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Waring’s problem with restricted digits
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Abstract

Let k� 2 and b� 3 be integers, and suppose that d1, d2 ∈ {0, 1, . . . , b− 1} are distinct
and coprime. Let S be the set of non-negative integers, all of whose digits in base b
are either d1 or d2. Then every sufficiently large integer is a sum of at most b160k

2

numbers of the form xk, x∈ S.
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1. Introduction

Let k� 2 be an integer. One of the most celebrated results in additive number theory is Hilbert’s
theorem that the kth powers are an asymptotic basis of finite order. That is, there is some s such
that every sufficiently large natural number can be written as a sum of at most s kth powers of
natural numbers.

One may ask whether a similar result holds if one passes to a subset {xk : x∈ S} of the full
set of kth powers. This has been established in various cases, for instance, when S is the set
of primes (the so-called Waring–Goldbach problem [KT05]), the set of smooth numbers with
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suitable parameters [DS16], the set of integers such that the sum of digits in base b lies in some
fixed residue class modulo m [TT05], random sets with P(s∈ S) = sc−1 for some c > 0 [Vu00,
Woo03a], or all sets with suitably large density [Sal21].

Our main result in this paper is that a statement of this type holds when S is the set of
integers whose base b expansion contains just two different (fixed) digits.

Theorem 1.1. Let k� 2 and b� 3 be integers, and suppose that d1, d2 ∈ {0, 1, . . . , b− 1} are
distinct and coprime. Let S be the set of non-negative integers, all of whose digits in base b are
either d1 or d2. Then every sufficiently large integer is a sum of at most b160k

2

numbers of the
form xk, x∈ S.
Remark. While the basic form of the bound is the best the method gives, the constant 160
could certainly be reduced, especially for large values of b; I have not tried to optimise it.
The restriction to b� 3 is helpful at certain points in the argument. Of course, the case b= 2
(in which case we must have {d1, d2}= {0, 1}) corresponds to the classical Waring problem, for
which much better bounds are known.

Although Theorem 1.1 seems to be new, one should certainly mention in this context the
interesting work of Biggs [Big21, Big23] and Biggs and Brandes [BB23], who showed that, for
some s, every sufficiently large integer is a sum of at most s numbers of the form xk, x∈ S, and
one further kth power. (In their work b is taken to be prime and larger than k.)

This paper is completely independent of the work of Biggs and Brandes, but it seems plausible
that by combining their methods with ours one could significantly reduce the quantity b160k

2

in
Theorem 1.1, at least for prime b.

Finally, we note that sets of integers whose digits in some base are restricted to some set are
often called ellipsephic, a term coined by Mauduit, as explained in [Big21, Big23].

1.1 Notation

If x∈R, we write ‖x‖ for the distance from x to the nearest integer. The only other time we
use the double vertical line symbol is for certain box norms ‖ · ‖�, which occur in Appendix A.
There seems little danger of confusion so we do not resort to more cumbersome notation such
as ‖x‖R/Z. Write e(x) = e2πix.

If X is a finite set and f :X→C is a function then we write Ex∈Xf(x) = 1/|X|∑x∈X f(x).
All intervals will be discrete. Thus, [A, B] denotes the set of all integers x with A� x�B

(and here A, B need not be integers). We will frequently encounter the discrete interval [0, m),
for positive integer m, which is the same thing as the set {0, 1, . . . , m− 1}. Note carefully that
at some points in § 6, the notation [m1, m2] will also refer to the lowest common multiple of two
integers m1, m2.

Throughout the paper we will fix a base b� 3, an exponent k� 2 and distinct coprime digits
d1, d2 ∈ [0, b). Denote by S the set of all non-negative integers x, all of whose digits in base b are
d1 or d2. We include 0 in S. Write Sk := {xk : x∈ S}. Note that Sk might more usually refer to
the k-fold product set of S with itself, but we have no use for that concept here.

We will reserve the letter n for a variable natural number, which we often assume is sufficiently
large, and which it is usually convenient to take to be divisible by k. We always write N = bn,
so [0, N) is precisely the set of non-negative integers with at most n digits in base b.

If n is a natural number, we define the map Lb : {0, 1}[0,n) →Z by

Lb(x) :=
∑

i∈[0,n)
xib

i, (1.1)
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where x= (xi)i∈[0,n). Although this map depends on n, we will not indicate this explicitly, since
the underlying n will be clear from context. Then

d1(bn−1)
b−1 + (d2 − d1)Lb(x) (1.2)

is the number whose base b expansion has a bi digit equal to d1 if xi = 0, and d2 if xi = 1.

2. An outline of the argument

Unsurprisingly, given its pre-eminence in work on Waring’s problem, the basic mode of attack
is the Hardy–Littlewood circle method. Let n∈N, set N = bn and consider the subset of S
consisting of integers with precisely n digits. This is a set of size 2n. Denote by μn the normalised
probability measure on the set of kth powers of the elements of this set. That is, μn(m) = 2−n

if m= (
∑

i∈[0,n) xib
i)k with all xi ∈ {d1, d2} for all i, and μn(m) = 0 otherwise. The Fourier

transform μ̂n(θ) :=
∑

m∈Z μn(m)e(mθ) is then a normalised version of what is usually called the
exponential sum or Weyl-type sum, and as expected for an application of the circle method, it
plays a central role in our paper.

Our main technical result is the following, which might be called a log-free Weyl-type estimate
for kth powers with restricted digits.

Proposition 2.1. Suppose that k� 2 and b� 3. Set B := b6k
2

. Suppose that δ ∈ (0, 1) and that
k | n. Suppose that |μ̂n(θ)|� δ and that N � (2/δ)B, where N := bn. Then there is a positive
integer q� (2/δ)B such that ‖θq‖� (2/δ)BN−k.

Remarks. If μn is replaced by the normalised counting measure on kth powers less than N
without any digital restriction, a similar estimate is true and is very closely related to Weyl’s
inequality. The most standard proof of Weyl’s inequality such as [Vau97, Lemma 2.4], however,
results in some extra factors of No(1) (from the divisor bound). ‘Log-free’ versions may be
obtained by combining the standard result with major arc estimates as discussed, for example,
in [Woo03b], or by modifying the standard proof of Weyl’s inequality to focus on this goal rather
than on the quality of the exponents, as done in [GT10, § 4]. Our treatment here is most closely
related to this latter approach.

Although we will only give a detailed proof of Proposition 2.1 in the case that μn is the
measure on kth powers of integers with just two fixed digits, similar arguments ought to give a
more general result in which the digits are restricted to an arbitrary subset of {0, 1, . . . , b− 1}
of size at least 2. This would be of interest if one wanted to obtain an asymptotic formula in
Theorem 1.1, with more general digital restrictions of this type.

Experts will consider it a standard observation that Proposition 2.1 implies that Sk is an
asymptotic basis of some finite order s. Roughly, this is because one can use it to obtain a

moment estimate
∑

x μ
(t)
n (x)2 =

∫ 1
0 |μ̂n(θ)|2tdθ�N−k for a suitably large t. Here, μ

(t)
n denotes

the t-fold convolution power of μn; see immediately after (3.1) for full details. The Cauchy–
Schwarz inequality then implies that the t-fold sumset tSk has positive density in an interval of

length �Nk, whereupon methods of additive combinatorics can be used to conclude.
However, by itself this kind of argument leads to s having a double-exponential dependence

on k. The reason is that Proposition 2.1 is not very effective in the regime δ≈ 1. It is possible
that the proof could be adapted so as to be more efficient in this range, but this seems nontrivial.
Instead we provide, in § 4, a separate argument that is at first sight crude, but turns out to be
more efficient for this task. This gives the following result.
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Proposition 2.2. Let n∈N and let N = bn. Suppose that n� k. Then the measure of all
θ ∈R/Z such that |μ̂n(θ)|� 1− 1/4b−3k2

is bounded above by 2bk
2

N−k.

In fact, we obtain a characterisation of these values of θ, much as in Proposition 2.1; see § 4 for
the detailed statement and proof.

Details of how to estimate the moment
∫ 1
0 |μ̂n(θ)|2tdθ using Propositions 2.1 and 2.2, and of

the subsequent additive combinatorics arguments leading to the proof of Theorem 1.1, may be
found in § 3.

This leaves the task of proving Proposition 2.1, which forms the bulk of the paper, and is
where the less standard ideas are required. For the purposes of this overview, we mostly consider
the case k= 2, and for definiteness set {d1, d2}= {0, 1}.

Decoupling. The first step is a kind of decoupling. Recall the definitions of the maps Lb (see
(1.1)). The idea is to split the variables x= (xi)i∈[0,n) into the even variables y= (x2i)i∈[0,n/2)
and the odd variables z= (x2i+1)i∈[0,n/2), assuming that n is even for this discussion. We have
Lb(x) =Lb2(y) + bLb2(z). Here, there is a slight abuse of notation in that Lb is defined on vectors
of length n, whilst Lb2 is defined on vectors of length n/2. We then have

μ̂n(θ) =Ex∈{0,1}[0,n)e(θLb(x)
2) =Ey,z∈{0,1}[0,n/2)e(θ(Lb2(y) + bLb2(z)

2))

=Ey,z∈{0,1}[0,n/2)Ψ(y)Ψ′(z)e(2bθLb2(y)Lb2(z)),

where Ψ(y) = e(θLb2(y)
2) and Ψ′(z) = e(b2θLb2(z)

2), but the precise form of these functions
is not important in what follows. By two applications of the Cauchy–Schwarz inequality (see
Appendix A for a general statement), we may eliminate the Ψ and Ψ′ terms, each of which
depends on just one of y, z. Assuming, as in the statement of Proposition 2.1, that |μ̂n(θ)|� δ,
we obtain

δ4 �Ey,z,y′,z′∈{0,1}[0,n/2)e(2bθ(Lb2(y)Lb2(z)−Lb2(y
′)Lb2(z)−Lb2(y)Lb2(z

′) +Lb2(y
′)Lb2(z

′))).

We remove the expectation over the dashed variables, that is to say, there is some choice of y′, z′

for which the remaining average over y, z is at least δ4. For simplicity of discussion, suppose
that y′ = z′ = 0 is such a choice; then

δ4 �Ey,z∈{0,1}[0,n/2)e(2bθLb2(y)Lb2(z)). (2.1)

At the expense of replacing δ by δ4, we have replaced the quadratic form Lb(x)
2 by a product of

two linear forms in disjoint variables, which is a far more flexible object to work with. I remark
that I obtained this idea from the proof of [CTV06, Theorem 4.3], which uses a very similar
method.

Now, for fixed z, the average over y in (2.1) can be estimated fairly explicitly. The conclusion
is that for � δ42n/2 values of z, 2bθLb2(z) has � log(1/δ) nonzero base b digits, among the first
n digits after the radix point. Here, we use the centred base b expansion in which digits lie in
(−b/2, b/2], discussed in more detail in § 5.

Additive expansion. The output of the decoupling step is an assertion to the effect that, for m
in a somewhat large set M⊂ {1, . . . , N}, θm has very few nonzero digits in base b among the first
n after the radix point. The set M is the set of 2bLb2(z) for� δ42n/2 values of z∈ {0, 1}[0,n/2), and
so has size ∼N (log 2)/2 log b that, though ‘somewhat large’, is unfortunately appreciably smaller
than N .
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The next step of the argument is to show that the sum of a few copies of M is a considerably
larger set, of size close to N . In fact, in the case k= 2 under discussion, b2 − 1 copies will do.
This follows straightforwardly from the following result from the literature.

Theorem 2.3. Let r, n∈N. Suppose that A1, . . . , Ar ⊆ {0, 1}n are sets with densities
α1, . . . , αr. Then A1 + · · ·+Ar has density at least (α1 · · · αr)

γ in {0, 1, . . . , r}n, where γ :=
r−1 log2(r+ 1).

This theorem, which came from the study of Cantor-type sets in the 1970s and 1980s, seems not
to be well known in modern-day additive combinatorics. The result has a somewhat complicated
history, with contributions by no fewer than 10 authors, and I am unsure exactly how to attribute
it. For comments and references pertinent to this, see Appendix B.

We remark that, for k > 2, a considerably more elaborate argument is required at this point,
and this occupies the bulk of § 6.

The conclusion is that θm has � log(1/δ) nonzero base b digits among the first n after the
radix point, for all m in a set M′ ⊂ {1, . . . , N} of size � δCN .

From digits to diophantine. In the final step of the argument we extract the required dio-
phantine conclusion (that is, the conclusion of Proposition 2.1) from the digital condition just
obtained. The main ingredient is a result on the additive structure of sets with few nonzero digits,
which may potentially have other uses. Recall that if A is a set of integers then E(A), the additive
energy of A, is the number of quadruples (a1, a2, a3, a4)∈A×A×A×A with a1 + a2 = a3 + a4.

Proposition 2.4. Let r ∈Z�0. Suppose that A⊂Z is a finite set, all of whose elements have
at most r nonzero digits in their centred base b expansion. Then E(A)� (2b)4r|A|2.

The proof of this involves passing to a quadripartite formulation (that is, with four potentially
different sets A1, A2, A3, A4, and also allowing for the possibility of a ‘carry’ in the additive
quadruples) and an inductive argument.

The final deduction of Proposition 2.1 uses this and some fibring arguments. This, and the
proof of Proposition 2.4, may be found in § 7.

3. Reduction to a log-free Weyl-type estimate

In this section we show that our main result, Theorem 1.1, follows from the log-free Weyl-type
estimate, Proposition 2.1. We begin by stating two results about growth under set addition. The
first is a theorem of Nathanson and Sárközy [NS89, Theorem 1].

Theorem 3.1. Let X ∈N and r ∈N. Suppose that A⊂ {1, . . . , X} is a set of size � 1 +X/r.
Then there is an arithmetic progression of common difference d, 1� d� r− 1 and length at least
�X/2r2� contained in 4rA.

Proof. In [NS89, Theorem 1], take h= 2r, z = �X/2r2�; the result is then easily verified. �

The second result we will need is a simple but slightly fiddly lemma on repeated addition of
discrete intervals.

Lemma 3.2. Let X � 1 be real and suppose that I ⊂ [0, X) is a discrete interval of length L� 2.
Set η :=L/X. Let K � 4 be a parameter. Then

⋃
j��2K/η2� jI contains the discrete interval

[4/ηX,K/ηX].
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Proof. Write I = [x0, x0 +L− 1], where x0 ∈Z�0. Then jI = [jx0, jx0 + j(L− 1)]. Note that if
j � x0/(L− 1), we have jx0 + j(L− 1)� (j + 1)x0, and so the interval (j + 1)I overlaps the
interval jI. Therefore, if we set j0 := x0/(L− 1)�, for any j1 � j0, the union I∗ :=

⋃
j0�j�j1

jI

is a discrete interval. Set j1 := 2K/η2�. We have

min I∗ = j0x0 �  X
L−1�X � 2XL �X � 4X2

L = 4
ηX,

and

max I∗ � j1(L− 1)� 2K
η2

L
2 = K

η X.

This concludes the proof. �

Proof of Theorem 1.1, assuming Proposition 2.1. Let n be some large multiple of k and consider
the measure μn as described in § 2. Thus, μn is supported on Sk ∩ [0, Nk), where N = bn. Set

t := 8b9k
2

, (3.1)

and write μ
(t)
n for the t-fold convolution power of μn, that is to say,

μ(t)n (x) =
∑

x1+···+xt=x

μn(x1) · · · μn(xt).

Then μ̂
(t)
n = (μ̂n)

t and so by Parseval’s identity and the layer-cake representation,∑
x

μ(t)n (x)2 =

∫ 1

0
|μ̂n(θ)|2tdθ= 2t

∫ 1

0
δ2t−1 meas{θ : |μ̂n(θ)|� δ}dδ= 2t(I1 + I2 + I3), (3.2)

where I1, I2, I3 are the integrals over ranges [0, 2N−1/B], [2N−1/B, 1− c] and [1− c, 1], respec-
tively, with c := 1

4b
−3k2

, B = b6k
2

(as in Proposition 2.1) and meas is the Lebesgue measure on
the circle R/Z. We have, for N large,

I1 � (2N−1/B)2t−1 <N−k.

To bound I2, we use Proposition 2.1, which tells us that the set {θ ∈R/Z : |μ̂n(θ)|� δ} is
contained in the set {θ ∈R/Z : ‖θq‖� (2/δ)BN−k for some positive q� (2/δ)B}, and so meas{θ :
|μ̂n(θ)|� δ}� 2(2/δ)2BN−k. Since 2t− 1− 2B � t, we therefore have

I2 � 2N−k

∫ 1−c

0
δ2t−1(2/δ)2Bdδ� 2N−k(1− c)t22B <N−k.

For the last inequality, we used the fact that t= 2B/c and so (1− c)t � e−2B.
Finally, to bound I3, we use Proposition 2.2, which immediately implies that

I3 � 2bk
2

N−k.

Substituting these bounds for I1, I2 and I3 into (3.2), we obtain that, for sufficiently large

N ,
∑

x μ
(t)
n (x)2 � 4tbk

2

N−k = 32b10k
2

N−k. On the other hand, it follows by the Cauchy–

Schwarz inequality and the fact that
∑

x μ
(t)
n (x) = 1 that 1� | Supp(μ(t)n )|∑x μ

(t)
n (x)2, and so

| Supp(μ(t)n )|� 2−5b−10k2

Nk. Thus, since μ
(t)
n is supported on the t-fold sumset of Sk ∩ [0, Nk),

we see that |tSk ∩ [0, tNk)|� 2−5b−10k2

Nk. Applying Theorem 3.1 withX = tNk and r= 28b19k
2

,
we see that 4rtSk ∩ [0, 4rtNk) contains an arithmetic progression P of common difference < r
and length |P |�L := 2−15b−29k2

Nk.
Since dk1 and dk2 are coprime, every number greater than or equal to (dk1 − 1)(dk2 − 1)< b2k < r

is a non-negative integer combination of these numbers. Therefore, it is certainly the case that
2rSk contains [r, 2r). Since the common difference of P is less than r, P + [r, 2r) contains a
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discrete interval I of length �L. This interval is therefore contained in (4rt+ 2r)Sk ⊂ 8rtSk.
Note that by construction I ⊂ [0, 8rtNk).

Apply Lemma 3.2, taking X =X(n) = 8rtNk, η= L
X = 2−29b−57k2

and K = 4bk
2

. Since S
contains 0, we see that �2K/η2�8rtSk = 275b142k

2Sk contains the interval In := [ 4ηX(n), Kη X(n)].

Remember that here n is any sufficiently large multiple of k. By the choice of K, K
η X(n) =

4
ηX(n+ k), and so these intervals overlap. Thus,

⋃
n In consists of all sufficiently large integers,

and hence, so does 275b142k
2Sk. Finally, one may note that 275 < b12k

2

for b� 3 and k� 2. �

4. Very large values of the Fourier transform

In this section we establish Proposition 2.2. We will in fact establish the following more precise
result.

Proposition 4.1. Let n∈N and let N = bn. Suppose that n� k. Let θ ∈R/Z. Suppose that
|μ̂n(θ)|� 1− 1/4b−3k2

. Then there is a positive integer q� (2k!)b1/2k(k−1)+1 such that ‖θq‖�
(2k!)−1b1/2k(k+1)−1N−k.

Proposition 2.2 is a consequence of this and the observation that the measure of θ ∈R/Z
such that ‖θq‖� ε for some positive integer q� q0 is bounded above by 2εq0.

Proof of Proposition 4.1. SetQ := 2k!bk(k−1)/2+1. Note that, since 2k!� 2k
2/2 � bk

2/2 for all b, k�
2, we have Q� bk

2

. By Dirichlet’s theorem, there is some positive integer q�Q and an a, coprime
to q, such that |θ− a/q|� 1/qQ. Set η := θ− a/q, thus |η|� 1/qQ. There is a unique integer j
such that

1
2bq < |(d2 − d1)k!b

jη|� 1
2q . (4.1)

Now if we had j < k(k− 1)/2 then

|(d2 − d1)k!b
jη|� (b− 1)k!b1/2k(k−1)−1|η|< k!b1/2k(k−1)/qQ= 1/2bq,

contrary to (4.1). If j > kn− k(k+ 1)/2 then, using (4.1),

‖θq‖= |ηq|� |2(d2 − d1)k!b
j |−1 � (2k!)−1b1/2k(k+1)−1N−k,

in which case the conclusion of the proposition is satisfied.
Suppose, then, that k(k− 1)/2� j � kn− k(k+ 1)/2. Then there is a set I ⊂ [0, n), |I|= k,

such that j =
∑

i∈I i. As usual, write x= (xi)i∈[0,n). It is convenient to write xI for the variables
xi, i∈ I and x[0,n)\I for the other variables. For any fixed choice of x[0,n)\I , we can write, setting
u := d1(b

n − 1)/b− 1,

(u+ (d2 − d1)Lb(x))
k =

(
u+ (d2 − d1)

∑
i∈[0,n)

xib
i

)k

= (d2 − d1)k!b
j
∏
i∈I

xi +
∑
i∈I

ψi(x[0,n)\I ; xI)

for some functions ψi, where ψi does not depend on xi. It follows that

|μ̂n(θ)|= |Ex∈{0,1}[0,n)e((u+ (d2 − d1)Lb(x))
k)|

�Ex[0,n)\I∈{0,1}[0,n)\I

∣∣∣∣ExI∈{0,1}I

∏
i∈I

Ψi(x[0,n)\I ; xI)e

(
(d2 − d1)k!b

jθ
∏
i∈I

xi

)∣∣∣∣,
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where Ψi := e(ψi) is a 1-bounded function, not depending on xi. By Proposition A.2 (and the
accompanying definition of the Box norm, Definition A.1) it follows that

|μ̂n(θ)|2k �ExI ,x′
I∈{0,1}Ie

(
(d2 − d1)k!b

jθ
∏
i∈I

(xi − x′i)
)
.

(The right-hand side here is automatically a non-negative real number). On the right, we now
bound all the terms trivially (by 1) except for two: the term with xi = x′i = 0 for all i∈ I, and
the term with xi = 1 and x′i = 0 for all i∈ I. This gives, using the inequality 2− |1 + e(t)|=
4 sin2 π‖t‖/2� 4‖t‖2,

|μ̂n(θ)|2k � 1− 2
4k + 1

4k |1 + e((d2 − d1)k!b
jθ)|

� 1− 22−2k‖(d2 − d1)k!b
jθ‖2. (4.2)

There are now two slightly different cases, according to whether or not q | (d2 − d1)k!b
ja. If this

is the case, then by (4.1),

‖(d2 − d1)k!b
jθ‖= |(d2 − d1)k!b

jη|� 1/2bq.

If, on the other hand, q � (d2 − d1)k!b
ja then by (4.1) we have

‖(d2 − d1)k!b
jθ‖� 1

q − |(d2 − d1)k!b
jη|� 1

2q .

In both cases, ‖(d2 − d1)k!b
jθ‖� 1/2bQ= (4k!)−1b−2− 1

2
k(k−1). It follows from (4.2) that

|μ̂n(θ)|� (1− 22−2k(4k!)−2b−4−k(k−1))1/2
k

< 1− 1
4b

−3k2

,

that is to say, the hypothesis of the proposition is not satisfied. Here, the second inequality
follows from the Bernoulli inequality (1− x)1/2

k � 1− x/2k and the crude bounds k!� bk
2/4,

23k � b2k, both valid for b� 3 and k� 2. �

5. Decoupling

We now turn to the somewhat lengthy task of proving Proposition 2.1. In this section we give
the details of what we called the decoupling argument in the outline of § 2. The main result of
the section is Proposition 5.2 below. We begin with a definition.

Definition 5.1. Let α∈R/Z. Then we define

w̃n(α) :=
∑

i∈[0,n)
‖αbi‖2. (5.1)

The reason for the notation is that w̃n(α) is closely related to the more natural quantity wn(α),
which is the number of nonzero digits among the first n digits after the radix point in the
(centred) base b expansion of α. For a careful definition of this, see § 7. However, w̃n has more
convenient analytic properties.

Now we come to the main result of the section. As we said before, it is a little technical to
state. However, it is rather less technical in the case k= 2, in which case the reader may wish
to compare it with the outline in § 2.
Proposition 5.2. Let n∈N be divisible by k and set N := bn. Suppose that δ ∈ (0, 1] and that
|μ̂n(θ)|� δ. Then there are t1, . . . , tk−1 ∈Z with |tj |�N for all j and a positive integer q0 � bk

2

such that, for at least 1/2δ2
k

2(k−1)n/k choices of x(1), . . . , x(k−1) ∈ {0, 1}[0,n/k), we have
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w̃n

(
θq0

k−1∏
i=1

(Lbk(x
(i)) + ti)

)
� 2kb2k log(2/δ).

Proof. By (1.2) and the definition of the measure μn, we have

μ̂n(θ) =Ex∈{0,1}ne(θ(u+ (d2 − d1)Lb(x))
k), (5.2)

where u := d1(b
n − 1)/(b− 1). The first stage of the decoupling procedure is to split the variables

x into k disjoint subsets of size n/k. If x= (xi)i∈[0,n) ∈ {0, 1}[0,n), for each j ∈ [0, k), we write

x(j) = (xik+j)i∈[0,n/k) ∈ {0, 1}[0,n/k). Then
Lb(x) =

∑
j∈[0,k)

bjLbk(x
(j)). (5.3)

(Note here that Lb is defined on {0, 1}[0,n), whereas Lbk is defined on {0, 1}[0,n/k).) By (5.2) we
have

μ̂n(θ) =Ex(0),...,x(k−1)∈{0,1}[0,n/k)e

(
θ

(
u+ (d2 − d1)

∑
i∈[0,k)

biLbk(x
(i))

)k)
.

Expanding out the kth power and collecting terms, this can be written as

Ex(0),...,x(k−1)∈{0,1}[0,n/k)

( ∏
j∈[0,k)

Ψj(x)

)
e

(
θq0

∏
i∈[0,k)

Lbk(x
(i))

)
,

where

q0 := k!(d2 − d1)
kbk(k−1)/2

and Ψj is some 1-bounded function of the variables x(i), i∈ [0, k) \ {j}, the precise nature of
which does not concern us. The inequality q0 � bk

2

follows using |d1 − d1|� b and the estimate
k!� 3k(k−1)/2, since b� 3.

One may now apply the Cauchy–Schwarz inequality k times to eliminate the functions Ψj in
turn. This procedure is well known from the theory of hypergraph regularity [Gow07] or from
the proofs of so-called generalised von Neumann theorems in additive combinatorics [GT10]. For
a detailed statement, see Proposition A.2. From this it follows that

δ2
k �Ee

(
θq0

∑
ω∈{0,1}[0,k)

(−1)|ω|
∏

i∈[0,k)
Lbk(x

(i)
ωi
)

)
,

where the average is over x
(0)
0 , . . . , x

(k−1)
0 , x

(0)
1 , . . . , x

(k−1)
1 ∈ {0, 1}[0,n/k), and we write ω=

(ωi)i∈[0,k) and |ω|=∑k
i=1 |ωi|. By pigeonhole there is some choice of x

(0)
1 , . . . , x

(k−1)
1 such that

the remaining average over x
(0)
0 , . . . , x

(k−1)
0 is at least δ2

k

. This may be written as

δ2
k � |Ex(0),...,x(k−1)∈{0,1}[0,n/k)e

(
θq0

∏
i∈[0,k)

(Lbk(x
(i)) + ti)

)
|,

where ti :=−Lbk(x
(i)
1 ). It follows that, for at least 1/2δ2

k

2(k−1)n/k choices of x(1), . . . , x(k−1) ∈
{0, 1}[0,n/k), we have

|Ex(0)∈{0,1}[0,n/k)e

(
θq0Lbk(x

(0))

k−1∏
i=1

(Lbk(x
(i)) + ti)

)
|� δ2

k

/2. (5.4)
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Let α∈R/Z be arbitrary. Note that

w̃n(α) =
∑

i∈[0,n−1)

‖αbi‖2 =
∑

j∈[0,k)

∑
i∈[0,n/k)

‖αbj+ik‖2

�
( ∑

j∈[0,k)
b2j
) ∑

i∈[0,n/k)
‖αbik‖2 � b2k

∑
i∈[0,n/k)

‖αbik‖2.

Therefore, using the inequality |1 + e(t)|= 2| cos(πt)|� 2 exp(−‖t‖2), we have

|Ey∈{0,1}[0,n/k)e(αLbk(y))|=
∏

i∈[0,n/k)

∣∣∣∣1 + e(αbik)

2

∣∣∣∣
� exp

(
−

∑
i∈[0,n/k)

‖αbik‖2
)
� exp(−b−2kw̃n(α)).

Combining this with (5.4), Proposition 5.2 follows. �

6. Sums of products of linear forms

We now turn to the next step of the outline in § 2, which we called additive expansion. The main
result of the previous section, Proposition 5.2, is roughly of the form ‘for quite a few m∼Nk−1,
w̃n(θm)� log(2/δ)’. (The reader should not attach any precise meaning to the symbols ∼,�
here.) The shortcoming of the statement as it stands is that the set of m is of size ∼ 2(k−1)n/k,
which is substantially smaller than Nk−1 (recall that N = bn). The aim of this section is to
upgrade the conclusion of Proposition 5.2 to get a much larger set of m. Here is the statement
we will prove.

Proposition 6.1. Set C := b7k
2/2. Suppose that δ ∈ (0, 1] and that k | n. Suppose that |μ̂n(θ)|�

δ and that N � (2/δ)C , where N := bn. Then for at least (δ/2)CNk−1 values of m, |m|�CNk−1,
we have w̃n(θm)�C log(2/δ).

The basic idea of the proof is to take sums of a few copies of the set of m produced in
Proposition 5.2 that (it turns out) expands this set of m dramatically, whilst retaining the
property of w̃n(θm) being small.

We assemble some ingredients. The key input is Theorem 2.3 (see, in addition to § 2,
Appendix B). We will also require some other lemmas of a miscellaneous type, and we turn
to these first.

Lemma 6.2. Let ε, U, V be real parameters with 0< ε� 2−44 and U, V � 64/ε. Suppose that
Ω⊂ [−U, U ]× [−V, V ] has size at least εUV . Then at least ε7UV integers n∈ [−2UV, 2UV ] may
be written as u1v1 + u2v2 with (u1, v1), (u2, v2)∈Ω.

Proof. The conclusion is invariant under applying any of the four involutions (u, v) �→ (±u,±v)
to Ω, so without loss of generality we may suppose that Ω∩ ([0, U ]× [0, V ]) has size at least
εUV/4. It then follows that Ω∩ ([εU/32, U ]× [εV/32, V ]) has size at least εUV/8. Covering
this box by disjoint dyadic boxes [2i, 2i+1)× [2j , 2j+1) contained in [εU/64, 2U ]× [εV/64, 2V ],
we see that there is some dyadic box [U ′, 2U ′)× [V ′, 2V ′), εU/64�U ′ �U , εV/64� V ′ � V , on
which the density of Ω is at least ε/32. Without loss of generality, suppose that U ′ � V ′, and set
X :=U ′V ′ � 1. Set Ω′ := Ω∩ ([U ′, 2U ′)× [V ′, 2V ′)).

For n∈Z, denote by r(n) the number of representations of n as u1v1 + u2v2 with (u1, v1) and
(u2, v2) in Ω′, and by r̃(n) the number of representations as u1v1 + u2v2 with (u1, v1), (u2, v2)∈
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[U ′, 2U ′)× [V ′, 2V ′). Thus, r(n)� r̃(n). By the Cauchy–Schwarz inequality,

(εX/32)4 � |Ω′|4 =
(∑

n

r(n)

)2

� | Supp(r)|
∑
n

r̃(n)2. (6.1)

Now, denoting by ν(n) the number of divisors of n in the range [U ′, 2U ′),

r̃(n)�
∑

m�4X

ν(m)ν(n−m) =
∑

d,e∈[U ′,2U ′)
(d,e)|n

∑
m�4X

d|m,e|n−m

1� 8X
∑

d,e∈[U ′,2U ′)
(d,e)|n

1
[d,e] .

Here, in the last step we used the fact that the set of m satisfying d |m and e | n−m is a single
residue class modulo [d, e] (the lowest common multiple of d and e), whose intersection with the
interval [1, 4X) has size � 1 + 4X/[d, e]� 8X/[d, e] since [d, e]� (2U ′)2 � 4X.

Setting δ := (d, e) and d= δd′, e= δe′, so that [d, e] = δd′e′, it then follows that

r̃(n)� 8X
∑
δ|n

1
δ

∑
d′,e′∈[U ′/δ,2U ′/δ)

1
d′e′ � 8X

∑
δ|n

1
δ .

Since r̃(n) is supported where n� 8X, we have∑
n

r̃(n)2 � (8X)2
∑

n�8X

(∑
δ|n

1

δ

)2

= (8X)2
∑

δ1,δ2�8X

1

δ1δ2

∑
n�8X

1[δ1,δ2]|n

� (8X)2
∑

δ1,δ2�8X

1
δ1δ2

(
8X

[δ1, δ2]
+ 1

)
.

The contribution from the +1 term is � (8X)2(1 + log 8X)2 < 210X3, since X � 1. Since
[δ1, δ2]�

√
δ1δ2, the contribution from the main term is � 28ζ(32)

2X3 < 211X3. It follows that∑
n r̃(n)

2 � 212X3. Comparing with (6.1), we obtain | Supp(r)|� 2−32ε4X � 2−44ε6UV . Since
we are assuming that ε� 2−44, this is at least ε7UV , and the proof is complete. �

Lemma 6.3. Let X � 1 be real, and suppose that S1, . . . , St ⊆ [−X,X] are sets of integers with
|Si|� ηX. Then |⋂t

i=1(Si − Si)|� (η/5)tX.

Proof. We have ∑
h2,...,ht

(∑
x

1S1
(x)1S2

(x+ h2) · · · 1St
(x+ ht)

)
=

t∏
i=1

|Si|� ηtXt.

Since the hi may be restricted to range over [−2X, 2X], which contains at most 5X integers,
there is some choice of h2, . . . , ht so that

∑
x 1S1

(x)1S2
(x+ h2) · · · 1St

(x+ ht)� (η/5)tX. That is,
there is a set S, |S|� (η/5)tX, such that S ⊆ S1 ∩ (S2 − h2)∩ · · · ∩ (St − ht). But then S − S ⊆⋂t

i=1(Si − Si), and the result is proved. �

We now turn to the heart of the proof of Proposition 6.1. The key technical ingredient is the
following.

Proposition 6.4. Let d, r be positive integers with d� 2. Let α∈ (0, 1]. Let m be an integer,
set N := dm and suppose that N � (2/α)(32d)

r

. Suppose that t1, . . . , tr are integers with |tj |�N .
Define Ld : {0, 1}[0,m) → [0, N) as in (1.1). Suppose that A⊂ ({0, 1}[0,m))r is a set of size at least
α2mr. Then at least (α/2)(32d)

r

N r integers x with |x|� (8dN)r may be written as a ± sum of
at most (4d)r numbers

∏r
j=1(Ld(yj) + tj) with (y1, . . . , yr)∈A.
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Proof. It is convenient to write φj(y) :=Ld(y) + tj , j = 1, . . . , r. Note, for further use, the
containment

φj({0, 1}[0,m))⊂ [−2N, 2N ], (6.2)

which follows from the fact that |tj |�N .
Turning to the proof, we proceed by induction on r. In the case r= 1, we can apply

Theorem 2.3. Noting that Ld({0, 1, . . . , d− 1}m) = {0, 1, . . . , N − 1}, we see that at least
αlog2 dN elements of {0, 1, . . . , N − 1} are the sum of d− 1 elements Ld(y1), y1 ∈A. Since, for
any y

(1)
1 , . . . , y

(d−1)
1 ∈A, we have

d−1∑
i=1

φ1(y
(i)
1 ) =

d−1∑
i=1

Ld(y
(i)
1 ) + (d− 1)t1,

we see that at least αlog2 dN elements of [−dN, dN ] are the sum of d− 1 elements φ1(y1), y1 ∈A,
which gives the required result in this case.

Now suppose that r� 2, and that we have proven the result for smaller values of r. For each
yr ∈ {0, 1}[0,m), denote by A(yr)⊆ ({0, 1}[0,m))r−1 the maximal set such that A(yr)× {yr} ⊆A.
By a simple averaging argument there is a set Y of at least (α/2)2m values of yr such that
|A(yr)|� (α/2)2m(r−1). By the inductive hypothesis, for each yr ∈ Y , there is a set

B(yr)⊆ [−(8dN)r−1, (8dN)r−1], (6.3)

with

|B(yr)|� (α/4)(32d)
r−1

N r−1, (6.4)

such that everything in B(yr) is a ± sum of at most (4d)r−1 elements φ1(y1) · · · φr−1(yr−1)
with (y1, . . . , yr−1)∈A(yr). Observe that everything in (B(yr)−B(yr))φr(yr) is then a ±
combination of at most 2(4d)r−1 elements φ1(y1) · · · φr(yr) with (y1, . . . , yr)∈A.

Suppose now that z ∈ (d− 1)φr(Y ) = φr(Y ) + · · ·+ φr(Y ). Note that, by (6.2),

|z|< 2dN. (6.5)

For each such z, pick a representation z = φr(y
(1)
r ) + · · ·+ φr(y

(d−1)
r ) with y

(i)
r ∈ Y for

i= 1, . . . , d− 1, and define S(z) :=
⋂d−1

i=1 (B(y
(i)
r )−B(y

(i)
r )). By (6.3), (6.4) and Lemma 6.3

(taking X := (8dN)r−1, η := (8d)−(r−1)(α/4)(32d)
r−1

and t := d− 1 in that lemma), we have

|S(z)|� 5−(d−1)(8d)−(r−1)(d−2)(α/4)(32d)
r−1(d−1)N r−1

� (α/2)4d(32d)
r−1

N r−1. (6.6)

Here, the second bound is crude and uses the inequality

(2d+ 2)(32d)r−1 � (d− 1) log2 5 + (r− 1)(d− 2) log2(8d),

valid for d� 2 and r� 1 (by a large margin if r > 1).
Note that everything in S(z)z is a ± combination of at most 2(d− 1)(4d)r−1 ele-

ments φ1(y1) · · · φr(yr) with (y1, . . . , yr)∈A. Set Ω :=
⋃

z∈(d−1)φr(Y )(S(z)× {z}). Then Ω⊂
[−U, U ]× [−V, V ] where by (6.3) and (6.5) we can take U := 2(8dN)r−1 and V := 2dN . Now
by Theorem 2.3, and recalling that |Y |� (α/2)2m, we have |(d− 1)φr(Y )|= |(d− 1)Ld(Y )|�
(α/2)log2 dN . From this and (6.6), we have |Ω|� (α/2)4d(32d)

r−1+log2 dN r. Thus, noting that
UV = 23r−1+r log2 dN r, it follows that |Ω|� εUV with

ε := (α/2)4d(32d)
r−1+3r+(r+1) log2 d. (6.7)
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Now we aim to apply Lemma 6.2. For such an application to be valid, we require ε < 2−44, which
is comfortably a consequence of (6.7). We also need that U, V � 64/ε, which follows from (6.7)
and the lower bound on N in the hypotheses of the proposition. Note that if (u1, v1) = (S(z), z),
(u2, v2) = (S(z′), z′)∈Ω then u1v1 + u2v2 = S(z)z′ + S(z′)z′ is a ± combination of at most (4d)r

elements φ1(y1) · · · φr(yr) with (y1, . . . , yr)∈A, and by Lemma 6.2 there are � ε7UV > ε7N r

such elements. To conclude the argument, we need only check that ε7 � (α/2)(32d)
r

, which, using
(6.7), comes down to checking that 4d(32d)r−1 � 7(3r+ (r+ 1) log2 d), which is comfortably true
for all d, r� 2. �

Finally, we are ready for the proof of the main result of the section, Proposition 6.1, which
results from combining Propositions 5.2 and 6.4.

Proof of Proposition 6.1. In the following proof we suppress a number of short calculations,
showing that various constants are bounded by C = b7k

2/2. These calculations are all simple
finger exercises using the assumption that b� 3 and k� 2.

First apply Proposition 5.2. As in the statement of that Proposition, we obtain t1, . . . , tk−1 ∈
Z, |tj |�N such that, for at least 1/2δ2

k

2(k−1)n/k choices of x(1), . . . , x(k−1) ∈ {0, 1}[0,n/k), we
have

w̃n

(
θq0

k−1∏
i=1

(Lbk(x
(i)) + ti)

)
� 2kb2k log(2/δ) (6.8)

for some positive integer q0 � bk
2

. (For the definition of w̃n, see Definition 5.1.) To this conclusion,
we apply Proposition 6.4, taking m := n/k, r := k− 1 and d := bk in that proposition, and taking
A to be the set of all (x(1), . . . , x(k−1)) as just described; thus, we may take α := δ2

k

/2. Note
that N = dm = bn is the same quantity. The reader may check that the lower bound on N
required for this application of Proposition 6.4 is a consequence of the assumption on N in
Proposition 6.1.

We conclude that at least (δ2
k

/4)(32b
k)k−1

Nk−1 > (δ/2)CNk−1 integers x with |x|� (8bkN)k−1

may be written as a ± sum of at most (4bk)k−1 numbers of the form
∏k−1

i=1 (Lbk(x
(i)) + ti), with

(x(1), . . . , x(k−1))∈A. By (6.8), the fact that w̃n(−α) = w̃n(α), as well as the (easily verified)
subadditivity property

w̃n(α1 + · · ·+ αs)� s(w̃n(α1) + · · ·+ w̃n(αs)),

we see that, for all such x, we have

w̃n(θq0x)� (4bk)2(k−1)2kb2k log(2/δ)<C log(2/δ).

Finally, note that for all these x, we have |q0x|� bk
2

(8bk)k−1Nk−1, which is less than CNk−1.
This concludes the proof. �

7. From digital to diophantine

In this section we turn to the final step in the outline of § 2, the aim of which is to convert the
‘digital’ conclusion of Proposition 6.1 to the ‘diophantine’ conclusion of Proposition 2.1. Before
turning to detailed statements, we comment on the notion of a centred base b expansion.

Centred base b expansions. Consider α∈R/Z. Then there are essentially unique choices of
integers αj ∈ (−b/2, b/2] such that

α= α0 + α1b
−1 + α2b

−2 + · · · (mod 1). (7.1)

We call this the centred base b expansion of α(mod 1).
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Let us pause to explain the existence of such expansions. When b is odd, so that (−b/2, b/2] =
{−1/2(b− 1), . . . , 1/2(b− 1)}, the centred expansion may be obtained from the more usual base
b expansion of α+ b/2, noting that b/2 = 1/2(b− 1)(1 + b−1 + b−2 + · · · ). As usual, there is
some ambiguity when all the digits from some point on are 1/2(b− 1); any such number can
also be written with all digits from some point on being −1/2(b− 1). For consistency with
the usual base b expansions, we always prefer the latter representation. When b is even, so
that (−b/2, b/2] = {−1/2(b− 2), . . . , 1/2b}, one instead considers the usual base b expansion of
α+ b(b− 2)/2(b− 1), noting now that b(b− 2)/2(b− 1) = 1/2(b− 2)(1 + b−1 + b−2 + · · · ).
Definition 7.1. Given α∈R/Z, denote by wn(α) the number of nonzero digits among the first
n digits α0, α1, . . . , αn−1 in the centred expansion (7.1).

We record the connection between wn and the ‘analytic’ proxy w̃n, introduced in
Definition 5.1.

Lemma 7.2. Suppose that b� 3. Then w̃n(α)�wn(α)� 16b2w̃n(α).

Proof. Let the centred expansion of α(mod 1) be (7.1), and suppose that αi is a nonzero digit.
We have αbi−1 ≡∑j�0 αi+jb

−j−1(mod 1). However,∣∣∣∣∑
j�0

αi+jb
−j−1

∣∣∣∣� b
2

∑
j�0

b−j−1 = b
2(b−1) �

3
4 ,

and, since αi �= 0, ∣∣∣∣∑
j�0

αi+jb
−j−1

∣∣∣∣� 1
b − b

2

∑
j�1

b−j−1 = b−2
2b(b−1) �

1
4b .

Thus, ‖αbi−1‖� 1/4b and the upper bound follows.
The lower bound is not needed elsewhere in the paper, but we sketch the proof for complete-

ness. Let I := {i : αi �= 0}. Given j, denote by i(j) the distance from j to the smallest element of
I that is greater than j. Then

‖αbj‖=
∥∥∥∥ ∑

i∈I,i>j

αib
−i+j

∥∥∥∥� b
2

∑
m�i(j)

b−m = b2

2(b−1)b
−i(j).

Now square this and sum over j, and use the fact that #{j : i(j) = i}� |I|=wn(α) for all i. �

Remarks. This upper bound breaks down when b= 2, as may be seen by considering α of the
form 1− 2−m. This is the main reason for the restriction to b� 3 in the paper.

Here is the main result of the section.

Proposition 7.3. Let b� 3 be an integer. Let r,M, n be positive integers, and set N := bn. Let
η ∈ (0, 1] be real. Suppose that M,N � b20rη−2. Suppose that θ ∈R, and that wn(θm)� r for
at least ηM values of m∈ [−M,M ]. Then there is some positive integer q� b20rη−2 such that
‖θq‖� b20rη−2M−1N−1.

Before giving the proof, we assemble some lemmas. In the first of these, we will again be
concerned with centred expansions in base b, but this time of integers. Every integer x has a
unique finite-length centred base b expansion

x= x0 + x1b+ x2b
2 + · · · , (7.2)
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with xi ∈ (−b/2, b/2]. To see uniqueness, note that x0 is uniquely determined by x(mod b),
then x1 is uniquely determined by x− x0/b(mod b), and so on. Strictly speaking, we do not
need the existence in this paper but one way to see it is to take the usual base b expansion
and modify from the right. For instance, in base 10 we have, denoting the ‘digit’ −d by d,
6277 = 6283 = 6323 = 14323.

Denote by db(x) the number of nonzero digits in this expansion of x. The set of x for which
db(x)� r is a kind of ‘digital Hamming ball’. As for true Hamming balls [Bon70, KS20], subsets
of this set have little additive structure. Such a result was stated as Proposition 2.4. We recall
the statement now. Recall that, if A⊂Z is a finite set, the additive energy E(A) is the number
of quadruples (a1, a2, a3, a4)∈A×A×A×A with a1 + a2 = a3 + a4.

Proposition 2.4 Let r ∈Z�0. Suppose that A⊂Z is a finite set, all of whose elements have at
most r nonzero digits in their centred base b expansion. Then E(A)� (2b)4r|A|2.
The proof of Proposition 2.4 will proceed by induction. However, to make this work, we need to
prove a more general statement, involving four potentially different sets A1, A2, A3, A4 instead
of just one, as well as the provision for a ‘carry’ in base b arithmetic. Here is the more general
statement, from which Proposition 2.4 follows immediately.

Lemma 7.4. Let r1, r2, r3, r4 ∈Z�0. For each i∈ {1, 2, 3, 4}, suppose that Ai ⊂Z is a finite
set, all of whose elements have at most ri nonzero digits in their centred base b expansion. Let
e∈Z, |e|< b. Then the number of quadruples (a1, a2, a3, a4)∈A1 ×A2 ×A3 ×A4 with a1 + a2 =
a3 + a4 + e is at most (2b)r1+r2+r3+r4 |A1|1/2|A2|1/2|A3|1/2|A4|1/2.
Proof. We proceed by induction on

∑4
j=1 |Aj |+

∑4
j=1 rj , the result being obvious when this

quantity is zero. Suppose now that
∑4

j=1 |Aj |+
∑4

j=1 rj = n> 0 and that the result has been
proven for all smaller values of n. If any of the Aj are empty, or if A1 =A2 =A3 =A4 = {0}, the
result is obvious.

Suppose this is not the case, but that b divides every element of
⋃4

j=1 Aj . Let b
m be the

largest power of b that divides every element of
⋃4

j=1 Aj , this being well defined since this set
contains at least one nonzero element. Then, if the number of quadruples in A1 ×A2 ×A3 ×A4

with a1 + a2 = a3 + a4 + e is nonzero, we must have e= 0, and the number of such quadruples is
the same as the number in 1/bmA1 × 1/bmA2 × 1/bmA3 × 1/bmA4. Thus, replacing Aj by

1
bmAj ,

we may assume that not all the elements of
⋃4

j=1 Aj are divisible by b.

For each j ∈ {1, 2, 3, 4} and for each i∈ (−b/2, b/2], write A
(i)
j for the set of x∈Aj

whose first digit x0 (in the centred base b expansion (7.2)) is i. Write αj(i) for the relative

density of A
(i)
j in Aj , that is to say, |A(i)

j |= αj(i)|Aj |. Any quadruple (a1, a2, a3, a4) with

a1 + a2 = a3 + a4 + e must have aj ∈A(ij)
j , where i1 + i2 ≡ i3 + i4 + e(mod b). Let us estimate

the number of such quadruples (a1, a2, a3, a4) for each quadruple (i1, i2, i3, i4)∈ (−b/2, b/2]4
satisfying this condition.

First note that i1 + i2 = i3 + i4 + e+ e′b for some integer e′, where

|e′|� 1
b (|i1 + i2 − i3 − i4|+ |e|)� 3(b−1)

b < b,

where here we noted that |i1 − i3|, |i2 − i4|, |e|� b− 1. We then have 1/b(a1 − i1) + 1/b(a2 − i2)−
1/b(a3 − i3)− 1/b(a4 − i4) =−e′. Now the set A′

j :=
1
b (A

(ij)
j − ij) is a finite set of integers, all of

whose elements x have db(x)� r′j := rj − 1ij �=0. Note that
∑4

j=1 |A′
j |+

∑4
j=1 r

′
j <
∑4

j=1 |Aj |+∑4
j=1 rj ; if any ij is not zero, this follows from the fact that r′j = rj − 1, whereas if i1 = i2 =
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i3 = i4 = 0 we have
∑4

j=1 |A′
j |=

∑4
j=1 |A(0)

j |<∑4
j=1 |Aj |, since not every element of

⋃4
j=1 Aj is

a multiple of b.
It follows from the inductive hypothesis that the numbers of quadruples (a1, a2, a3, a4) with

a1 + a2 = a3 + a4 + e, and with aj ∈A(ij)
j , j = 1, . . . , 4, is bounded above by

(2b)r1+r2+r3+r4−#{j:ij �=0}
4∏

j=1

|A(ij)
j |1/2.

To complete the inductive step, it is therefore enough to show that∑
i1+i2≡i3+i4+e(mod b)

(2b)−#{j:ij �=0}
4∏

j=1

αj(ij)
1/2 � 1. (7.3)

If e �≡ 0(mod b) then we have #{j : ij �= 0}� 1 for all (i1, i2, i3, i4) in this sum, and moreover
(where all congruences are (mod b))∑

i1+i2≡i3+i4+e

4∏
j=1

αj(ij)
1/2

=
∑

x∈Z/bZ

( ∑
i1+i2≡x+e

α1(i1)
1/2α2(i2)

1/2

)( ∑
i3+i4≡x

α3(i3)
1/2α4(i4)

1/2

)

�
∑

x∈Z/bZ

( ∑
i1+i2≡x+e

α1(i1) + α2(i2)

2

)( ∑
i3+i4≡x

α3(i3) + α4(i4)

2

)
= b,

since
∑

i αj(i) = 1 for each j. Therefore, (7.3) holds in this case.
Suppose, then, that e≡ 0(mod b), which means that e= 0. Then, if i1 + i2 ≡ i3 + i4(mod b)

we either have (i1, i2, i3, i4) = (0, 0, 0, 0), or else #{j : ij �= 0}� 2, and so to establish (7.3) it
suffices to show that

4∏
j=1

αj(0)
1/2 + (2b)−2

∑
i1+i2≡i3+i4(mod b)
(i1,i2,i3,i4) �=(0,0,0,0)

4∏
j=1

αj(ij)
1/2 � 1. (7.4)

Write εj := 1− αj(0). We first estimate the contribution to the sum where none of i1, i2, i3, i4
are zero. We have, similarly to the above (and again with congruences being (mod b)),∑

i1+i2≡i3+i4
i1i2i3i4 �=0

4∏
j=1

αj(ij)
1/2

=
∑

x∈Z/bZ

⎛⎜⎜⎝ ∑
i1+i2≡x
i1i2 �=0

α1(i1)
1/2α2(i2)

1/2

⎞⎟⎟⎠
⎛⎜⎜⎝ ∑

i3+i4≡x
i3i4 �=0

α3(i3)
1/2α4(i4)

1/2

⎞⎟⎟⎠

�
∑

x∈Z/bZ

∑
i1+i2≡x
i1i2 �=0

(
α1(i1) + α2(i2)

2

)⎛⎜⎜⎝ ∑
i3+i4≡x
i3i4 �=0

α3(i3) + α4(i4)

2

⎞⎟⎟⎠
� b

(
ε1 + ε2

2

)(
ε3 + ε4

2

)
< b

4∑
j=1

εj .
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Next we estimate the contribution to the sum in (7.4) from the terms where at least one, but
not all, of i1, i2, i3, i4 are zero. In each such term, at least two ij , ij′ are not zero, say with
j < j′. Fix a choice of j, j′. Then, for each ij , ij′ , there are at most two choices of the other it,
t∈ {1, 2, 3, 4} \ {j, j′}, one of which must be zero and the other then being determined by the
relation i1 + i2 ≡ i3 + i4(mod b). It follows that the contribution to the sum in (7.4) from this
choice of j, j′ is

� 2
∑

ij ,ij′ �=0

αj(ij)
1/2αj′(ij′)

1/2 = 2

(∑
i �=0

αj(i)
1/2

)(∑
i �=0

αj′(i)
1/2

)
� 2bε

1/2
j ε

1/2
j′ � b(εj + εj′),

where in the middle step we used the Cauchy–Schwarz inequality and the fact that
∑

i �=0 αj(i) =

εj . Summing over the six choices of j, j′ gives an upper bound of 3b
∑4

j=1 εj . Putting

all this together, we see that the left-hand side of (7.4) is bounded above by
∏4

j=1(1−
εj)

1/2 + 1/b
∑4

j=1 εj . Using
∏4

j=1(1− εj)
1/2 � 1− 1/2

∑4
j=1 εj , it follows that this is at most 1.

This completes the proof of (7.4), and, hence, of Lemma 7.5. �

Now we turn to the proof of Proposition 7.3.

Proof of Proposition 7.3. Consider the map ψ :R→Z defined as follows. If α(mod 1) has centred
base b expansion as in (7.1), set ψ(α) := α0b

n−1 + · · ·+ αn−2b+ αn−1. Observe that

db(ψ(α)) =wn(α). (7.5)

Note that

‖α− b1−nψ(α)‖�
∑
i�n

b
2b

−i � 3
4b

1−n. (7.6)

Thus, if α1 + α2 = α3 + α4 then

‖b1−n(ψ(α1) +ψ(α2)− ψ(α3)− ψ(α4))‖� 3b1−n.

Note also that, since ψ takes values in Z∩ [−3
4b

n, 34b
n], we have

|ψ(α1) +ψ(α2)−ψ(α3)−ψ(α4)|� 3bn.

Now if x∈Z is an integer with ‖b1−nx‖� 3b1−n and |x|� 3bn then x takes (at most) one of
the 7(6b+ 1) values λbn−1 + λ′, λ∈ {−3b, . . . , 3b}, λ′ ∈ {0,±1,±2,±3}. Denoting by Σ the set
consisting of these 7(6b+ 1) values, we see that ψ has the following almost-homomorphism
property: if α1 + α2 = α3 + α4 then

ψ(α1) +ψ(α2)−ψ(α3)−ψ(α4)∈Σ.

With parameters as in the statement of Proposition 7.3, consider the map π : [−M,M ]→Z
given by

π(m) :=ψ(θm). (7.7)

Since the map m �→ θm is a homomorphism from Z to R, we see that π also has an almost-
homomorphism property, namely that if m1 +m2 =m3 +m4 then

π(m1) + π(m2)− π(m3)− π(m4)∈Σ. (7.8)

Denote by M the set of all m∈ [−M,M ] such that wn(θm)� r. Thus, by the assumptions
of Proposition 7.3, |M|� ηM . Denote A := π(M). By the definition (7.7) of π, (7.5) and the
definition of M, we see that db(a)� r for all a∈A. For a∈A, denote by Xa := π−1(a)∩M the
π-fibre above a. Decompose A according to the dyadic size of these fibres, thus, for j ∈Z�0 set,
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Aj := {a∈A : 2−j−1M < |Xa|� 2−jM}. (7.9)

Denote by Mj ⊂M the points of M lying above Aj , that is to say, Mj :=
⋃

a∈Aj
Xa. Define ηj

by |Mj |= ηjM . Since M is the disjoint union of the Mj , we have∑
j

ηj � η. (7.10)

By (7.9) we have 2−j−1M |Aj |� |Mj |� 2−jM |Aj |, and so

2jηj � |Aj |� 2j+1ηj . (7.11)

Now by a simple application of the Cauchy–Schwarz inequality any subset of [−M,M ] of size
at least εM has at least ε4M3/4 additive quadruples. In particular, for any j ∈Z�0, there are
� η4jM

3/4 additive quadruples in Mj . By (7.8), there is some σj ∈Σ such that, for �
2−10b−1η4jM

3 additive quadruples in Mj , we have

π(m1) + π(m2) = π(m3) + π(m4) + σj . (7.12)

For each j, fix such a choice of σj . Now the number of such quadruples with π(mi) = ai for
i= 1, 2, 3, 4 is, for a fixed choice of a1, . . . , a4, satisfying

a1 + a2 = a3 + a4 + σj , (7.13)

the number of additive quadruples in Xa1
×Xa2

×Xa3
×Xa4

, which is bounded above by
|Xa1

||Xa2
||Xa3

|� 2−3jM3 since three elements of an additive quadruple determine the fourth.
It follows that the number of (a1, a2, a3, a4)∈A4

j satisfying (7.13) is � 2−10b−123jη4j . By (7.11),

this is � 2−13b−1ηj |Aj |3.
Now if S1, S2, S3, S4 are additive sets then E(S1, S2, S3, S4), the number of solutions to

s1 + s2 = s3 + s4 with si ∈ Si, is bounded by
∏4

i=1 E(Si)
1/4, where E(Si) is the number of additive

quadruples in Si. This is essentially the Gowers–Cauchy–Schwarz inequality for the U2-norm;
it may be proven by two applications of the Cauchy–Schwarz inequality or alternatively from
Hölder’s inequality on the Fourier side. Applying this with S1 = S2 = S3 =Aj and S4 =Aj + σj ,
and noting that E(Aj + σj) =E(Aj), we see that E(Aj)� 2−13b−1ηj |Aj |3.

By Proposition 2.4, we have |Aj |� 24r+13b4r+1η−1
j . Comparing with (7.11) gives ηj �

22r+7−j/2b2r+1/2. Take J to be the least integer such that 2J/2 � 22r+9b2r+1/2η−1; then
∑

j�J ηj <
η, and so by (7.10), some Mj , j � J − 1, is nonempty. In particular, by (7.9) there is some value
of a such that |Xa|� 2−JM � 2−4r−20b−4r−1η2M . Fix this value of a and set M′ :=Xa. Thus,
to summarise,

|M′|� 2−4r−20b−4r−1η2M (7.14)

and if m∈M′ then π(m) = a. Note that the condition on M in the statement of Proposition 7.3
implies (comfortably) that |M′|� 2.

Note that, by (7.6) and the definition (7.7) of π, we have that if m∈M′ then

‖θm− b1−na‖� 3
4b

1−n. (7.15)

Pick somem0 ∈M′, and set M′′ :=M′ −m0 ⊂ [−2M, 2M ]. By the triangle inequality and (7.15),
we have

‖θm‖� 3
2b

1−n < 2bN−1 (7.16)

for all m∈M′′. (Recall that, by definition, N = bn.) Replacing M′′ by −M′′ if necessary (and
since |M′′|� 2), it follows that there are at least 2−4r−22b−4r−1η2M integers m∈ {1, . . . , 2M}
satisfying (7.16).
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Now we apply Lemma C.1, taking L= 2M , δ1 = 2bN−1 and δ2 = 2−4r−22b−4r−1η2 in that
result. The conditions of the lemma hold under the assumptions that M,N � b20rη−2 (using
here the fact that b� 3). The conclusion implies that there is some positive integer q� b20rη−2

such that ‖θq‖� b20rη−2N−1M−1, which is what we wanted to prove. �

Finally, we are in a position to prove Proposition 2.1, whose statement we recall now.

Proposition 2.1 Suppose that k� 2 and b� 3. Set B := b6k
2

. Suppose that δ ∈ (0, 1) and that
k | n. Suppose that |μ̂n(θ)|� δ and that N � (2/δ)B, where N := bn. Then there is a positive
integer q� (2/δ)B such that ‖θq‖� (2/δ)BN−k.

Proof. First apply Proposition 6.1. The conclusion is that, for at least (δ/2)CNk−1 values of m,
|m|�CNk−1, we have w̃n(θm)�C log(2/δ), where C := b7k

2/2. By Lemma 7.2, for these values
of m, we have wn(θm)� 16b2C log(2/δ). (For the definitions of w̃n and wn, see Definitions 5.1
and 7.1 respectively.) Now apply Proposition 7.3 with η := (δ/2)CC−1, r= 16b2C log(2/δ)�,
N = bn (as usual) and M :=CNk−1.

To process the resulting conclusion, note that b20rη−2 � (2/δ)C
′
, with

C ′ := 2C + 320b2C log b+ log2(C
2b20)< 321b2C log b < b8C <B.

Proposition 2.1 then follows. �

Appendix A. Box norm inequalities

In this appendix we prove an inequality, Proposition A.2, which is in a sense well known: indeed,
it underpins the theory of hypergraph regularity [Gow07] and is also very closely related to
generalised von Neumann theorems and the notion of the Cauchy–Schwarz complexity in additive
combinatorics. We begin by recalling the basic definition of Gowers box norms as given in [GT10,
Appendix B].

Definition A.1. Let (Xi)i∈I be a finite collection of finite nonempty sets, and denote by XI :=∏
i∈I Xi the Cartesian product of these sets. Let f :XI →C be a function. Then we define the

(Gowers) box norm ‖f‖�(XI) to be the unique non-negative real number such that

‖f‖2|I|
�(XI)

=Ex
(0)
I ,x

(1)
I ∈XI

∏
ωI∈{0,1}I

C|ωI |f(x(ωI)
I ).

Here, C denotes the complex conjugation operator and, for any x
(0)
I = (x

(0)
i )i∈I and x

(1)
I = (x

(1)
i )i∈I

in XI and ωI = (ωi)i∈I ∈ {0, 1}I , we write x
(ωI)
I = (x

(ωi)
i )i∈I and |ωI | :=

∑
i∈I |ωi|.

It is not obvious that ‖f‖�(XI) is well defined, but this is so; see [GT10, Appendix B] for a
proof. Another non-obvious fact, whose proof may also be found in [GT10, Appendix B], is that
‖f‖�(XI) is a norm for |I|� 2. When |I|= 1, say I = {1}, we have ‖f‖�(XI) = |∑x1∈X1

f(x1)|,
which is only a seminorm.

To clarify notation, in the case I = {1, 2} we have

‖f‖4�(X{1,2}) =Ex
(0)
1 ,x

(1)
1 ∈X1

x
(0)
2 ,x

(1)
2 ∈X2

f(x
(0)
1 , x

(0)
2 )f(x

(0)
1 , x

(1)
2 )f(x

(1)
1 , x

(0)
2 )f(x

(1)
1 , x

(1)
2 ).

Here is the inequality we will need. The proof is simply several applications of the Cauchy–
Schwarz inequality, the main difficulty being one of notation.
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Proposition A.2. Suppose that the notation is as in Definition A.1. Suppose additionally that,
for each i∈ I, we have a 1-bounded function Ψi :XI →C that does not depend on the value of
xi, that is to say, Ψi(xI) =Ψi(x

′
I) if xj = x′j for all j �= i. Let f :XI →C be a function. Then we

have

|ExI∈XI

(∏
i∈I

Ψi(xI)

)
f(xI)|� ‖f‖�(XI).

Proof. We proceed by induction on |I|, the result being a tautology when |I|= 1. Suppose now
that |I|� 2, and that we have already established the result for smaller values of |I|. Let α be
some element of I, and write I ′ := I \ {α}. By the Cauchy–Schwarz inequality, the 1-boundedness
of Ψα, and the fact that Ψα does not depend on xα, we have∣∣∣∣ExI∈XI

(∏
i∈I

Ψi(xI)

)
f(xI)

∣∣∣∣2
=

∣∣∣∣ExI′∈XI′Ψα(xI)Exα∈Xα

(∏
i∈I′

Ψi(xI)

)
f(xI)

∣∣∣∣2
�ExI′∈XI′

∣∣∣∣Exα∈Xα

(∏
i∈I′

Ψi(xI)

)
f(xI)

∣∣∣∣2
=Ex

(0)
α ,x

(1)
α ∈Xα

ExI′∈XI′

(∏
i∈I′

Ψi(xI′ , x(0)α )Ψi(xI′ , x
(1)
α )

)
f(xI′ , x(0)α )f(xI′ , x

(0)
α ).

For fixed x
(0)
α , x

(1)
α , we may apply the induction hypothesis (with indexing set I ′) with 1-bounded

functions, i.e.

Ψ̃i(xI′) :=Ψi(xI′ , x(0)α )Ψi(xI′ , x
(1)
α )

and with

f̃(xI′) = f(xI′ , x(0)α )f(xI′ , x
(0)
α ),

noting that Ψ̃i does not depend on xi.
This gives∣∣∣∣ExI∈XI

(∏
i∈I

Ψi(xI)

)
f(xI)

∣∣∣∣2 �Ex
(0)
α ,x

(1)
α ∈Xα

∥∥∥f(·, x(0)α )f(·, x(1)α )
∥∥∥
�(XI′ )

.

By Hölder’s inequality, it follows that∣∣∣∣ExI∈XI

(∏
i∈I

Ψi(xI)

)
f(xI)

∣∣∣∣2|I|

�Ex
(0)
α ,x

(1)
α ∈Xα

∥∥∥f(·, x(0)α )f(·, x(1)α )
∥∥∥2|I|−1

�(XI′ )
.

However, the right-hand side is precisely ‖f‖2|I|
�(XI)

, and the inductive step is complete. �

Appendix B. Sumsets of subsets of {0, 1}n

In this appendix we provide some comments on Theorem 2.3, which seems to have a very
complicated history. In the case r= 2 it is due to Woodall [Woo77], and independently to Hajela
and Seymour [HS85].

In the general case, Theorem 2.3 is a consequence of the following real-variable inequality,
which was conjectured in [HS85].
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Proposition B.1. Let r� 2 be an integer. Suppose that 1� x1 � x2 � · · ·� xr � 0. Then

(x1 · · · xr)γ + (x1 · · · xr−1(1− xr))
γ + · · ·+ ((1− x1) · · · (1− xr))

γ � 1,

where γ := r−1 log2(r+ 1).

The deduction of Theorem 2.3 from Proposition B.1 is a straightforward ‘tensorisation’ argu-
ment, but no details are given in either [BKMP88] or [HS85]. For the convenience of the reader,
we give the deduction below, claiming no originality whatsoever.

Proposition B.1 (and, hence, Theorem 2.3) was established by Landau, Logan and Shepp
[LLS85], and 3 years later but seemingly independently (and in a more elementary fashion) by
Brown, Keane, Moran and Pearce [BKMP88]. A discussion of the history of these and related
problems is given by Brown [Bro88] but this appears to overlook [LLS85].

Finally, we note that a result that is weaker in the exponent than Theorem 2.3, but quite
sufficient for the purpose of proving the qualitative form of Theorem 1.1, follows by an iterated
application of a result of Gowers and Karam [GK22, Proposition 3.1]. This avoids the need for
the delicate analytic inequality in Proposition B.1. Let us also note that the context in which
Gowers and Karam use this result is in some ways analogous to ours, albeit in a very different
setting.

Proof of Theorem 2.3, assuming Proposition B.1. As stated in [BKMP88], one may proceed
in a manner ‘parallel’ to arguments in [BM83], specifically the proof of Lemma 2.6 there. We
proceed by induction on n. First we check the base case n= 1. Here, one may assume without
loss of generality that A1 = · · ·=As = {0, 1} and As+1 = · · ·=Ar = {1} for some s, 0� s� r.
The density of A1 + · · ·+Ar in {0, 1, . . . , r} is then (s+ 1)/(r+ 1), whilst α1 = · · ·= αs = 1 and
αs+1 = · · ·= αr = 1/2. The inequality to be checked is thus (s+ 1)/(r+ 1)� 2−(r−s)γ . However,
taking x1 = · · ·= xs = 1/2 and xs+1 = · · ·= xr = 0 in Proposition B.1 yields (s+ 1)2−sγ � 1.
Since 2rγ = r+ 1, the desired inequality follows.

Now assume the result is true for n− 1. Let A0
i be the elements of Ai with first coordinate 0,

and A1
i the elements of Ai with first coordinate 1. Suppose that |A0

i |= xi|Ai|, and without loss
of generality suppose that x1 � x2 � · · ·� xr. Then the sets A0

1 + · · ·+A0
j +A1

j+1 + · · ·+A1
r ,

j = 0, . . . , r are disjoint, since the first coordinate of every element of this set is j.
It follows that

|A1 + · · ·+Ar|�
r∑

j=0

|A0
1 + · · ·+A0

j +A1
j+1 + · · ·+A1

r |.

Note that A0
i is a subset of a copy {0, 1}n−1 of density 2αixi, and that A1

i is a subset of
(a translate of) {0, 1}n−1 of density 2αi(1− xi).

By the inductive hypothesis,

|A0
1 + · · ·+A0

j +A1
j+1 + · · ·+A1

r |� (2rα1 · · · αrx1 · · · xj(1− xj+1) · · · (1− xr))
γ(r+ 1)n−1

= (r+ 1)n(α1 · · · αr)
γ(x1 · · · xj(1− xj+1) · · · (1− xr))

γ .

Performing the sum over j and applying Proposition B.1, the result follows. �

Appendix C. A diophantine lemma

The following is a fairly standard type of lemma arising in applications of the circle method and
is normally attributed to Vinogradov. We make no attempt to optimise the constants, contenting
ourselves with a version sufficient for our purposes in the main paper.
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Lemma C.1. Suppose that α∈R and that L� 1 is an integer. Suppose that δ1, δ2 are positive
real numbers satisfying δ2 � 32δ1, and suppose that there are at least δ2L elements n∈ {1, . . . , L}
for which ‖αn‖� δ1. Suppose that L� 16/δ2. Then there is some positive integer q� 16/δ2 such
that ‖αq‖� δ1δ

−1
2 L−1.

Proof. Write S ⊆ {1, . . . , L} for the set of all n such that ‖αn‖� δ1; thus, |S|� δ2L. By
Dirichlet’s lemma, there is a positive integer q� 4L and an a coprime to q such that |α− a/q|�
1/4Lq. Write θ := α− a/q; thus,

|θ|� 1

4Lq
. (C.1)

The remainder of the proof consists of ‘bootstrapping’ this simple conclusion. First, we tighten
the bound for q, and then the bound for |θ|.

Suppose that n∈ S. Then, by (C.1), we see that∥∥∥an
q

∥∥∥� δ1 +
1

4q
. (C.2)

Now we bound the number of n∈ {1, . . . , L} satisfying (C.2) in a different way. Divide
{1, . . . , L} into � 1 +L/q intervals of length q. In each interval, an

q (mod 1) ranges over each

rational (mod 1) with denominator q precisely once. At most 2q(δ1 + 1/4q) + 1< 2(δ1q+ 2) of
these rationals x satisfy ‖x‖� δ1 +

1
4q . Thus, the total number of n∈ {1, . . . , L} satisfying (C.2)

is bounded above by 2(L/q+ 1)(δ1q+ 2) = 2δ1L+ 2δ1q+
4L
q + 4. It follows that

2δ1L+ 2δ1q+
4L

q
+ 4� δ2L. (C.3)

Using δ2 � 32δ1, q� 4L and L� 16/δ2, one may check that the first, second and fourth terms on
the left are each at most δ2L/4. Therefore, (C.3) forces us to conclude that 4L/q > δ2L/4, and
therefore, q� 16/δ2, which is a bound on q of the required strength.

Now we obtain the claimed bound on ‖αq‖. Note that, by the assumptions and the inequality
on q just established, we have δ1 � δ2/32� 1/2q, and so if n∈ S then, by (C.2), we have ‖an/q‖<
1/q, which implies that q|n. That is, all elements of S are divisible by q. It follows from this
and the definition of θ that if n∈ S then ‖θn‖= ‖αn‖� δ1. However, since (by (C.1)) we have
|θ|� 1/4Lq, for n∈ {1, . . . , L}, we have ‖θn‖= |θn|. Therefore,

|θn|� δ1 (C.4)

for all n∈ S. Finally, recall that S consists of multiples of q and that |S|� δ2L; therefore, there
is some n∈ S with |n|� δ2qL. Using this n, (C.4) implies that |θ|� δ1/qδ2L, and so finally
‖αq‖� |θq|� δ1/δ2L. This concludes the proof. �
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