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Surface tension gradients of air–liquid–air films play a key role in governing the dynamics
of systems such as bubble caps, foams, bubble coalescence and soap films. Furthermore,
for common fluids such as water, the flow due to surface tension gradients, i.e. Marangoni
flow, is often inertial, due to the low viscosity and high velocities. In this paper, we
consider the localised deposition of insoluble surfactants onto a thin air–liquid–air film,
where the resulting flow is inertial. As observed by Chomaz (2001 J. Fluid Mech. 442,
387–409), the resulting governing equations with only inertia and Marangoni stress
are similar to the compressible gas equations. Thus, shocks are expected to form. We
derive similarity solutions associated with the development of such shocks, where the
mathematical structure is closely related to the Burgers equation. It is shown that the
nonlinearity of the surface tension isotherm has an effect on the strength of the shock.
When regularisation mechanisms are included, the shock front can propagate and late-time
similarity solutions are derived. The late-time similarity solution due to regularisation by
capillary pressure alone was found by Eshima et al. (2025 Phys. Rev. Lett. 134, 214002).
Here, the regularisation mechanism is generalised to include viscous extensional stress.

Key words: thin films, complex fluids, capillary flows

1. Introduction

1.1. Background
Surface tension gradients at liquid–air interfaces induce Marangoni flow (Manikantan &
Squires 2020). Considering such a flow is important in understanding air–liquid–air films,
such as those found on the film cap of surface bubbles, films in foam structures, films
prior to bubble coalescence and soap films. In particular, the bursting of surface bubbles

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1023 A15-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
75

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0003-3381-2999
https://orcid.org/0000-0002-4644-9909
https://orcid.org/0000-0002-9670-0639
mailto:hastone@princeton.edu
mailto:ldeike@princeton.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/jfm.2025.10751


J. Eshima, L. Deike and H.A. Stone

has been widely investigated due to their importance in the environment, such as the
emission of sea spray aerosols, that affect the mass exchange between the atmosphere and
the ocean (Veron 2015; Deike 2022), health (Bourouiba 2021) and industry. Consequently,
understanding the details of why, when and how bubbles burst, along with the emitted
aerosol size distribution, are of practical importance. Currently, localised surface tension
variations on the bubble cap are thought of as the leading candidate for the rupture of the
bubble cap (Néel & Villermaux 2018; Poulain, Villermaux & Bourouiba 2018), which is a
curved air–liquid–air film. Models of thinning of air–liquid–air films due to surface tension
variations have been investigated by various authors (Bowen & Tilley 2013; Kitavtsev,
Fontelos & Eggers 2018; Néel & Villermaux 2018; Eshima et al. 2024, 2025).

In many applications of air–liquid–air films with liquids such as water, the relevant
Marangoni flow is inertial (e.g. bubbles on the ocean). In this paper, we consider the model
problem of the localised deposition of insoluble surfactants onto a thin air–liquid–air
film, otherwise at rest. As observed by Chomaz (2001), the resulting governing equations
accounting only for inertia and Marangoni effects, referred to as the IM regime in this
paper, are closely related to the compressible gas equations upon identifying the surfactant
concentration Γ with the (negative) gas pressure and the thickness of the film with the gas
density. Consequently, finite-time shocks are expected to form, that is, a shock develops
as t → t−∗ for some finite t∗. In this paper, we derive similarity solutions of such shock
formation, where the local problem is seen to simplify effectively to the inviscid Burgers
equation. It is found that the local nonlinearity of the surface tension σ dependence on
the surfactant concentration Γ , given by σ = σ(Γ ), must be accounted for in determining
the shock strength.

With the inclusion of regularisation mechanisms, the shock propagates. Eshima,
Stone & Deike (2025) considered capillary stress as the sole regularisation mechanism
and found the late-time inertia–Marangoni–capillary (IMC) similarity solution of the
propagation. Here, the regularisation mechanism is generalised to include viscous
extensional stress and late-time similarity solutions are found. In other words, we
consider the inertia–Marangoni–capillary–extensional (IMCE), IMC (Eshima et al. 2025)
and inertia–Marangoni–extensional (IME) regimes, where the acronym denotes which
physics are in the dominant balance: inertia (I), Marangoni (M), capillary stress (C) and
extensional stress (E). We derive late-time similarity solutions for the three distinct cases
regimes using a single general approach and investigate the coherent relationship between
the different regimes. In particular, it is shown that the IMC and IME regimes may be
recovered from the IMCE regime in the appropriate limits.

1.2. Thin-film equations
Here, we give the governing thin-film equations considered in this study. Consider an
axisymmetric incompressible Newtonian film with dynamic viscosity μ and density ρ.
Let the radial direction be given by r̂ and the axial direction be given by ẑ. The top
and bottom of the film are given, respectively, by ẑ = ±(1/2)ĥ(r̂ , t̂) with the surfactant
concentration on the top and bottom of the film given by Γ̂ (r̂ , t̂). Assume that the surface
tension σ̂ = σ̂ (Γ̂ (r̂ , t̂ )) depends only on the local surfactant concentration. In other words,
we consider a top–bottom symmetric film. We also ignore the effect of the surrounding air
(see figure 1). Let the radial velocity be given by û. We consider the localised deposition
of insoluble surfactants onto a film otherwise at rest with uniform thickness ĥi . The initial
surfactant distribution is given by Γ̂i (r̂) where Γ̂i → 0 as r → ∞.

The non-dimensionalisation below is given by Eshima et al. (2025). The characteristic
surfactant concentration, horizontal length scale and surface tension deficit are given by
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ẑ

ẑ = (1/2)  ĥ(r̂, t̂ )

r̂

ẑ = –(1/2)  ĥ(r̂, t̂ )

σ̂ = σ̂ (Γ̂ (r̂, t̂ ))

σ̂ = σ̂ (Γ̂ (r̂, t̂ ))

Figure 1. Schematic of a thin film with thickness ĥ(r̂ , t̂); the r̂ axis is in the radial direction, the ẑ axis is in
the axial direction and t̂ is time. The top/bottom of the surface of the film is given by ẑ = ±(1/2)ĥ(r̂ , t̂). The
surfactant concentration at the top/bottom is given by Γ̂ (r̂ , t̂) and surface tension at the top/bottom of the film
is given by σ̂ = σ̂ (Γ̂ (r̂ , t̂)).

(Γ̂m,L, �Σ) =
(

max Γ̂i , π− 1
2

(
NΓ

Γ̂m

) 1
2
, −Γ̂m

dσ̂

dΓ̂

∣∣∣∣
Γ̂ =0

)
, (1.1)

where NΓ = 2π
∫∞

0 r̂ Γ̂ dr̂ is the total amount of surfactant, which is conserved. The
particular convention of the constants in (1.1) is chosen so that the non-dimensional
surfactant concentration, total amount of surfactant and surface tension, respectively
satisfy max Γi = 1, 2π

∫∞
0 rΓ dr = π and σ(Γ ) = −Γ for Γ � 1, which simplifies the

calculations presented in this paper. Then, the non-dimensionalisation for the thin-film
equations is given by

(r̂ , t̂, û, ĥ, Γ̂ , σ̂ ) =
⎛
⎝Lr,

√
ρεL3

�Σ
t,

√
�Σ

ρεLu, εLh, Γ̂mΓ, Σ + �Σσ

⎞
⎠, (1.2)

where ε := ĥi/L is the aspect ratio of the film, assumed small ε � 1 and Σ is the constant
value of the surface tension without surfactants. We consider the case where inertia
and Marangoni stresses are in dominant balance and hence ρĥ(∂ û/∂ t̂) ∼ (∂σ̂ /∂ r̂). We
consider the time scale at which the film thins appreciably, and hence from the kinematic
boundary conditions (∂ ĥ/∂ t̂) = −û(∂ ĥ/∂ r̂) + 2ŵ at ẑ = ±(1/2)ĥ, where ŵ denotes the
vertical velocity, we have (∂ ĥ/∂ t̂) ∼ εû since ŵ ∼ εû from continuity. Then, the horizontal
velocity scale is given by

√
�Σ/(ρεL) and the time scale by

√
(ρεL3)/(�Σ), as

identified by Néel & Villermaux (2018).
The derivation of the thin-film equations is omitted since similar equations have already

appeared in the literature (Erneux & Davis 1993; De Wit, Gallez & Christov 1994;
Howell 1996; Breward 1999; Brenner & Gueyffier 1999; Chomaz 2001; Savva & Bush
2009; Eshima et al. 2024, 2025). In the limit of a thin film, ε � 1, the Navier–Stokes
equations give the one-dimensional thin-film equations. The leading-order radial velocity
is one-dimensional, u = u(r, t), and the non-dimensional thin-film equations are given by

∂u

∂t
+ u

∂u

∂r
= 2

h

∂σ

∂r
+ 1

2M
∂

∂r

(
1
r

∂

∂r

(
r
∂h

∂r

))

+ 4
Re

1
h

(
∂

∂r

(
h

r

∂

∂r
(ru)

)
− 1

2
u

r

∂h

∂r

)
, (1.3a)
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∂h

∂t
= −1

r

∂

∂r
(ruh), (1.3b)

∂Γ

∂t
= −1

r

∂

∂r
(ruΓ ), (1.3c)

where there are two non-dimensional parameters remaining

M := �Σ

ε2Σ
, Re :=

√
ρ�ΣL

εμ2 . (1.4)

Physically, M is a Marangoni number that denotes the balance between Marangoni stress
and capillary pressure gradient (Manikantan & Squires 2020). Similarly, the Reynolds
number Re denotes the balance between inertia and viscous extensional stress. Note that
Eshima et al. (2025) used the notation B =M−1, as the focus was on the capillary waves,
but the use of the notation M is physically more helpful in discussing the transition
between the different regimes in this paper. Another way to group the two parameters
would be to consider an Ohnesorge number Oh = μ/

√
ρΣL= Re−1

√
εM, which has the

benefit of being independent of the change in surface tension �Σ .
It should be noted here that thin-film approaches are typically associated with viscously

dominated flow (Oron, Davis & Bankoff 1997), such as for Marangoni flows of thin liquid
films on a solid substrate (Jensen & Grotberg 1992). However for air–liquid–air films
where the liquid is low viscosity, inertia plays an important role (Néel & Villermaux 2018).
As an example, consider standard properties of water (ρ ≈ 103 kg m−3, μ ≈ 10−3 Pa s),
an aspect ratio of ε = 0.1 and a horizontal length scale L= 10−4 m (typical length scale
of inhomogeneities on soap films and bubble caps). Then, even a small surface tension
variation such as �Σ = 10−4 N m−1, which corresponds to a 0.1 % variation in the
surface tension of water, would lead to Re ≈ 10. For details of surfactant deposition on
an air–liquid–air film in a viscous limit, see Eshima, Deike & Stone (2024).

The intuition for the thin-film equations is as follows. Equations (1.3a), (1.3b) and
(1.3c) are balances of horizontal momentum, and conservation of mass and surfactant,
respectively. Furthermore, the left-hand side of (1.3a) represents the inertia terms, while
the three terms on the right-hand side of (1.3a) are the Marangoni stress, the capillary
pressure gradient and the viscous extensional stress, respectively.

Taking far-field conditions as boundary conditions, the initial and boundary conditions
are then given by

u = 0, h = 1, Γ = Γi (r) at t = 0, (1.5)

and

u = 0, h = 1, Γ = 0 at r = ∞. (1.6)

In this paper, for simplicity in the derivation, we assume an initial surfactant distribution
Γi (r) that decays faster than polynomials (e.g., a Gaussian distribution Γi (r) = e−r2

).
Assuming polynomial decay allows the same derivation (see § 3.5).

In this paper, we consider M and Re greater than or equal to O(1) since we wish to
consider the case where Marangoni and inertia terms are in the dominant balance. For the
thin-film approach to be valid, we also require Re � ε−2 (Chomaz 2001). At Re = O(ε−2),
the flow is no longer one-dimensional. When M= O(1), the capillary pressure gradient is
in the dominant balance and when Re = O(1), viscous extensional stress is in the dominant
balance. As a side note, it would not be physical to consider M	 ε−2, which would imply
negative surface tension (�Σ 	 Σ).
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Then, there are four distinct regions in the parameter space, which are as follows:
IM balance regime (M	 1, 1 � Re � ε−2), IMC balance regime (M= O(1), 1 �
Re � ε−2), IME balance regime (M	 1, Re = O(1)) and IMCE balance regime (M=
O(1), Re = O(1)). For a graphical summary, see figure 2.

1.3. Outline of the paper
The outline of the paper is as follows. In § 2, the similarity solutions for the inertial
surfactant deposition problem without regularisation are given (IM regime). In §§ 3, 4,
the inertial surfactant deposition problem with regularisation due to capillary stress and/or
viscous extensional stress is given (IMCE, IMC and IME regimes). Finally, § 5 discusses
the resolution of singularities that arise.

In this paper we present the derivation of the similarity solutions in their entirety. For
the details of the numerical schemes used to solve the differential equations in the text, see
the supplementary material. For a summary of the identified similarity solutions and the
corresponding scalings, along with the final results of the derivations, see table 1.

2. Inertial surfactant deposition without regularisation: inertial–Marangoni regime
In this section, we consider the IM regime where the dominant balance in the horizontal
component of momentum involves only inertia and Marangoni stresses. Then, the equation
for u is given by

∂u

∂t
+ u

∂u

∂r
= 2

h

∂σ

∂r
, (2.1)

and the equations for h and Γ are given by (1.3b) and (1.3c). In the case of a linear
surface tension isotherm σ(Γ ) = −Γ , Chomaz (2001) noted that (2.1), (1.3b) and (1.3c)
are the compressible Euler equations upon identifying −Γ with the pressure and h with
the liquid density. It is then natural to expect shocks to form. We identify the similarity
solution describing the shock formation and discuss the effect of nonlinear surface tension
isotherms. In reality, the shock is regularised by the presence of other physical effects,
such as capillary pressure and/or viscous extensional stress, as discussed later in the paper
(see §§ 3, 4).

As a side note, since we consider a localised surfactant deposition, the characteristics of
the differential equations should in general cross to form shocks, although we do not give
a formal proof (cf. the condition for the inviscid Burgers equation (∂u/∂t) + u(∂u/∂x) =
0 to form a shock is that the initial condition u(x, 0) = ui (x) contains a point x0 with
(dui/dx)|x=x0 < 0).

An example of the dynamics is given by the numerical solutions of the governing
equations, as shown in figure 3, which illustrates the finite-time shock formation due to
an initial Gaussian surfactant concentration Γi (r) = e−r2

; the arrows in figure 3 depict
the direction of increasing time. The panels in figure 3 show (a) surfactant concentration
Γ , (b) thickness h and (c) horizontal velocity u. The colours for (b, c) correspond to
the Marangoni stress −(2/h)(∂Γ/∂r) (log scaled, values within ±10−2 are set to be
black) and the times shown in (a–c) are t = 0, 0.2, 0.5, 0.8, 1.135. A finite-time shock
singularity occurs (the derivatives become infinite) at t ≈ 1.136, and hence the final time
step shown t = 1.135 is a time just before the shock singularity. Furthermore, to highlight
the rapid variation in the neighbourhood of the shock, the insets to figure 3(a–c) show
a magnified view at t = 1.135 of the shock region. From the curves, it can be seen that,
due to the non-uniform initial surfactant concentration Γ , there is a Marangoni flow away
from r = 0, which is strong enough to cause a finite-time shock to form. It may be noticed
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IMC IM

Increase

M

Increase

Re

Neglect

capillary stress

Increase

M

Neglect

capillary stress

Neglect

extensional stress

Increase

Re
Neglect

extensional stress

r r̄

rt –1/2 r̄τ –1/2

h′ τ
–
1
/
2

h h

h

Self-similar

(t → ∞)

IMCE IME

r r

rt –1/2 rt –1/2

h

h

h

h

h

h

Self-similar

(t → ∞)

Self-similar

(t → ∞)

Self-similar

(t → t –∗)

M = O (1), 1 � Re � ε–2

M = O (1), Re = O (1)

M � 1, 1 � Re � ε–2

M � 1, Re = O (1)

Figure 2. Summary of the parameter space considered in this paper, which investigates the thinning of an
air–liquid–air film due to (insoluble) surfactant deposition. The axes are given by the two non-dimensional
parameters, M= �Σ/(ε2Σ) and Re =√

(ρ�ΣL)/(εμ2), where M is a Marangoni number that denotes the
balance between Marangoni stress and capillary pressure and the Reynolds number Re denotes the balance
between inertia and the viscous extensional stress (see § 1.2 for details). The labels of the regions denote
which physics are in dominant balance. The possible options are inertia (I), Marangoni (M), capillary stress
(C) and extensional stress (E). Similarity solutions are identified in the four regimes. The system is assumed
axisymmetric. The radial coordinate is given by r , time is given by t and the thickness of the liquid film is
given by h(r, t). Late-time similarity solutions t → ∞ are found in the IMCE, IMC and IME regimes, and a
finite-time similarity solution t → t−∗ , where a shock singularity occurs at some finite time t∗, is found in the
IM regime (r is the shock frame, h′ = h − h∗ is the deviation from the value of h at the shock singularity h∗
and τ = (t∗ − t) is the time until the shock singularity). For the late-time similarity solutions, there is a front,
and the asymptotic solution is found by matching between three regions: region I behind the front, region III
ahead of the front and the transition region II. The temporal evolution is shown by colours (light grey to black
as time increases).
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Regime Description and solution Behaviour
[as t → t−∗ for IM, t → ∞ for IMC, IME, IMCE]

IM Singular
(finite time shock formation)

shock formation similarity solution
(2.19)

Shock region width ∼ (t∗ − t)3/2

u − u∗, h − h∗, Γ − Γ∗ ∼ (t∗ − t)1/2

(()∗ denotes values at singularity)

IMC Not singular
late-time similarity solution

Region I: (3.7)
Region II: (3.13)

Region III: (F3–F5)

(uI, hI, ΓI, �rI) ∼ (t−(1/2), t−1, t−1, t1/2)

(�uII, hII, ΓII, �rII) ∼ (t−1, t−(1/2), t−1, 1)

(uIII, hIII, �rIII) ∼ (t−(1/2), 1, t1/2), ΓIII = 0

IME Singular (infinite time shock formation)
late-time similarity solution

Region I: (3.7)
Region II: (3.17)

Region III: (3.25, 3.26, 3.23)

(uI, hI, ΓI, �rI) ∼ (t−(1/2), t−1, t−1, t1/2)

(�uII, hII, ΓII, �rII) ∼ (t−(3/2), 1, t−1, t−(1/2))

(uIII, hIII, �rIII) ∼ (t−(1/2), 1, t1/2), ΓIII = 0

IMCE Not singular
late-time similarity solution

Region I: (3.7)
Region II: (3.13)

Region III: (3.21–3.23)

(uI, hI, ΓI, �rI) ∼ (t−(1/2), t−1, t−1, t1/2)

(�uII, hII, ΓII, �rII) ∼ (t−1, t−(1/2), t−1, 1)

(uIII, hIII, �rIII) ∼ (t−(1/2), 1, t1/2), ΓIII = 0

Table 1. Summary of the similarity solutions in the four regimes (IM, IMC, IME, IMCE). As in the text,
u is the velocity, h is the thickness, Γ is the surfactant, �r is the spatial width and �u is the velocity in
the reference frame of the moving surfactant front r = ηf t1/2 for constant ηf . For the IMC, IME and IMCE
similarity solutions, the subscript Roman numerals refer to the three asymptotic regions identified in the text:
region I is the region behind the moving front, region III is the region ahead of the moving front and region II
is the transition region (see figure 2).

from figure 3 that the shock formation in the evolution of h and u look similar in shape
to the case of shock formation arising from the inviscid Burgers equation (Pomeau et al.
2008; Eggers & Fontelos 2009). Indeed, the shock formation mechanism will be shown to
be closely related to that of the inviscid Burgers equation and hence, for completeness, a
brief review of the Burgers equation is given next in § 2.1.

2.1. Review: inviscid Burgers equation
In this subsection, we review the inviscid Burgers equation and the corresponding similar-
ity solution associated with shock formation. The approach of Eggers & Fontelos (2009)
is followed closely. The inviscid Burgers equation for velocity u = u(x, t) is given by

∂u

∂t
+ u

∂u

∂x
= 0, (2.2)

where x denotes the spatial coordinate and t denotes time. Consider the formation of
a shock at time t∗, occurring at x = x∗ with u∗ = u(x∗, t∗). The mechanism behind
the shock formation can be described as follows. Close enough to the singularity in
space and time, (2.2) is to leading order just a constant speed advection equation
(∂u/∂t) + u∗(∂u/∂x) = 0, which on its own would not lead to shock formation. Instead,
the next-order nonlinearity (u − u∗)(∂u/∂x) gives rise to the shock formation.

It is convenient when there is formation of a front to perform analysis in the frame of
the translating front. Then, in order to investigate the behaviour near the shock in space
and time, the variables u′ := u − u∗, x := x − x∗ + u∗τ and τ := t∗ − t are considered.
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(a)

(b)

(c)

Figure 3. Example of shock formation with surface tension isotherm σ(Γ ) = −Γ and Gaussian initial
surfactant distribution Γi (r) = e−r2

. (a) Surfactant concentration Γ . (b) Thickness h. (c) Horizontal velocity
u. In (b, c), the Marangoni stress −(2/h)(∂Γ/∂r) gives the colour (Crameri 2021) of the curves (log scaled,
values within ±10−2 are set to be black). Times shown in (a–c) are t = 0, 0.2, 0.5, 0.8, 1.135. A finite-time
shock singularity occurs (the derivatives become infinite) at t ≈ 1.136, and hence the final time step shown
t = 1.135 is a time just before the shock singularity. The insets to (a,b,c) show the magnified view of the
solution at t = 1.135. The arrows denote the direction of increasing time.

The definition of τ is chosen such that as t → t−∗ , then τ → 0+. Substitution of the
definitions into (2.2) gives

∂u′

∂τ
− u′ ∂u′

∂x
= 0. (2.3)

A local similarity solution of the shock as τ → 0+ can be found by considering the
self-similarity ansatz (Eggers & Fontelos 2009)

u′ = τα−1 F(ξ), (2.4)

where ξ := xτ−α and the scaling comes from the balance between ∂u′/∂τ and u′(∂u′/∂x).
Note that the constant α � 1 (since u′ does not blow up) cannot be deduced from
scaling analysis alone and is deduced from stability considerations. In other words,
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the self-similarity is of the second kind. Then, (2.3) and (2.4) give

(α − 1)F − αξ
dF

dξ
− F

dF

dξ
= 0, (2.5)

which can be integrated when α − 1 �= 0 to give

ξ = −F − K F
α

α−1 , (2.6)

for some constant K > 0; the case α = 1 gives F = −ξ , which cannot be matched to the
solution away from the singularity (Eggers & Fontelos 2009). There is then a discrete
number of possible α given by the constraint of F being smooth everywhere (α/(α − 1)

needs to be an odd integer). Out of the possible α, it can be shown that only α = 3/2 gives
a stable similarity solution (Eggers & Fontelos 2009). In summary, unravelling definitions,
the similarity solution for the Burgers equation, (2.2), is given by

u = u∗ + (t∗ − t)
1
2 F

(
x − x∗ + u∗(t∗ − t)

(t∗ − t)
3
2

)
, (2.7)

where ξ = −F − K F3 for some constant K > 0.

2.2. Derivation of the similarity solution in the IM regime
In this subsection, we give the derivation of the similarity solution associated with shock
formation in the IM regime. Throughout the derivation, analogies to the Burgers equation
are given (see § 2.1). Consider the formation of a shock at time t∗, occurring at r = r∗ with

(u∗, h∗, Γ∗) := (u(r∗, t∗), h(r∗, t∗), Γ (r∗, t∗)). (2.8)

The singularity values (u∗, h∗, Γ∗, r∗, t∗) are obtained numerically (see supplementary
material) and are taken to be known. In order to investigate the behaviour near the shock,
let

(u′, h′, Γ ′, r ′, τ ) := (u − u∗, h − h∗, Γ − Γ∗, r − r∗, t∗ − t). (2.9)

Then, (2.1), (1.3b) and (1.3c) give

∂u′

∂τ
− (u∗ + u′)∂u′

∂r ′ + 2 dσ
dΓ

(Γ∗ + Γ ′)
h∗ + h′

∂Γ ′

∂r ′ = 0, (2.10a)

∂h′

∂τ
− (u∗ + u′)∂h′

∂r ′ − (h∗ + h′)(u∗ + u′)
r∗ + r ′ − (h∗ + h′)∂u′

∂r ′ = 0, (2.10b)

∂Γ ′

∂τ
− (u∗ + u′)∂Γ ′

∂r ′ − (Γ∗ + Γ ′)(u∗ + u′)
r∗ + r ′ − (Γ∗ + Γ ′)∂u′

∂r ′ = 0. (2.10c)

As τ → 0+, the shock forms and hence the derivative terms become singular (e.g.
|∂u′/∂r ′| → ∞). Then, finite terms such as h∗u∗/r∗ are not leading-order terms. To
leading order, as τ → 0+, (2.10) simplifies to

∂

∂τ

⎡
⎣ u′

h′
Γ ′

⎤
⎦=

⎡
⎢⎣ u∗ 0 V 2

Γ∗
h∗ u∗ 0
Γ∗ 0 u∗

⎤
⎥⎦ ∂

∂r ′

⎡
⎣ u′

h′
Γ ′

⎤
⎦, (2.11)
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where a velocity V is defined

V :=
(

−2 dσ
dΓ

(Γ∗)Γ∗
h∗

) 1
2

. (2.12)

In this work, we only consider (dσ/dΓ )|Γ =Γ∗ < 0, as is physically relevant for surfactants,
and hence V > 0. The leading-order Burgers equation (2.2) is an advection equation and
consequently a change of coordinates is applied. Similarly, the leading-order matrix system
(2.11) is simply a linear advection equation, where the matrix has eigenvalues u∗, u∗ +
V, u∗ − V with corresponding eigenvectors (0, 1, 0), (V, h∗, Γ∗), (V, −h∗, −Γ∗). Thus,
in order to consider local shock formation, we change coordinates to be along a particular
characteristic. The rest of this section considers shock formation along the u∗ + V
characteristic, with space–time coordinates (r , τ ), where r := r ′ + (u∗ + V )τ . The u∗
characteristic has an eigenvector that has a zero Γ component and is not considered. The
similarity solution for the shock formation along the u∗ − V characteristic can be derived
with an analogous method.

Now, we keep account of the order of magnitude of the terms appearing in (2.10)
with respect to τ as τ → 0+. As mentioned, to leading order, (2.10) is a linear advection
equation and hence u′, h′, Γ ′ = O(τβ) for some constant β. Consequently, like the Burgers
equation, the nonlinearity gives rise to the singularity and hence there is a balance
(∂u′/∂τ) ∼ u′(∂u′/∂r). Then, letting r = O(τα) for the characteristic width of the shock
region, β = α − 1. Thus, from the leading-order expansion (2.11), since the u∗ + V
characteristic has eigenvector (V, h∗, Γ∗), we may write

u′ = V (A(r , τ ) + q1τ
α−1 + f1(r , τ )), (2.13a)

h′ = h∗(A(r , τ ) + q2τ
α−1 + f2(r , τ )), (2.13b)

Γ ′ = Γ∗(A(r , τ ) + q3τ
α−1 + f3(r , τ )), (2.13c)

where A = O(τα−1) and f1, f2, f3 are correction terms much smaller than O(τα−1) and
q1, q2, q3 are constants. Since A is a function to be found, without loss of generality,
q3 = −q1 (the explicit change of variables would be ( Ã, q̃i ) = (A + ((q1 + q3)/2)τα−1,
qi − (q1 + q3)/2) for i = 1, 2, 3). Then, substituting (2.13), correct to O(τα−2), into (2.10)
gives (see Appendix A)

V
∂(A + q1τ

α−1)

∂τ
+ V 2

⎛
⎝q2 − q1 − 2 d2σ

dΓ 2 (Γ∗)Γ 2∗
h∗V 2 q1

⎞
⎠ τα−1 ∂ A

∂r

+2 d2σ
dΓ 2 (Γ∗)Γ 2∗

h∗
A

∂ A

∂r
+ V 2

(
∂ f1

∂r
− ∂ f3

∂r

)
= 0, (2.14a)

h∗
∂(A + q2τ

α−1)

∂τ
− V h∗(q1 + q2)τ

α−1 ∂ A

∂r
− 2h∗V A

∂ A

∂r

+V h∗
(

∂ f2

∂r
− ∂ f1

∂r

)
= 0, (2.14b)

Γ∗
∂(A − q1τ

α−1)

∂τ
− 2Γ∗V A

∂ A

∂r
+ V Γ∗

(
∂ f3

∂r
− ∂ f1

∂r

)
= 0. (2.14c)
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Rearranging and combining (2.14a) and (2.14c) gives

∂ A

∂τ
+ V

2

⎛
⎝q2 − q1 − 2 d2σ

dΓ 2 (Γ∗)Γ 2∗
h∗V 2 q1

⎞
⎠ τα−1 ∂ A

∂r
− V

⎛
⎝1 −

d2σ
dΓ 2 (Γ∗)Γ 2∗

h∗V 2

⎞
⎠ A

∂ A

∂r
= 0,

(2.15)
which upon a change of variables

rs :=
r − V

2

(
q2 − q1 − 2 d2σ

dΓ 2 (Γ∗)Γ 2∗
h∗V 2 q1

)
α−1τα

V

(
1 −

d2σ

dΓ 2 (Γ∗)Γ 2∗
h∗V 2

) , (2.16)

gives

∂ A

∂τ
− A

∂ A

∂rs
= 0. (2.17)

Therefore, we have arrived at precisely the inviscid Burgers (2.3). Physically, rs is the
spatial coordinate in the frame of the moving shock. As per § 2.1, α = 3/2 and A has a
similarity solution given by A = τ (1/2)F(η), where η := rsτ

−(3/2) and

η = −F − K F3, (2.18)

for some constant K > 0. Furthermore, by ensuring that the similarity solution may be
matched to the outer region away from the local singularity region, it is possible to deduce
that q1 = q2 = 0 (see Appendix B).

Then, unravelling all the definitions, the similarity solutions for the finite-time
singularity for shock formation along the u∗ + V characteristic (see Appendix C for
u∗ − V case) are given by

u = u∗ + V (t∗ − t)
1
2 F

⎛
⎜⎜⎜⎜⎝

r − r∗ + (u∗ + V ) (t∗ − t)(
1 −

d2σ

dΓ 2 (Γ∗)Γ 2∗
h∗V 2

)
V (t∗ − t)

3
2

⎞
⎟⎟⎟⎟⎠, (2.19a)

h = h∗ + h∗(t∗ − t)
1
2 F

⎛
⎜⎜⎜⎜⎝

r − r∗ + (u∗ + V ) (t∗ − t)(
1 −

d2σ

dΓ 2 (Γ∗)Γ 2∗
h∗V 2

)
V (t∗ − t)

3
2

⎞
⎟⎟⎟⎟⎠, (2.19b)

Γ = Γ∗ + Γ∗(t∗ − t)
1
2 F

⎛
⎜⎜⎜⎜⎝

r − r∗ + (u∗ + V ) (t∗ − t)(
1 −

d2σ

dΓ 2 (Γ∗)Γ 2∗
h∗V 2

)
V (t∗ − t)

3
2

⎞
⎟⎟⎟⎟⎠, (2.19c)

where F is given by (2.18). Corrections are O(t∗ − t) as the shock forms with t → t−∗ .
In summary, like the Burgers equation, the shock region has width O((t∗ − t)3/2) and
u − u∗, h − h∗, Γ − Γ∗ = O((t∗ − t)1/2) in the shock as t → t−∗ .
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The method of translating coordinates along eigenvectors and reducing to Burgers
equation, as shown above, is generalisable to a wider class of hyperbolic coupled partial
differential equations and will be the subject of a future manuscript.

The details of shock formation may now be discussed. From (2.18), we have that
dF/dη = −(1 + 3K F2)−1 and hence

max
∣∣∣∣dF

dη

∣∣∣∣= 1, (2.20)

which in turn gives that

max
∣∣∣∣∂u

∂r

∣∣∣∣=
⎛
⎝1 −

d2σ
dΓ 2 (Γ∗)Γ 2∗

h∗V 2

⎞
⎠

−1

(t∗ − t)−1 as t → t−∗ , (2.21)

where such an expression is useful for verification (see § 2.3) since (2.21) does not
contain any undetermined coefficients (recall that the singularity values such as Γ∗ are
known numerically). Additionally, (2.21) shows that the nonlinearity of the surface tension
isotherm has an effect on the shock formation. More precisely, if the surface tension
isotherm is locally concave (d2σ/dΓ 2)|Γ =Γ∗ < 0, then the shock is weakened, and if the
surface tension isotherm is locally convex (d2σ/dΓ 2)|Γ =Γ∗ > 0, the shock is strengthened.

Another useful expression, to be used in § 2.3 below for the purpose of additional
numerical verification, is that

max
∣∣∣∣∂2u

∂r2

∣∣∣∣= 25
√

15
108

K
1
2 V −1

⎛
⎝1 −

d2σ
dΓ 2 (Γ∗)Γ 2∗

h∗V 2

⎞
⎠

−2

(t∗ − t)−
5
2 as t → t−∗ , (2.22)

since max |d2 F/dη2| = (25
√

15/108)K 1/2 from (2.18). Equation (2.22) is also used to
obtain an estimate for the constant K .

2.3. Verification of the similarity solution
In this subsection, we verify the similarity solution given by (2.19). In particular, a linear
isotherm σ(Γ ) = −Γ with initial surfactant distribution Γi (r) = e−r2

is considered.
Since it is the derivatives (∂u/∂r, ∂h/∂r, ∂Γ/∂r) that become singular, rather than

the variables (u, h, Γ ) themselves, the collapse to the similarity solution is harder to
deduce systematically from seeing the profiles of u, h and Γ alone. Instead, we may
verify the similarity solution using log–log plots to find the exponents. Since we wish
to show two power-law behaviours, u − u∗ ∼ (t∗ − t)1/2 and r = r − r∗ + (u∗ + V )(t∗ −
t) ∼ (t∗ − t)3/2, it is sufficient to check the two predictions (2.21) and (2.22). In figure 4(a)
we plot max |∂u/∂r | versus t∗ − t and in figure 4(b) max |∂2u/∂r2| versus t∗ − t is
reported. Numerical solutions of the thin-film equations are shown by solid curves and
analytical similarity predictions (2.21) and (2.22) are shown by dashed lines. There
are no fitting parameters in figure 4(a). In figure 4(b), K ≈ 0.083 is chosen as the
best fit, which gives an estimate for K for the example shown. Figure 4 shows that,
indeed, (∂u/∂r) ∼ (t∗ − t)−1 and (∂2u/∂r2) ∼ (t∗ − t)−(5/2). The agreement breaks down
at around t∗ − t ≈ 5 × 10−4 due to numerical inaccuracies, arising from issues such as not
knowing t∗ analytically (see supplementary material). This is a standard feature of log–log
plots verifying numerical similarity solutions (Eggers & Fontelos 2015).
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(a) (b)

Figure 4. Systematic verification of the similarity solution for an example with a linear isotherm σ(Γ ) = −Γ

and initial surfactant distribution Γi (r) = e−r2
. The solid curves are the numerical solutions of the IM thin-

film equations and the dashed lines are the similarity solution predictions (2.21, 2.22). (a) Log–log plot of
max |∂u/∂r | (no fitting parameters). (b) Log–log plot of max |∂2u/∂r2|, where K ≈ 0.083 is chosen as the
best fit for the similarity solution prediction (2.22).

The collapse of the profiles for u, h and Γ is shown in figure 5, where the solid curves
plotted have colours corresponding to − log(t∗ − t). Figure 5(a) shows the horizontal
velocity u evolving over time, where the spatial coordinate is given by r = r − r∗ + (u∗ +
V )(t∗ − t). Figure 5(b) shows the rescaled horizonal velocity (u − u∗)V −1(t∗ − t)−(1/2)

versus the rescaled spatial coordinate r V −1(t∗ − t)−(3/2), which is the expected similarity
coordinate as predicted by (2.19a) . Similarly, figure 5(c,e) shows the variables h and Γ

and figure 5(d, f ) displays the rescaled thickness and surfactant concentration versus the
rescaled spatial coordinate. The dashed curve in figure 5(b, d, f ) is x = −y − K y3 (where
the horizontal axis is x and vertical axis is y). The coefficient K ≈ 0.083 is that estimated
from max |∂2u/∂r2| in figure 4(b), as above. We see in figure 5(b,d, f ), respectively, that
the dependent variables u, h and Γ collapse as t → t−∗ , in good agreement with (2.19).
With a more accurate numerical procedure, one could take smaller t∗ − t and also know
u∗, h∗, Γ∗, r∗, t∗ more accurately (see supplementary material).

2.4. Nonlinear effects of the surface tension isotherm
Here, some details of two examples with nonlinear effects of the surface tension
isotherm are discussed. The first example is the Langmuir isotherm, σconcave(Γ ) =
Γ∞ log(1 − (Γ/Γ∞)) with Γ∞ = 1.1, corresponding to a concave isotherm. The prefactor
of σconcave(Γ ) is chosen so that (dσconcave/dΓ )|Γ =0 = −1, which is how the problem was
non-dimensionalised (see 1.2) and the choice of Γ∞ = 1.1 is so that the effects of concavity
can be seen clearly. The second example is convex, σconvex(Γ ) = −Γ0 tanh(Γ/Γ0) with
Γ0 = 0.1. Again, the prefactor is chosen so that (dσconvex/dΓ )|Γ =0 = −1 and the choice
Γ0 = 0.1 is so that the effects of convexity can be seen clearly.

A log–log plot of max |∂u/∂r | as t → t−∗ for the two isotherms σconcave (blue) and
σconvex (pink) is presented in figure 6. Recall that the thin-film equations (solid curves)
solved are given by (2.1), (1.3b) and (1.3c) and the similarity solution prediction (dashed
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Figure 5. Shock formation with isotherm σ(Γ ) = −Γ and initial surfactant distribution Γi (r) = e−r2
. A finite-

time shock forms at t = t∗ (≈ 1.136). Colour bar: the solid curves have colour according to − log(t∗ − t). (a)
The horizontal velocity u with the spatial coordinate given by r = r − r∗ + (u∗ + V )(t∗ − t), which is the
coordinate system moving with the inflection point. (b) The appropriately rescaled horizontal velocity versus
the appropriately rescaled spatial coordinate (i.e. the similarity solution). (c,d,e, f ) Analogous to (a–b) but for
thickness h and surfactant concentration Γ . The dashed curves in (b), (d) and ( f ) are the curve x = −y − K y3

where the horizontal axis is x , the vertical axis is y and K ≈ 0.083 is a constant numerically estimated using
relation (2.22) and figure 4(b).

lines) for max |∂u/∂r | is given by (2.21). The results shown in figure 6 demonstrate
that, indeed, the similarity solution (2.21) accurately captures the nonlinear effects of the
surface tension isotherm. The prediction max |∂u/∂r | = (t∗ − t)−1 (black dashed) is the
prediction for a locally linear isotherm ((d2σ/dΓ 2)Γ =Γ∗ = 0) and so we can see from
figure 6 that, as expected, local concavity (d2σ/dΓ 2)Γ =Γ∗ < 0 weakens the shock and
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Figure 6. Effects of the nonlinearity of surface tension isotherms. Log–log plot of max |∂u/∂r | as predicted
by solution of the thin-film (T-F) equations (2.1), (1.3b), (1.3c) for an example concave isotherm as described
in the text (blue solid). Analogous to an example convex isotherm as described in the text (pink solid).
Initial surfactant distribution is Γi = e−r2

. Corresponding similarity solution (S) predictions (2.21) are shown
in dashed lines for the concave (blue dashed) and convex (pink dashed) cases. For comparison, the line
max |∂u/∂r | = (t∗ − t)−1 is shown also (black dashed). Inset: magnified view of the same log–log plots.

local convexity (d2σ/dΓ 2)Γ =Γ∗ > 0 strengthens the shock, by changing the prefactor of
the blow up of max |∂u/∂r | as t → t−∗ .

For the initial surfactant deposition Γi = e−r2
considered in this section, the effects

of the change of max |∂u/∂r | are moderate. For the concave example discussed,
max |∂u/∂r | ≈ 0.85(t∗ − t)−1 as t → t∗, i.e. only a 15 % decrease of the shock strength,
which is due to the term (d2σ/dΓ 2)|Γ =Γ∗Γ

2∗ /(h∗V 2) being small in magnitude in
(2.21). For the convex example discussed, max |∂u/∂r | ≈ 1.03(t∗ − t)−1 as t → t∗.
Different initial surfactant deposition profiles Γi may give stronger effects. In
particular, it might be mathematically interesting to consider what would happen if
(d2σ/dΓ 2)|Γ =Γ∗Γ

2∗ /(h∗V 2) = 1, where the derivation given in § 2.2 would have to be
amended to account for higher-order terms, since the nonlinear term in (2.15) would
vanish.

3. Inertial surfactant deposition with regularisation: derivation of the late-time
similarity solution

When shock regularisation occurs, the shocks may propagate. Next, we consider two
regularisation mechanisms for the surfactant deposition problem, namely capillary stress
and viscous extensional stress. The three possible combinations of including or excluding
these mechanisms (IMCE, IMC and IME regimes) allow for late-time similarity solutions
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Figure 7. Sample evolution due to surfactant deposition for the IMCE (1.3) with σ(Γ ) = −Γ , Γi = e−r2
,

M= 1, Re = 10. The horizontal axes are given by the radial coordinate r . (a) Surfactant concentration Γ .
(b) Thickness h. (c) Horizontal velocity u. Times shown are t = 0, 1, 5, 10, 50, where the arrows denote
increasing time. The Marangoni stress −(2/h)(∂Γ/∂r) gives the colour (Crameri 2021) of the curves (log
scaled, values within ±0.1 are set to be black). At late times, it can be seen that there are three regions: region
I with a spatially uniform surfactant concentration, region III without surfactants and a transition region II that
regularises the surfactant front. The figure is the analogue of figure 2 in (Eshima et al. 2025), but using the
IMCE equations rather than the IMC (3.2, 1.3b, 1.3c).

of the surfactant front propagation. Since only late-time behaviour is considered, without
loss of generality, σ(Γ ) = −Γ as Γ � 1 everywhere at late times (since the surfactant
spreads and hence σ(Γ ) ≈ (dσ/dΓ )|Γ =0Γ = −Γ ).

The solution of the thin-film equation, (1.3), with M= 1, Re = 10 and Γi (r) = e−r2
is

reported in figure 7. At late times t 	 1, there are three distinct regions: region I has a
spatially uniform surfactant distribution (i.e. the Marangoni stress has vanished), region II
is a transition region (i.e. regularisation) and region III has no surfactants.

For the IMC regime, where capillary stress is the sole regularisation mechanism,
the late-time similarity solutions were identified by Eshima et al. (2025) through
asymptotic matching between the three regions, where region II is the inner region where
regularisation occurs and regions I and III are the outer regions to be matched. In this
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paper, we find that this method may be generalised, with key differences in region II,
where regularisation occurs.

In this section we derive the late-time similarity solution for inertial surfactant
deposition in the IMCE regime, where both capillary stress and extensional stress appear
in the dominant balance. The IME and IMC regimes may be identified as limits of the
IMCE regime. In § 3.1, we present the outer regime scalings and in §§ 3.2, 3.3 and 3.4,
respectively, the solutions in regions I, II and III are derived.

Henceforth, we will refer to the IMCE regime equations, corresponding to M= O(1)

and Re = O(1), as conservation of mass (1.3b) and surfactant (1.3c), with conservation of
momentum given by

∂u

∂t
+ u

∂u

∂r
= −2

h

∂Γ

∂r
+ 1

2M
∂

∂r

(
1
r

∂

∂r

(
r
∂h

∂r

))

+ 4
Re

1
h

(
∂

∂r

(
h

r

∂

∂r
(ru)

)
− 1

2
u

r

∂h

∂r

)
. (3.1)

The IMC regime equations, corresponding to M= O(1) and 1 � Re � ε−2, are given
by conservation of mass (1.3b) and surfactant (1.3c), with conservation of momentum
given by

∂u

∂t
+ u

∂u

∂r
= −2

h

∂Γ

∂r
+ 1

2M
∂

∂r

(
1
r

∂

∂r

(
r
∂h

∂r

))
. (3.2)

The IME regime equations, corresponding to M	 1 and Re = O(1), are given by conser-
vation of mass (1.3b) and surfactant (1.3c), with conservation of momentum given by

∂u

∂t
+ u

∂u

∂r
= −2

h

∂Γ

∂r
+ 4

Re
1
h

(
∂

∂r

(
h

r

∂

∂r
(ru)

)
− 1

2
u

r

∂h

∂r

)
. (3.3)

3.1. Scalings
The scaling for the outer regions is the same for the IMCE, IMC and IME regimes and may
be derived as follows. Subscripts are used to denote the region under discussion. Let �r
denote the characteristic width of a given region. In region III, balancing inertia with the
capillary stress gradient and/or viscous extensional stress, uIIIt−1 ∼ hIII(�rIII)

−3 and/or
uIII(�rIII)

−2. Additionally, considering conservation of mass, and far-field matching,
hIII → 1, gives that uIII ∼ t−(1/2), hIII ∼ 1, �rIII ∼ t1/2. Integrating across region II, where
there is a quasi-static balance between Marangoni, capillary and/or extensional stress
(analogous to Rankine–Hugoniot jump conditions), one deduces that ΓI ∼ h2

III(�rIII)
−2

and/or hIIIuIII(�rIII)
−1, which implies that ΓI ∼ t−1. Since

∫∞
0 Γ rdr is constant, �rI ∼

t1/2. Conservation of mass then gives uI ∼ �rIt−1 and hence uI ∼ t−(1/2). Since Γ h−1 is
conserved in Lagrangian coordinates (D3), then hI ∼ t−1. In summary,

(uI, hI, ΓI, �rI) ∼ (t−
1
2 , t−1, t−1, t

1
2 ), (3.4)

and

(uIII, hIII, �rIII) ∼ (t−
1
2 , 1, t

1
2 ), (3.5)

with ΓIII = 0.
The summary of the dominant balance in each of the regions is as follows. The balance

will be more precisely discussed in the derivation. Region I is where the surfactant
concentration is uniform (to leading order), as there are no terms which would balance
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the Marangoni stress arising from a non-uniform surfactant concentration. In the IMCE
and IMC regimes, the Marangoni stress balances the capillary stress in region II. In the
IME regime, the Marangoni stress balances the viscous extensional stress in region II.
Inertia does not appear in region II due primarily to the presence of sharp gradients (e.g.
the capillary term in (3.1) has third-order spatial derivatives). Region III is where inertia
balances capillary stress and/or viscous extensional stress, as there are no surfactants.

3.2. Region I
Expecting a similarity solution, region I is given by 0 � r t−(1/2) < ηf for some ηf =
ηf (M, Re). The similarity coordinate is then given by η := η−1

f r t−(1/2) ∈ [0, 1). With the
scalings of region I, conservation of momentum (any one of (3.1–3.3)) to leading order
gives

∂ΓI

∂r
= 0. (3.6)

The solution to (3.6), (1.3b) and (1.3c) using global conservation of surfactant
∫∞

0 Γ rdr =
1/2 shows that

uI = ηf t−
1
2
η

2
, hI = η−2

f t−1 f (η), ΓI = η−2
f t−1, (3.7)

where η ∈ [0, 1) and f is given by (using (D4) and (D5))

1 = Γi

((
2
∫ η

0
η′ f (η′)dη′

) 1
2
)

f (η). (3.8)

Since f is minimal where Γi is maximal (3.8), it then follows that min f = 1 and hence

hmin = η−2
f t−1. (3.9)

Finally, in order for the thickness profile hI in region I to match onto region II, hI is
singular as the end of region I is approached, η → 1−. By considering the limits η → 1−
of (3.8), it can be shown that f ∼ (1 − η)−1 as η → 1− (see Appendix D.1). Then, hI ∼
t−1(1 − η)−1 = ηf t−(1/2)(ηf t1/2 − r)−1 as η → 1−.

3.3. Region II
Region II is the transition region between regions I and III, where regularisation of the
surfactant front occurs. In order to analyse region II, it is useful to consider the reference
frame of the shock propagating at spatial location rf = ηf t1/2 , with the spatial coordinate
given by �rII := rII − ηf t1/2 and velocity given by �uII := uII − (1/2)ηf t−(1/2).

The scalings for region II may be derived as follows. By using conservation of
mass and surfactant (1.3b, 1.3c) and matching h (note hI ∼ ηf t−(1/2)(ηf t1/2 − r)−1 as
rη−1

f t−(1/2) → 1−) and Γ onto region I,

(�uII, hII, ΓII) ∼ (�rIIt
−1, (�rII)

−1t−
1
2 , t−1). (3.10)

Then, we may compare the different terms in the momentum balance (3.1–3.3). First,
the inertial term has order O(�uIIt−1) ∼ (�rII)t−2 � t−(3/2) (as �rII is a smaller than
�rI ∼ t1/2), the Marangoni stress term has order O(ΓII(hII�rII)

−1) ∼ t−(1/2), the capillary
stress term has order O(hII(�rII)

−3) ∼ (�rII)
−4t−(1/2) and the viscous extensional stress

term has order O(�uII(�rII)
−2) ∼ (�rII)

−1t−1. In particular, the inertial term does not
appear in region II to leading order.
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Then, in the IMC regime, the leading-order momentum balance in region II is between
Marangoni and capillary stresses. Hence, the above scalings give �rII ∼ 1. In the IME
regime, the leading-order momentum balance in region II must be between Marangoni
and extensional stresses, and hence �rII ∼ t−(1/2). Finally, in the IMCE regime, the
leading-order momentum balance in region II is between Marangoni and capillary stresses
(since balancing Marangoni and extensional stresses gives �rII ∼ t−(1/2), which gives the
capillary stress term ∼ t3/2 	 t−1), and hence �rII ∼ 1. In particular, the long-wavelength
approximation will fail to hold for the IME regime as t → ∞ since �rII → 0 (see § 5 for
a discussion).

3.3.1. First case (IMCE, IMC regimes): Marangoni–capillary stress balance
As above, the scalings discussed for the IMCE and IMC regime are given by

(�uII, hII, ΓII, �rII) ∼ (t−1, t−
1
2 , t−1, 1). (3.11)

Then, the momentum balance (3.1) and (3.2) becomes, at leading order,

2
hII

∂ΓII

∂�rII
= 1

2M
∂3hII

∂(�rII)3 , (3.12)

which integrates with respect to �rII to give

ΓII − η−2
f t−1 = 1

4M

(
hII

∂2hII

∂(�rII)2 − 1
2

(
∂hII

∂�rII

)2
)

, (3.13)

where the spatially constant term η−2
f t−1 is deduced by matching onto the region I solution

(3.7). In particular, since ΓIII = 0 (region III does not contain surfactants),

− η−2
f t−1 = lim

II→III

1
4M

(
hII

∂2hII

∂(�rII)2 − 1
2

(
∂hII

∂�rII

)2
)

, (3.14)

where limII→III denotes the limit as region III is approached from region II.

3.3.2. Second case (IME regime): Marangoni–extensional stress balance
As explained, the scalings in the IME regime are given by

(�uII, hII, ΓII, �rII) ∼ (t−
3
2 , 1, t−1, t−

1
2 ). (3.15)

Then, the momentum balance (3.3) becomes, at leading order,

2
hII

∂ΓII

∂�rII
= 4

Re

(
∂2�uII

∂�r2
II

+ 1
hII

∂�uII

∂�rII

∂hII

∂�rII
+ 1

4hIIt

∂hII

∂�rII

)
, (3.16)

which integrates with respect to �rII as

ΓII − η−2
f t−1 = 1

Re

(
2hII

∂�uII

∂�rII
+ hII

2t

)
. (3.17)

In particular,

− η−2
f t−1 = lim

II→III

1
Re

(
2hII

∂�uII

∂�rII
+ hII

2t

)
, (3.18)

where limII→III denotes the limit as region III is approached from region II.
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3.4. Region III
Region III is the region ahead of the front where there is no surfactants and hence Γ = 0.
Due to the need to match onto region II, § 3.3, the derivation of the structure of region
III also has to consider two different cases. The first case considers the IMCE and IMC
regimes, which contain capillary stress terms, where the IMC similarity solutions can
directly be seen to be obtainable from the IMCE similarity solutions in the limit Re 	 1.
The second case considers the IME regime, which does not contain a capillary stress
term; as shown in § 3.3 the absence of these higher derivatives changes the details of
region II and hence the matching onto region III. Not containing the curvature gradient
term ∂3h/∂r3 also changes the order of the ordinary differential equations (ODEs) of the
similarity solutions. Thus, obtaining the IME regime similarity solutions directly from the
IMCE similarity solutions is not trivial, but is shown to indeed be the case in § 4.

3.4.1. First case (IMCE, IMC regimes)
The similarity ansatz is given by

uIII = ηf t−
1
2 U (η), hIII = H(η), (3.19)

where η ∈ (1, ∞). Substitution of the self-similarity ansatz (3.19) into the IMCE
momentum (3.1) gives

−1
2

U − 1
2
η

dU

dη
+ U

dU

dη
= 1

2η4
f M

d

dη

(
1
η

d

dη

(
η

dH

dη

))

+ 4
Reη2

f

1
H

(
d

dη

(
H

η

d

dη
(ηU )

)
− 1

2
U

η

dH

dη

)
. (3.20)

Then, defining (J, K ) := (dH/dη, d2 H/dη2) and using (1.3b) gives the similarity
solutions for the IMCE regime as a system of ODEs for (U, H, J, K )

dU

dη
=
(η

2
− U

) J

H
− U

η
, (3.21a)

dH

dη
= J, (3.21b)

dJ

dη
= K , (3.21c)

dK

dη
= − K

η
+ J

η2 + 2η4
f M

(
−U

2
+
(

U − η

2

) ((η

2
− U

) J

H
− U

η

))

− 8η2
f M
Re

((
1
2

+ U

2η
−
(η

2
− U

) J

H

)
J

H
+
(η

2
− U

) K

H

)
, (3.21d)

where (3.21d) is obtained by repeatedly using (3.21a) to eliminate derivatives of U in
(3.20). By matching onto region II, the behaviour near the left boundary condition at
η = 1 + δ for δ � 1 can be deduced to satisfy (see Appendix E.1)
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U (1 + δ) = 1
2

+ . . . , (3.22a)

H(1 + δ) = √
8Mδ − η2

f M
Re

δ2 log δ + qδ2 + . . . , (3.22b)

J (1 + δ) = √
8M− 2η2

f M
Re

δ log δ − η2
f M
Re

δ + 2qδ + . . . , (3.22c)

K (1 + δ) = −2η2
f M
Re

log(δ) − 3η2
f M
Re

+ 2q + . . . , (3.22d)

for some constant q.
In summary, the similarity solution for region III can be obtained numerically via a

shooting algorithm as follows. First, guess some values ηf , q. Then, consider the left
boundary condition (3.22) to be at η = 1 + δ for some δ � 1 (chosen small enough so
that the result is independent of δ). Then, integrate η → ∞ subject to (3.21). The process
is repeated by adjusting the two constants ηf and q towards satisfying the two constraints

H(∞) = 1 and
∫ ∞

1
(H − 1)ηdη = 1

2
, (3.23)

where the second constraint is from global conservation of mass (see Appendix E.1), which
shows that the mass that was located in region I at t = 0 must be in region III.

The IMC similarity solutions may be obtained directly from the IMCE similarity
solutions in the limit that Re 	 1, thereby omitting the Re−1 terms (3.21–3.23); see
Appendix F for the exact details.

3.4.2. Second case (IME regime)
The similarity ansatz for the IME regime is still given by (3.19) and when substituted into
(3.3) gives

− 1
2

U − 1
2
η

dU

dη
+ U

dU

dη
= 4

Reη2
f

1
H

(
d

dη

(
H

η

d

dη
(ηU )

)
− 1

2
U

η

dH

dη

)
. (3.24)

Then, letting J = dH/dη and using (1.3b) gives the similarity solutions for the IME regime
as a system of ODEs for (U, H, J )

dU

dη
=
(η

2
− U

) J

H
− U

η
, (3.25a)

dH

dη
= J, (3.25b)

dJ

dη
=
⎛
⎝ 1 + U

η

2
(

U − 1
2η
) + J

H

⎞
⎠ J

+ Reη2
f

4

⎛
⎝ HU

2
(

U − 1
2η
) +

(
U − η

2

)
J + HU

η

⎞
⎠, (3.25c)

where (3.25a) is used repeatedly to eliminate derivatives of U in (3.24). By matching onto
region II, the behaviour near the left boundary condition at η = 1 + δ for δ � 1 can be
deduced to satisfy (see Appendix E.2)
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U (1 + δ) = 1
2

− 1
2
δ + . . . , (3.26a)

H(1 + δ) = 2Reη−2
f − 4q̃δ

1
4 + . . . , (3.26b)

J (1 + δ) = −q̃δ− 3
4 + . . . , (3.26c)

for some constant q̃ to be found. For the IME regime, it is difficult to see from (3.25,
3.26) alone that the IME regime may be recovered upon taking the limit M→ ∞ of
the IMCE regime (3.22), which makes sense, given that the regularisation mechanism
is fundamentally different in between the IME (§ 3.3.2) and IMCE regimes (§ 3.3.1).
However, it is shown in § 4 that the IME regime may in fact be obtained from the IMCE
regime in the limit M→ ∞.

In summary, the similarity solution for region III can once again be found via the
shooting algorithm, for two parameters ηf , q̃ , with the far-field conditions (3.23).

3.5. Initial surfactant concentration distribution with polynomial decay
In this subsection, we discuss the case where the initial surfactant distribution Γi (r) ∼ r−α

as r → ∞. Since the amount of added surfactant is finite, it follows that α > 2 (consider∫∞
0 rΓi (r)dr ). The assumption of Γi (r) decaying faster than polynomial corresponds to

α = ∞ in the below expressions, which recovers the exact expressions in the rest of the
paper. Note that the arguments by Eshima et al. (2025) inadvertently had only dealt with
the case α = ∞.

From (3.7), we have that the thickness in region I is given by h = η−2
f t−1 f (η) with

f given by (3.8). Then, f ∼ (1 − η)−1−2(α−2)−1
as η → 1− (analogous method as in

Appendix D). Then, the scaling of region II (3.10) becomes

(�uII, hII, ΓII) ∼ (
�rIIt

−1, |�rII|−1−2(α−2)−1
t−

1
2 +(α−2)−1

, t−1). (3.27)

By considering dominant force balance arguments in region II, as in § 3.3, it can be
shown that the dominant balance in region II for the IMC and IMCE regimes is still given
by Marangoni and capillary stresses with (3.11) modified to

(�uII, hII, ΓII, �rII) ∼ (
t−1+(2α−2)−1

, t−
1
2 +(2α−2)−1

, t−1, t (2α−2)−1)
. (3.28)

Similarly, the dominant balance in region II for the IME regime is still given by
Marangoni and extensional stresses with (3.15) modified to

(�uII, hII, ΓII, �rII) ∼ (
t−

3
2 +2α−1

, 1, t−1, t−
1
2 +2α−1)

. (3.29)

Since the dominant force balance in region II does not change, the solutions shown in
the text still follows (see the solution column in table 1).

4. Inertial surfactant deposition with regularisation: verification
In this section, the similarity solutions are verified. First, in § 4.1, the similarity solutions
are verified by comparing with the numerical solution of the original thin-film equations in
each regime. Then, in § 4.2, it is shown that the self-similarity solutions are self-consistent
with each other, in that the IMC and IME similarity solutions agree with the appropriate
limits of the IMCE similarity solutions.
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4.1. Comparison with numerical solutions of the thin-film equations
In this section, we verify and discuss the similarity solutions obtained in § 3 using the thin-
film equations. The verification is done by checking that the similarity solutions accurately
capture the three physical predictions from the thin-film equations in the late-time limit: i)
film thinning (t−1), ii) front propagation (t1/2) and iii) capillary wave characteristics.

In figure 8 we compare the IMCE thin-film equations (solid curves) with the similarity
solutions (dashed curves), where (a,c,e,g) show the time evolution of the minimum
thickness hmin and (b,d, f ,h) show the time evolution of the location of the surfactant
front rf for (M, Re) ∈ {0.1, 1, 10} × {1, 4, 10, 40}. As previously derived, the similarity
solution predicts hmin = η−2

f t−1 and rf = ηf t1/2. As expected, for late times, t 	 1, the
agreement between the similarity solution and the thin-film equations is good. Similarly,
in figure 9 we compare the thickness profile for the thin-film equations at t = 1000 (solid
curves) with the similarity solutions (dotted curves). The horizontal and vertical axes
are given by r t−(1/2) and h. Figure 9(a–l) shows the result of a parameter sweep for
(M, Re) ∈ {0.1, 1, 10} × {1, 4, 10, 40}. The agreement between the thin-film equations
and the similarity solution is once again robust for the whole parameter space. There are no
fitting parameters used in figures 8 and 9 and the similarity solutions therefore capture the
desired physical results accurately. The same verification between the thin-film equations
and the similarity solutions may be done for the IMC and IME equations and are given in
Appendix G.

4.2. Self-consistency of the similarity solutions
We also verify that the IMC and IME regimes are obtained from expected limits of the
IMCE regime. Since all three regimes have a front at radial coordinate rf (t) = ηf t1/2 as
t → ∞, we may compare the value of the prefactor ηf . Figure 10(a) shows ηf (M, Re) as
obtained from the similarity solution ODEs in the IMCE regime (see § 3.4.1) versus Re
for M= 0.1, 1, 10 (purple, orange, blue–green solid curves) and compares with ηf (M=
0.1), ηf (M= 1), ηf (M= 10) (purple, orange, blue–green dotted lines) as obtained from
the similarity solution ODEs in the IMC regime (see Appendix F). Panel (b) shows
ηf (M, Re) as obtained from the similarity solution ODEs in the IMCE regime (see § 3.4.1)
versus M for Re = 1, 4, 10 (light grey, grey, dark grey solid curves) and compares with
ηf (Re = 1), ηf (Re = 4), ηf (Re = 10) (light grey, grey, dark grey dotted lines) as obtained
from the similarity solution ODEs in the IME regime (see § 3.4.2). From figure 10(a), the
IMCE regime prediction for ηf agrees well with the IMC regime prediction in the limit
Re → ∞; similarly, panel (b) shows that the IMCE regime prediction for ηf agrees well
with the IME regime prediction in the limit M→ ∞. In other words, the relation

lim
Re→∞ ηIMCE

f (M, Re) = ηIMC
f (M) and lim

M→∞ ηIMCE
f (M, Re) = ηIME

f (Re) (4.1)

has been verified (although no formal proof is given).
The late-time similarity solution has been found for inertial surfactant deposition with or

without capillary stress and/or extensional stress in the momentum balance, by considering
the three possible dynamical regimes IMCE, IMC and IME.

The scalings of the regions I and III away from the surfactant front are the same for
all three regimes. However, the details differ in both regions I and III. For the uniform
surfactant region I, the value of the coefficient ηf , which sets the location of the surfactant
front (rf = ηf t1/2) and the minimum thickness (hmin = η−2

f t−1), is dependent on the
precise value of M and Re. For the capillary wave region III, as Re increases, there is
less viscous damping of the capillary waves and as M increases, the thickness profile
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Figure 8. Comparison of the time evolution (a,c,e,g) of the minimum thickness hmin and (b,d, f ,h) the location
of the surfactant front rf , when comparing the similarity solution (dashed), and the IMCE thin-film equations
(solid). For reference, the similarity solution predicts hmin = η−2

f t−1 and rf = ηf t1/2. The comparison is
obtained for (M, Re) ∈ {0.1, 1, 10} × {1, 4, 10, 40}. The curves are coloured according to M= 0.1, 1, 10
(purple, orange and blue–green, respectively) and shaded according to Re = 1, 4, 10, 40 (light to dark). As
expected, for t 	 1, the numerical solutions to the thin-film equation approach the similarity solutions.
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Figure 9. Comparison of the thickness profiles predicted by the thin-film equations at t = 1000 (solid curves)
and the similarity solutions (dotted curves) for various M, Re. Thin-film equations are solved for Γi = e−r2

.
The horizontal and vertical axes are given by r t−(1/2) and h, where r is the radial coordinate, t is time and h is
the thickness. The curves are coloured according to M= 0.1, 1, 10 (purple, orange, blue–green, respectively)
and shaded according to Re = 1, 4, 10, 40 (light to dark). (a–l) Parameter sweep for (M, Re) ∈ {0.1, 1, 10} ×
{1, 4, 10, 40}.

bump becomes sharper, which makes sense since the Marangoni stress is stronger (see
figure 9). The IMC regime and IME regime can be obtained as limits of the IMCE regime
(§ 4.1).

5. Resolving singularities
The IM and IME regimes have singularities. First, in the IM regime, where there is finite-
time shock formation, the front region has width ∼ (t∗ − t)3/2 as t → t∗. The similarity
solution for the IME regime can also be considered as shock formation, in the limit as
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Figure 10. Comparison of IMC and IME regimes as limits of the IMCE regime. (a) Solid curves show
ηf (M, Re) as obtained from the ODEs found for the similarity solutions in the IMCE regime (see § 3.4.1)
against Re for M= 0.1, 1, 10 (purple, orange, blue–green). Dotted lines show ηf (M= 0.1), ηf (M=
1), ηf (M= 10) as obtained from the similarity solution ODEs in the IMC regime (see Appendix F) . (b)
Solid curves show ηf (M, Re) as obtained from the similarity solution ODEs in the IMCE regime against M
for Re = 1, 4, 10 (light grey, grey, dark grey). Dotted lines show ηf (Re = 1), ηf (Re = 4), ηf (Re = 10) (light
grey, grey, dark grey) as obtained from the similarity solution ODEs in the IME regime (see § 3.4.2).

t → ∞, since the front region width ∼ t−(1/2) → ∞ as t → ∞. On the other hand, the
surfactant front region for the IMC and IMCE regimes have O(1) sized widths at all times.
We now discuss two scenarios of how the mathematical singularities in the IM and IME
regimes are resolved.

The first scenario is that the flow could no longer be one-dimensional. Recall that,
in general, the thin-film expansion for the horizontal velocity follows u = u0(r, t) +
Reε̃2u1(r, z, t) + . . . (Chomaz 2001), where u1 is quadratic in z (i.e. parabolic) and ε̃

is the ratio between the characteristic vertical and horizontal length scales. In the front
region for the IM regime, since �r ∼ (t∗ − t)3/2 and h − h∗ ∼ (t∗ − t)1/2, the aspect ratio
ε̃ = ε(t∗ − t)−1 (recall the non-dimensionalisation (1.2)). Thus, the parabolic terms can no
longer be ignored when Re(ε(t∗ − t)−1)2 = O(1), i.e. when t∗ − t = O(Re1/2ε); note that
we only consider Re � ε−2 and hence Re1/2ε � 1. In the front region for the IME regime,
since �rII ∼ t−(1/2) and hII ∼ 1, the aspect ratio is ε̃ = εt1/2. Thus, the parabolic terms
can no longer be ignored when Re(εt1/2)2 = O(1), i.e. when t = O(ε−2), since Re = O(1)

in the IME regime.
The second scenario is that the shock is regularised. In the IM regime, although

M, Re 	 1, the capillary term and/or extensional stress terms become important
as t → t−∗ . As shown in § 2.2, the shock formation depends on the details of the
O((t∗ − t)−(1/2)) terms in the momentum (2.1). Since M−1(∂3h/∂r3) ∼M−1(t∗ − t)−4,
and Re−1(∂2u/∂r2) ∼ Re−1(t∗ − t)−(5/2) (when u − u∗, h − h∗ ∼ (t∗ − t)1/2 and
�r ∼ (t∗ − t)3/2), it then follows that capillary terms can no longer be neglected when
t∗ − t = O(M−(2/7)) and that extensional stress terms can no longer be neglected when
t∗ − t = O(Re−(1/2)). Similarly, for the infinite-time shock formation in the IME regime,
although M	 1, the capillary terms eventually become important as t → ∞. As shown
in § 3.3.2, the Marangoni stress term h−1

II (∂ΓII/∂�rII) ∼ t−(1/2) in the shock region
(region II). Since M−1(∂3hII/∂(�rII)

3) ∼M−1t3/2 when hII ∼ 1, �rII ∼ t−(1/2), it then
follows that the capillary terms can no longer be neglected in the shock region (region II)
when t = O(M1/2).
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6. Discussion
In this paper, the evolution of the film shape and surfactant distribution in time due to
insoluble surfactant deposition on an air–liquid–air thin film in an inertially dominated
regime was analysed systematically. First, the similarity solution associated with finite-
time shock formation was derived and analysed in § 2 for the IM regime where there
are no shock regularisation mechanisms. Allowing for shock regularisation through the
inclusion of capillary stress and/or viscous extensional stress (IMCE, IMC, IME regimes)
leads to surfactant front propagation and the corresponding late-time similarity solutions
were analysed in §§ 3, 4. Finally, in § 5 we discussed ways of resolving the singularities
identified in the IM and IME regimes.

It should be noted that the inclusion of extensional stress (IME, IMCE regimes) does not
change the previous result by Eshima et al. (2025) (for the IMC regime) that the late-time
behaviour of the surfactant deposition problem has i) minimum thickness proportional to
t−1, ii) surfactant front propagation proportional to t1/2 and iii) wave characteristics that
can be captured accurately by the relevant similarity solution.

The method of considering eigenvectors and reducing to the Burgers equation in
deriving the similarity solution in the IM regime, as shown in § 2.2, is generalisable and
will be the subject of a future manuscript.

Out of the IM, IMCE, IMC and IME equations, the most practical set of equations to use
is likely the IMCE (1.3), since more physics is accounted for (inertia, Marangoni, capillary,
extensional stress). Also, due to the lack of singularities and presence of the extensional
stress term, which is dissipative, numerical solutions are comparatively easier to obtain
than the IM (singular, no dissipation), IMC (no dissipation) and IME (singular) equations.

There are other mechanisms that could regularise shock fronts due to surfactant
deposition, such as the diffusion of surfactants. The inclusion of other physics in the
problem set up would also change the deposition dynamics, such as solubility (Bowen &
Tilley 2013; Kitavtsev et al. 2018; Néel & Villermaux 2018), van der Waals forces
(Vaynblat, Lister & Witelski 2001; Wee et al. 2022, 2024) and background flow (Burton &
Taborek 2007; Fontelos, Kitavtsev & Taranets 2018; Eshima et al. 2024).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10751.
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Appendix A. Derivation of next-order nonlinearity terms in the IM regime
In this appendix, we derive the (2.14). First, (2.10) is expanded to O(τα−2). Here, it is
assumed that α < 2, which can be verified a posteriori or alternatively, α < 2 can be
reasonably justified from numerical data. Then, terms such as h∗u∗/r∗ can be neglected.
With V defined by (2.12), it follows that
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∂

∂τ

u′

V
−
(

u∗ + V
u′

V

)
∂

∂r ′
u′

V
− V

∂

∂r ′
Γ ′

Γ∗

+2 d2σ
dΓ 2 (Γ∗)Γ 2∗

h∗V

Γ ′

Γ∗
∂

∂r ′
Γ ′

Γ∗
+ V

h′

h∗
∂

∂r ′
Γ ′

Γ∗
= 0, (A1a)

∂

∂τ

h′

h∗
−
(

u∗ + V
u′

V

)
∂

∂r ′
h′

h∗
− V

(
1 + h′

h∗

)
∂

∂r ′
u′

V
= 0, (A1b)

∂

∂τ

Γ ′

Γ∗
−
(

u∗ + V
u′

V

)
∂

∂r ′
Γ ′

Γ∗
− V

(
1 + Γ ′

Γ∗

)
∂

∂r ′
u′

V
= 0, (A1c)

which gives, upon translating to (r , τ ) coordinates with r = r ′ + (u∗ + V )τ ,

∂

∂τ

u′

V
+ V

(
∂

∂r

u′

V
− ∂

∂r

Γ ′

Γ∗

)
− V

u′

V

∂

∂r
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V

+2 d2σ
dΓ 2 (Γ∗)Γ 2∗

h∗V
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Γ∗
∂

∂r

Γ ′

Γ∗
+ V

h′
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∂

∂r
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Γ∗
= 0, (A2a)
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(
∂

∂r

h′

h∗
− ∂
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V
= 0, (A2b)
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)
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∂
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Γ ′

Γ∗
− V

Γ ′

Γ∗
∂

∂r

u′

V
= 0. (A2c)

Then, substituting (2.13), and recalling that without loss of generality q3 = −q1, we find

∂
(

A + q1τ
α−1)

∂τ
+ V

(
∂ f1

∂r
− ∂ f3

∂r

)
− V

(
A + q1τ

α−1
) ∂ A

∂r

+2 d2σ
dΓ 2 (Γ∗)Γ 2∗

h∗V

(
A − q1τ

α−1
) ∂ A

∂r
+ V

(
A + q2τ

α−1
) ∂ A

∂r
= 0, (A3a)

∂
(

A + q2τ
α−1)

∂τ
+ V

(
∂ f2

∂r
− ∂ f1

∂r

)
− V

(
A + q1τ

α−1
) ∂ A

∂r

−V
(

A + q2τ
α−1

) ∂ A

∂r
= 0, (A3b)

∂
(

A − q1τ
α−1)

∂τ
+ V

(
∂ f3

∂r
− ∂ f1

∂r

)
− V

(
A + q1τ

α−1
) ∂ A

∂r

−V
(

A − q1τ
α−1

) ∂ A

∂r
= 0, (A3c)

correct to O(τα−2) terms. As expected, since we are expanding around an eigenvector of
the advection equation, the O(τ−1) terms have vanished (recall that (∂ A/∂r) = O(τ−1)).
Rearranging (A3) leads to (2.14).

Appendix B. Matching condition for the IM regime
The local singularity region must match onto the region away from the singularity
(Eggers & Fontelos 2015). Explicitly, the functions (u(r , τ ), h(r , τ ), Γ (r , τ )) must satisfy

lim
τ→0+(u, h, Γ )|(Δ,τ) = (u, h, Γ )|(Δ,0), (B1)
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for any fixed Δ. From (2.18), we have that limτ→0+ A(Δ, τ) is bounded, since F(η) ∼ η1/3

for η → ±∞. Thus, (2.13) gives that, for any fixed Δ,

lim
τ→0+ fi (Δ, τ) is bounded for i = 1, 2, 3. (B2)

The matching condition (B2) may be used to eliminate constants. Indeed, eliminating
∂ A/∂τ via V −1× (2.14a)–(2.15), integrating with respect to r and rearranging gives

G(τ ) + c1τ
1
2 A + c2

A2

2
+ V ( f3 − f1) = 1

2
q1rτ− 1

2 , (B3)

for some function G(τ ) and constants c1, c2. Then, for any fixed r = Δ, the left-hand side
of (B3) is bounded as τ → 0+. Thus, we deduce that the constant q1 = 0. The analogous
consideration of (2.14b) gives that q2 = 0.

Appendix C. Shock formation along the u∗ − V characteristic in the IM regime
In this appendix, the analogue to (2.19) is given for when a shock forms along the u∗ − V
characteristic instead. Following analogous steps to § 2.2, the similarity solutions for the
finite-time singularity is given by

u = u∗ + V (t∗ − t)
1
2 F

⎛
⎜⎜⎜⎜⎝

r − r∗ + (u∗ − V ) (t∗ − t)(
1 −

d2σ

dΓ 2 (Γ∗)Γ 2∗
h∗V 2

)
V (t∗ − t)

3
2

⎞
⎟⎟⎟⎟⎠, (C1a)

h = h∗ − h∗(t∗ − t)
1
2 F

⎛
⎜⎜⎜⎜⎝

r − r∗ + (u∗ − V ) (t∗ − t)(
1 −

d2σ

dΓ 2 (Γ∗)Γ 2∗
h∗V 2

)
V (t∗ − t)

3
2

⎞
⎟⎟⎟⎟⎠, (C1b)

Γ = Γ∗ − Γ∗(t∗ − t)
1
2 F

⎛
⎜⎜⎜⎜⎝

r − r∗ + (u∗ − V ) (t∗ − t)(
1 −

d2σ

dΓ 2 (Γ∗)Γ 2∗
h∗V 2

)
V (t∗ − t)

3
2

⎞
⎟⎟⎟⎟⎠, (C1c)

where F is given by (2.18). Then, the details of shock formation are closely related to
the u∗ + V characteristic shown in the main text (although with notable sign changes for
h − h∗ and Γ − Γ∗). In particular, the expressions for max |∂u/∂r | and max |∂2u/∂r2| are
still given by (2.21) and (2.22).

Appendix D. Lagrangian coordinates
In this appendix, the mass and surfactant (1.3b), and (1.3c) are considered in Lagrangian
coordinates. Let the Lagrangian coordinate be given by (s, t), where s is the initial material
spatial coordinate. We regard the Eulerian spatial coordinate r as a function of s and t ,
explicitly given by r = r(s, t), where s = r(s, 0). Denote the Lagrangian time derivative
by D/Dt . Then, the conservation of mass (1.3b) and surfactant (1.3c) can be written as

Dh

Dt

∣∣∣∣
(s,t)

=
(

−hu

r
− h

∂u

∂r

)∣∣∣∣
r(s,t),t

, (D1)
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and

DΓ

Dt

∣∣∣∣
(s,t)

=
(

−Γ u

r
− Γ

∂u

∂r

)∣∣∣∣
r(s,t),t

, (D2)

which give that

D

Dt

(
Γ

h

)∣∣∣∣
(s,t)

= 0, (D3)

and hence Γ/h is conserved (Chomaz 2001). Since the initial condition (1.5) gives h = 1
and Γ = Γi (s), it then follows for all t that

Γ (s, t) = Γi (s)h(s, t), (D4)

where global conservation of mass gives s as a function of h,r ,t

s =
(

2
∫ r

0
Rh(R, t)dR

) 1
2
. (D5)

D.1. Limit of the thickness profile from region I to region II
In this section, it is shown that the similarity function of the thickness profile f (η) (3.7) in
region I satisfies f (η) ∼ (1 − η)−1 as η → 1−. A similar argument was given by Eshima
et al. (2025), but is reproduced here for completeness. Assume that f ∼ (1 − η)−a as
η → 1− for some a > 0.

Suppose a > 1. Then s = (2
∫ η

0 η′ f (η′)dη′)1/2 (from (D5)) satisfies s ∼
(1 − η)(1−a)/2 → ∞ as η → 1−. From (3.8), Γi (s) = f (η)−1 ∼ (1 − η)a ∼ s2a/(1−a)

as s → ∞. This is a contradiction since we consider surfactant distributions Γi (r)

that decay faster than polynomials and hence a � 1. Furthermore, a < 1 would imply
s = (2

∫ η

0 η′ f (η′)dη′)1/2 → constant and hence f → constant as η → 1− by (3.8), which
is a contradiction. Thus, a = 1.

Appendix E. Derivation of boundary conditions

E.1. The IMCE regime
In this appendix, the boundary conditions at η = 1+ (3.22) and η = ∞ (3.23) are derived,
valid for the IMCE regime. In the IMCE regime, hII ∼ t−(1/2) and hence

lim
η→1+ H = 0. (E1)

Also, since uII = (1/2)ηf t−(1/2) + �uII where �uII ∼ t−1, we then have that

lim
η→1+ U = 1

2
. (E2)

Then, for η = 1 + δ for δ � 1, we may expand as H(1 + δ) = H1δ + . . . and U (1 + δ) =
(1/2) + U1δ + . . . . The right-hand side of (3.21a) in the limit δ → 0+ gives (recall that
H ′ = J )

lim
δ→0+

((η

2
− U

) J

H
− U

η

)
= −U1, (E3)
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and since the limit of the left-hand side of (3.21a) in the limit δ → 0+ gives U1, it then
follows that U1 = 0 and hence

lim
η→1+

dU

dη
= 0. (E4)

Also, from the jump condition (3.14), it follows that

lim
δ→0+

1
4η2

f M

(
H

d2 H

dη2 − 1
2

(
dH

dη

)2
)

= −η−2
f , (E5)

and hence (dH/dη)|η=1+ = J (1+) = √
8M. Note that H(d2 H/dη2)|η=1+ = 0 since

otherwise H(d3 H/dη3)|η=1+ will be singular, which contradicts (3.21d) – see (E7) below.
Finally, multiplying (3.21d) by H and taking the limit δ → 0+ gives

lim
δ→0+ H

dK

dη
= − lim

δ→0+

8η2
f M
Re

(
1
2

+ U

2η
−
(η

2
− U

) J

H

)
J. (E6)

Recalling that U (1 + δ) = (1/2) + 0δ + . . . , H(1 + δ) = √
8Mδ + . . . , J = dH/dη and

K = d2 H/dη2, it then follows that

lim
δ→0+ H

d3 H

dη3 = −2η2
f M
Re

√
8M. (E7)

Since H(1 + δ) = √
8Mδ + . . . , it then follows that

d3 H

dη3 (1 + δ) = −2η2
f M
Re

1
δ

+ . . . , (E8)

which can be integrated to give the expansion for H(1 + δ)

H(1 + δ) = √
8Mδ − η2

f M
Re

δ2 log δ + qδ2 + · · · , (E9)

for some constant q. Note that the equations have two constants ηf , q to be found. Upon
differentiating (E9) to obtain J = dH/dη, K = d2 H/dη2, (3.22) follows.

Now, the boundary conditions at η = ∞ (3.23) are derived. First, H(∞) = 1 follows
from the film being undisturbed at the far field. In order to show that

∫∞
1 (H − 1)ηdη =

(1/2), one can consider the integral Im(t) := ∫∞
0 (h − 1)rdr , which can be thought of as

the total excess mass with respect to the flat film. Since there are diffusion terms (viscous
dissipation), h decays to 1 much faster than polynomials with exponential decay as r → ∞
for any t . Mathematically, such a decay can be seen directly from considering the large η

behaviour of (3.21). Then, we can integrate Im(t) under the integral sign, to obtain

I ′
m(t) =

∫ ∞

0

∂h

∂t
rdr = −

∫ ∞

0

∂

∂r
(ruh)dr = −[ruh]∞0 = 0, (E10)

which gives that Im(t) is conserved. Since Im(0) = 0, it then follows that Im(t) = 0 for

all t . Finally, hI ∼ t−1 as t → ∞ and hence
∫ ηf t1/2

0 (h − 1)rdr = −(1/2)η2
f t + O(1). Then,

since Im(t) = 0,
∫∞
ηf t1/2(h − 1)rdr = (1/2)η2

f t + O(1) as t → ∞, which gives∫ ∞

1
(H − 1) ηdη = 1

2
. (E11)
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It should be noted that (E11) implies H(∞) = 1, but importantly H(∞) = 1 does not
imply (E11). For the shooting algorithm, a given guess of ηf will have an associated q
such that H(∞) = 1. The choice of ηf is adjusted until (E11) is satisfied.

E.2. The IME regime
In the IME regime, since uII = (1/2)ηf t−(1/2) + �uII with �uII ∼ t−(3/2) and (3.18), the
functions U (η) and H(η) satisfy

lim
η→1+ U = 1

2
, (E12)

and

lim
η→1+ H

(
2

dU

dη
+ 1

2

)
= −Reη−2

f . (E13)

In particular, (E13) gives that H(1+) is finite since numerical data of the thin-film equation
solution show 2(dU/dη)|η=1+ + (1/2) clearly bounded away from 0.

Also,

lim
η→1+

(
J

H

(η

2
− U

))
= 0, (E14)

since ((η/2) − U ) = O(δ) for η = 1 + δ and J is a term much smaller than O(δ−1) since
H is finite at η = 1+. Then, (E12), (E14) and (3.25a) give

lim
η→1+

dU

dη
= −1

2
, (E15)

which substituted into (E13) gives

lim
η→1+ H = 2Reη−2

f . (E16)

If one naively assumes that J (1+) is also finite, then expanding (3.25c) for η = 1 +
δ for δ � 1 gives that (dJ/dη)|1+δ = −((3/4)J (1) + (1/8)Re2)δ−1 + . . . and the only
self-consistent conclusion is that J (1) = −(1/6)Re2. Such a conclusion can be seen to be
wrong from numerical data, which suggest that J (1+) is bounded away from −(1/6)Re2.
More rigorously, the forcing of J (1) to be a particular value means that the system is
overdetermined, where there is one free variable ηf to satisfy two conditions (3.23). Then,
J (1+) is not finite. In particular, the thickness profile H has a cusp at the left boundary
η = 1.

With the understanding that J (1+) is not finite, one may expand η = 1 + δ for δ � 1
where (3.25c) gives (dJ/dη) ≈ −(3/4)δ−1 J and hence J = −q̃δ−(3/4) to leading order
for some constant q̃ to be found. In summary, (3.26) is obtained.

The boundary conditions at η = ∞ are identical to the IMCE regime and the derivation
is also identical.

Appendix F. The IMC regime in region III
The similarity solution for region III may be just derived from the IMCE equations upon
letting Re 	 1 and hence ignoring Re−1 terms in (3.21–3.23). However, the resulting IMC
similarity solutions may be exactly integrated once to form a more simple set of equations.
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The integration may be done as follows. From (3.21) in the limit Re 	 1 (or from the
similarity ansatz (3.19) substituted into (3.2))

− 1
2

U − 1
2
η

dU

dη
+ U

dU

dη
= 1

2η4
f M

d

dη

(
1
η

d

dη

(
η

dH

dη

))
. (F1)

In particular, (F1) may be integrated once to give

c − 1
2
ηU + 1

2
U 2 = 1

2η4
f M

(
1
η

d

dη

(
η

dH

dη

))
, (F2)

for some constant c. In fact, it can be shown that c = 0 (Eshima et al. 2025) by rewriting
(F2) in the form cη−1 = · · · and using that

∫∞
1 cη−1dη is bounded if and only if

c = 0. Then, letting J = dH/dη and using (1.3b) again, the similarity solutions for the
IMC regime can be given as a system of ODEs for (U, H, J )

dU

dη
= −U J

H
− U

η
+ Jη

2H
, (F3a)

dH

dη
= J, (F3b)

dJ

dη
= − J

η
+ η4

f M
(

U 2 − ηU
)
. (F3c)

From (3.22), in the limit Re 	 1, the left boundary condition at η = 1 + δ for δ � 1 can
be deduced to satisfy

U (1 + δ) = 1
2

+ . . . , (F4a)

H(1 + δ) = √
8Mδ + . . . , (F4b)

J (1 + δ) = √
8M+ . . . . (F4c)

Note that (F4) can also be deduced directly from noting that uII = (1/2)ηf t−(1/2) + �uII
where �uII ∼ t−1, hII ∼ t−(1/2) and (3.14).

Again, the similarity solution for region III can be obtained using a shooting algorithm.
A key difference to the IMCE regime is that there is only one shooting parameter, ηf ,
which makes sense, given that the similarity solutions were already integrated once (see
(F2)). Thus, the correct ηf can be found by adjusting the constraint towards satisfying

H(∞) = 1. (F5)

Appendix G. Additional verification plots of the late-time similarity solution
The appendix contains the verification between the thin-film equations and the similarity
solutions, that was omitted for brevity.

G.1. The IMC regime
Figure 11, reproduced from Eshima et al. (2025), compares the thin-film equations (solid)
with the similarity solution prediction (dotted), where (a) verifies the minimum thickness
hmin, (d) verifies the location of the surfactant front rf and (b,c,e) verify the capillary
wave characteristics. Again, there are no fitting parameters and the similarity solution is
therefore verified.
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Figure 11. Verification of the similarity solution (dotted) using the thin-film equations (solid) (3.2), (1.3b),
(1.3c) in the IMC regime. Thin-film equations are solved for Γi = e−r2

. (a) Minimum thickness hmin is
compared for M= 0.1, 1, 10 (purple, orange, blue–green, respectively). (d) Surfactant front rf is compared
for M= 0.1, 1, 10 (purple, orange, blue–green, respectively). (b,c,e) Thickness h profiles compared for M=
0.1, 1, 10 (purple, orange, blue–green, respectively), where thin-film equation profiles are chosen at suitable
late times (explicitly, at t = 186, 56, 44, when hmin ≈ 0.01). The expressions for the envelope h = 1 ± 4tr−2

(dash-dotted curves) are also included in (b,c,e) – see Eshima et al. (2025) for the derivation. Reprinted with
permission from Eshima et al. (2025) (their figure 3, reformatted and adapted to use the labelM, instead of B =
M−1). Copyright (2025) by the American Physical Society. https://doi.org/10.1103/PhysRevLett.134.214002.

As expected, the thickness profiles in the IMC regime (figure 11b,c,e) look similar to the
thickness profile in the IMCE regime (figure 9) as Re increases, although even the Re = 40
case for the IMCE regime (figure 9j,k,l) shows noticeable viscous damping effects of the
capillary waves in comparison with the IMC regime.

G.2. The IME regime
Figure 12 is the analogue to figure 11 for the IME regime and therefore verifies the
similarity solution. Again, as expected, the IME regime thickness profiles look similar
to the IMCE regime thickness profiles as M→ ∞.
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Figure 12. Verification of the similarity solution (dotted) using the thin-film equations (solid) (3.3), (1.3b),
(1.3c). The thin-film equations are solved for Γi = e−r2

. (a) Minimum thickness hmin is compared for Re =
1, 4, 10 (light grey, grey, dark grey, respectively). (b,c,e) Thickness h profiles compared for Re = 1, 4, 10 (light
grey, grey, dark grey, respectively), where thin-film equation profiles are chosen at suitable late times (t =
710, 370, 300, respectively, where hmin ≈ 0.001).
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