.5
0.51–0.64 0.09–0.88 0.10–0.84 408 2.8
0.71–0.83 0.02–0.88 0.07–0.81 456 3.2
0.72–0.86 0.21–0.89 0.19–0.95 312 2.2

Test Set 1 0.72–0.86 0.00–0.68 0.08–0.59 816 2.8
Test Set 2 0.02–0.94 0.09–0.72 0.00–0.64 624 2.2
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amount of deviation is considered small compared with the confidence interval. The largest-error
prediction is illustrated in Figure 4c; it can be seen that the mean prediction deviates from the
measurement throughout the time window while still loosely following the trend. In regions of large
deviation (Data Points 5–9), the measured data are close to the boundary of the confidence interval, which
leads to the relatively large MSLL as well as NMSE. In summary, the model is able to provide mean
predictions that follow (at least roughly) the measured trends, as well as confidence intervals that capture
all the benign power variations in the given testing dataset.

3.3. Performance indicator for wind farms

Having established an appropriate model of normality, the model is used to predict the power production
in a test set that contains potential performance anomalies. Figure 5 shows the discrepancy between
predictions andmeasurements in terms ofmaps ofNMSE andMSLL. The color schemes of the errormaps
are designed such that the turbines with an error value above the threshold are highlighted (in warm
colors). The thresholds for NMSE and MSLL are 100% and 0, respectively, with reasons given in
Section 2.3. It is seen that five turbines are highlighted as candidate anomalies in the NMSE map, that is,
Turbines 22, 29, 33, 38, and 48, and there is one additional candidate anomaly, Turbine 25, highlighted in

(a) Turbine 18 (b) Turbine 31

(c) Turbine 20

Figure 4.Examples of the predicted andmeasured power time histories for the normal testing set, in cases
of (a) small, (b) medium, and (c) large errors.
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the MSLL map. Among these highlighted turbines, Turbine 48 is disqualified from being a potential
anomaly, since it was manually switched off during the time period being considered. This powers down
results in extremely high values of NMSE andMSLL. Although this is a known control action, it provides
very basic validation that the model is able to detect anomalous behavior. The other highlighted turbines
will now be investigated. Note that the dataset available is currently unlabeled; that is, the true reason for
suspected anomalies is unknown—here some possible reasons for the observed behaviorwill be explored.

The time histories of the predicted and measured power for the candidate anomalies (Turbines 22, 25,
29, 33, and 38) are shown in Figure 6. For all candidates, there are obvious discrepancies between mean
predictions and measurements throughout the time window. However, the trends of measured power are
still captured by the confidence intervals most of the time. Interestingly, in all five cases, the model
underpredicts the power produced, implying that there may be a factor that causes many turbines to
produce more power than usual during this period of time. With respect to the error values, the further
away the mean predictions are from the measurements, the higher the NMSE values, whereas higher
MSLL values tend to result from scenarios when the measured data trends are consistently close to or
beyond the uncertainty boundaries. In general, none of the candidate anomalies exhibits large fluctuations
in power, and the relatively high errors seem to result from predictions with shifted means.

One reason why the actual power production deviates from model prediction is that the testing dataset
describes a spatial correlation different from that depicted in the training data. This difference in spatial
correlation is themain cause of the candidate anomalies at Turbines 25 and 38. In Figure 7, the training and
testing wind–power correlations for the first three turbine rows, that is, the neighborhood of Turbines
25 and 38, are illustrated, with comparisons made available between training and testing data. A
comparison between Figure 7a,b illustrates how the spatial correlations between Turbine 25 and its
neighbors change from training to testing data. It is seen that, although Turbine 25 tends to generate
relatively high power, given the same wind speed compared to its neighbors during training (Figure 7a),
the amount of extra power it generates in the testing period becomes more distinct from the neighborhood
(Figure 7b). However, what is shown in Figure 7b can (arguably) be merely a demonstration of the
population variance; perhaps that is why Turbine 25 is flagged as a candidate anomaly by only one of the
error metrics. For Turbine 38, the difference between training and testing data lies mainly in its
relationship with the upstream Turbine 37. During training, the effect of wake shielding is apparent as
the wind and power at Turbine 38 are significantly less than those at Turbine 37 (Figure 7c), which is not

(a) NMSE (b) MSLL

Figure 5. Maps of (a) NMSE and (b) MSLL averaged across a 2-hour testing period with potential
anomalies. The incoming wind direction is indicated by the blue arrow, and the reference turbine

locations are marked with the blue rectangles. The turbine numbers (1–48) are also indicated, outside the
circles.
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(a) Turbine 22 (b) Turbine 25

(c) Turbine 29 (d) Turbine 33

(e) Turbine 38

Figure 6. Time histories of the predicted and measured power for five highlighted candidate anomalies.
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seen in the testing period (Figure 7d). Wake deviations due to yawmisalignment may be a reason for such
difference, which remains hypothetical since the relevant data are unavailable to the authors. The
difference in spatial pattern around Turbine 38 is captured by both error metrics.

Another cause of deviation from normal condition is an unexpected local nacelle direction. In
particular, if a turbine turns away from the wake(s) of the upstream turbine(s), the power produced by
the turbinemay be underestimated by themodel. Such an unexpected nacelle direction is found at Turbine
33. Normally, Turbine 33 should be affected by the combined wakes of the two upstream turbines
(Turbines 31 and 32). However, during the testing period, this turbine is constantly facing Turbine 37, a
region likely to be affected by fewer wakes. Therefore, Turbine 33 ends up with more power output than
predicted, as seen in Figure 6d, and this overprediction has been successfully highlighted by both maps in
MSLL and NMSE.

The remaining candidate anomalies, Turbines 22 and 29, stand out from their neighbors, as they
experience unexpectedly high wind speed and, thus, produce more power. Figure 8 shows the
wind–power correlations of Turbines 22 and 29 in relation to those of the neighboring turbines. As part

(a) Training wind-power correlations

(with Turbines 25 highlighted).

(c) Training wind-power correlations

(with Turbines 37 & 38 highlighted).

(b) Testing wind-power correlations

(with Turbines 25 highlighted).

(d) Testing wind-power correlations

(with Turbines 37 & 38 highlighted).

Figure 7. Wind-power correlations associated with (a)-(b) Turbine 25 and (c)-(d) Turbine 38. The
“Neighbors” are referred to turbines in the neighborhood of Turbines 25 and 38, in this case the first three

rows of turbines in the wind direction (excluding other candidate anomalies).
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of the normal spatial pattern acquired by the model, Turbines 22 and 29 generate relatively low power in
comparison to their surrounding turbines (Figure 8a). In the testing period, the wind and power at the two
turbines extend far beyond the ranges covered by their neighbors while maintaining the gradient of the
wind–power correlations (Figure 8b). Therefore, the difference between training and testing data is likely
to stem from changes in the environment rather than changes in the turbine systems. Upon further
examination of the data under similar environmental and operational conditions, the unexpected high
speeds at Turbines 22 and 29 are unlikely to be caused by unexpected nacelle direction or ambient
temperature, nor are there seasonal or diurnal patterns in the occurrence of such phenomena. Given the
existence of a central gap in the wind farm of interest (see Figure 5), more wind eddies may be generated
around the gap region, bringing about more short-term turbulence that causes the occasional high wind
around Turbines 22 and 29. The fact that these infrequent environmental variations are not described by
the training data has led to the seemingly sensitive detection results. However, the occasional exposure to
wind eddies that give rise to counterintuitive wake patterns may subject Turbines 22 and 29 to higher
fatigue loads and, thus, a higher risk of anomalous performance. The model results, therefore, provide
insight into this potential risk.

3.4. Effect of reference wind speed inputs

As previously stated, themappingmodel is designed to predict the power across awind farm, as a function
of turbine locations and wind speed at a fixed set of reference turbines. In the previous case study,
10 reference turbines are chosen, with their locations indicated in Figures 3 and 5. This section focuses on
investigating how the numbers of reference turbines may affect model accuracy. For a given number of
reference turbines, the locations were randomly selected five times, and a GPRwas trained each time. The
NMSE results corresponding to different numbers of reference turbines are illustrated in Figure 9. It is
seen that, as the number of reference turbines increases, there is an approximately exponential decrease in
both the NMSE values and the error variances. If the reference locations are to be optimized, the NMSE
improvements will be larger at fewer numbers of references. Optimized reference locations are considered
to bring significant NMSE reduction when the number of references is smaller than or equal to 8. The
average NMSE level for 10 references is around 30%. For the set of reference turbines used in the case
study, the overall NMSE is around 20% across all normal testing datasets. Hence, in the current study, an
optimized set of reference locations may not bring significant improvements in predictive accuracy.

(a) Training data (b) Testing data

Figure 8.Wind-power correlation for a subset of turbines toward the back of the farm, that is, Turbines
13–15, 21–23, 28–30, 35, and 36, obtained from (a) training and (b) testing data.
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Nonetheless, an optimization algorithm, such as a genetic algorithm (Worden et al., 2008), will be
necessary if fewer references are to be selected in future studies.

4. Discussion

In this paper, themappingmethod is presented as a two-step process that includesmodeling and detection.
In the modeling step, a GPR model is trained, which captures the spatiotemporal variations of power
across a wind farm under normal conditions. In the detection step, the discrepancy between predictions
and measurements quantified, and the discrepancy values above thresholds are considered (potentially)
anomalous.

The GPRmodel is associated with several assumptions. First, the functional relationships captured by
themodel are assumed stationary. It indicates that the covariance (within or between datasets) is a function
of the difference between input points rather than their absolutes, which greatly simplifies the complexity
of the model (Rasmussen and Williams, 2006). Another key assumption arises from the chosen SE
covariance function, which intrinsically assumes smoothness. Although some argue that this function
might be too smooth to reflect any realistic process, the SE covariance function is still commonly
employed across disciplines (Rasmussen andWilliams, 2006). The smoothness assumption is acceptable
here, as no apparent discontinuity is found in the data. First, the training and testing data are confined to a
specific range of wind speed and power that represents the continuous region in the wind–power
correlation (Figure 1). Second, the spatial variations in power are smooth when all turbines are operating
normally, which is supported by the illustration given in Figure 2. Third, the training data are selected to
avoid extreme fluctuations in wind directions, in an attempt to avoid discontinuities. As seen in Table 1,
although the training data do not cover the entire range of possible wind directions, they cover the wind
direction range of the normal test set (Test Set 1). The unexpectedly wide wind direction range in Test Set
2 is a result of anomalous turbine angles as explained in Section 3.3. Therefore, the smoothness
assumption holds for the given case study. Both mentioned assumptions are the most commonly used
and give rise to one of the simplest forms of the GPRmodel. Since the aim of the current work is to prove

Figure 9. The NMSE for various numbers of reference turbines.
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the concept of the proposed mapping method, it is reasonable to start with a relatively simple and easily
accessible model.

Two types of discrepancy measures are used in the analysis, namely NMSE and MSLL. The NMSE
focuses on how the mean predictions deviate from the measurements, whereas the MSLL also accounts
for the position of the data trends in relation to the boundaries of the confidence intervals. In the case when
two turbines return similar NMSE values, the MSLL results might help distinguish which turbine has the
more confident prediction (and thus less likely to be erroneous). In summary, the two types of errormetrics
contain information that complements one another, and should be used in conjunction.

The detection thresholds used in the case study are chosen based on the (mathematical) definitions of
NMSE and MSLL (Section 2.3). As a preliminary study, the current paper focuses on establishing the
framework of the mapping method while keeping the individual elements, such as the form of the GPR
model and detection thresholds, as simple as possible. Thus, this paper demonstrates the potential of the
mapping method under the simplest possible setup, which justifies further investigation into this method.
In future studies, more sophisticated methods of threshold selection, such as extreme value statistics
(Farrar and Worden, 2013; Papatheou et al., 2017), may be considered.

The key assumption of the mapping method is that the spatiotemporal pattern of the target variable
changes when anomalies occur. In Section 3.3, many of the candidate anomalies (Turbines 22, 25, 29, and
38) are justified by comparing their wind–power correlations with those of the surrounding turbines. Such
anomalies would be difficult to detect without considering the interrelations between turbines. Hence, the
mapping method, as a population-based approach, possesses a unique advantage in detecting anomalies.

On the other hand, the fact that some anomalies result from the difference between training and testing
data raises the question of whether the pattern described by the testing data is necessarily an “anomalous”
one. To reduce false positives (and negatives), training data should be representative of the conditions
expected—as is the case with any data-driven model. In practice, this may be difficult given the range of
conditions/benign variations that may occur. This issue suggests that a gray-box approachmay be suitable
(Cross and Rogers, 2021) and will be the topic of future work.

5. Conclusion

The aim of this paper is twofold. First, this paper proposes and develops a population-based anomaly
detection method that accounts for the spatiotemporal correlations in environmental and operational
conditions, by investigating the problem of anomaly detection across a wind farm. Second, this paper
demonstrates the proposed method as a wind farm performance indicator. The proposed mapping method
is a two-step process, in which, firstly, a GPR-based model of normal condition is trained and, secondly,
anomalies are detected based on the discrepancy between model predictions and measurements.

The GPR model has demonstrated its ability to learn the functional relationships including:

1. the correlation between wind speed at reference locations and power at all locations,
2. how the wind–power correlation varies spatially, and
3. how the spatial pattern changes with time-varying wind directions.

As shown in the given case study, the candidate anomalies detected by the model can be a result of:

• powering off (unexpected wind–power correlation),
• unexpected turbine angles (unexpected spatial pattern), or
• spatially counterintuitive environmental conditions (unexpected spatial pattern).

In conclusion, this case study has successfully demonstrated the capability of the mapping model to
identify performance anomalies across a wind farm, using wind turbine SCADA data.

Data Availability Statement. The data used in the case study were accessed under a confidentiality agreement with Vattenfall.
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