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1. Introduction

In this paper our graphs will be finite, undirected, and without loops or
multiple edges. We will denote the set of vertices of a graph G by V(G). If G is a
graph and u, v e V(G), then we will write u ~ v to denote that u and v are adjacent
and u ~ v otherwise. If 4 = V(G), then we let N(4) = {ue V(G)f u ~ a for each
a € A}. However we write N(v) instead of N({v}). When there is no chance of con-
fusion, we will not distinguish between a subset A < V(G) of vertices of G and the
subgraph that it induces. We will denote the cardinality of a set A by IAI . The
degree of a vertex v is o(v) = |N(v)|. Any undefined terminology in this paper
will generally conform with Behzad and Chartrand [1].

In their work on empirical logic, Foulis and Randall have defined the concept
of the logic of a graph (see Foulis [4] and [5] and also Jeffcott [7]).

In this context, a graph is defined to be a Dacey graph if and only if its logic
1s an orthomodular poset. It is convenient that a characterization of Dacey graphs
in purely graph-theoretic terms is available. We will take this characterization as
our definition of a Dacey graph. By a clique of a graph G we mean a maximal
subset 4 of the vertices of G such that any two elements of 4 are adjacent.

DEerFINITION. Let G be a graph. Then G is a Dacey graph if and only if for
every clique E of G and every pair of distinct vertices u and v we have E < N(u)
U N@®) =u ~ .

We will hereafter abbreviate Dacey graph to D-graph. As examples of D-
graphs we have
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The only nontrivial trees that are D-graphs are the stars K, , for n = 1.

It is our intention in this paper to investigate D-graphs from a graph-theoretic
point of view. Also we develop some sufficient conditions for a graph to be a
D-graph, and several classes of D-graphs are determined. The properties of point
closed and point determining are characterized for D-graphs in terms of their
clique structure. We obtain several characterizations of the complete graphs as
special types of D-graphs. We study the hereditary Dacey graphs (HD-graphs) and
strengthen the previously known results (see [3]). Our development here is more
constructive than the earlier one. Finally, we consider some interesting connec-
tivity properties of HD-graphs.

REMARK. It is helpful to observe that if E is a clique of some graph G and
E < N(u) U N(v) with u ~ v, then {u,v} NE = (.

2. Point determining and point closed D-graphs

DEFINITION. (1) G is point determining if and only if for u,ve V(G) with
u # v, we have N(u) # N(v).
(2) G is point closed if and only if for each ve V(G), N(N(v)) = {v}.

Note that if a graph is point closed, then it is also point determining. We will
be interested in D-graphs that are point closed (or at least point determining). For
additional results concerning these latter two properties, see Sumner [8] and [9].

THEOREM 1. Let G be a D-graph. Then G is point determining if and only if
G has at most one isolated point and for each integer k = 1, every complete sub-
graph of order k is contained in at most one clique of order k + 1.

PrOOF. Let G be a point determining D-graph. Suppose we can find a com-
plete subgraph A of some order k = 1 such that 4 < E, and A < E, for some
two distinct cliques of order k + 1. Thus E; = A U {v} and E, = 4 U {u} for
some u,v e V(G) withu s vand u ~ v. Suppose w € N(v). Then if w € A4, certainly
we N(u), while if w¢ A, then E, = A U {v} S N(u) U N(w) = u ~ w so that
we N(u). Hence N(v) & N(u). Similarly, we have N(u) = N(v), and thus N(u)
= N(v), but this is a contradiction.

Conversely, suppose G is a D-graph and for each k = 1, every complete sub-
graph of order k is contained in at most one clique of order k + 1. Let u,ve V(G)
with u # v and suppose that N(u) = N(v). Let E be a maximal, complete subgraph
of N(v) = N(u). Since not both of u and v are isolated, ]E, = 1. Thus E U {v}
and E U {u} are both cliques containing E, but that is a contradiction.

COROLLARY 1. If G is a point determining D-graph and if E is a clique in G
with maximum order, then for any v¢ E, IE — N(v), = 2.
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PROOF. Since v¢ E, E— N(v) # . So if | E—~ N(v)| < 2, we must have
E — N(v) = {u} for some ueV(G). Hence F = (E — {u}) U {v} is a complete
subgraph of G with |F[ = lE | Thus by the maximality of E, F is a clique in G.
But then E — {u} is a complete subgraph of order ]E| — 1 contained in two dis-
tinct cliques of order |E |

As a consequence, we obtain the following characterization of complete graphs
in terms of the D-graph property.

COROLLARY 2. A graph G is complete if and only if G is a connected, point
determining D-graph which does not contain an induced subgraph of the form

—a]

Proor. Clearly every complete graph satisfies the given conditions. Suppose
G is a point determining, connected D-graph that is not complete. We will show
that G must contain an induced subgraph of the given form. By the previous
corollary, we can find a clique E of G such that for every v¢ E, l E - N(v)l 2 2.
Since G is not complete, V(G) # E, and so since G is connected, there exist v¢ E
and ueE with v ~ u. Let w,,w,eE such that v ~ w; and v ~ w,. Then
{u,v,w,, w,} induces a subgraph of the indicated form.

COROLLARY 3. If G is a point determining D-graph with largest clique of
order k and if E is a clique in G of order k — 1, then there exists at most one
ve E such that E — {v} is contained in a clique different from E.

PROOF. Suppose that u,veE with u # v, E—~{u} < A, and E—~ {v} = B
where A and B are distinct cliques different from E. Then since a complete sub-
graph of order k — 2 can be contained in at most one clique of order k — 1, we
have [A] > k~ 1and |B| > k — 1. Thus | 4| = | B| = k. Hence 4 = (E — {u})
v {a,b} and B = (E — {v}) U {c, d} for some a, b, c,d e V(G) — E. We note that
{a,b} N {c,d} = &; forif a = c, for example, then since ue B, u ~ ¢, and so
u~ a.So since E—{u} < A, we have E < N(a), contrary to E being a clique. Let
F = (E — {u,v}) U {a,b,c,d}. Then since E = N(a) U N(c), we have a ~ c.
Similarly, a ~ d, b ~ ¢, and b ~ d (of course, ¢ ~ d and a ~ b since 4 and B
are complete). Thus F is complete, but |F ] = k + 1, but this is a contradiction.

COROLLARY 4. If G is a point determining D-graph, then every clique of order
two either constitutes an endline (i.e., one of its vertices is an endpoint) or is the
edge uv in an induced subgraph of the form
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PRrROOF. Suppose the edge uv forms a clique of order two and neither u nor v is
an endpoint. Then there exist cliques A and B different from {u, v} with ue A and
ve B. But by the theorem, each of u and v is contained in at most one clique of
order two, so |A] >3 and |B| = 3. Let x,yeAd— {u} with x # y and r,
s€ B — {v} with r # s. Note that x ~ y and r ~ 5. Since {u,v} forms a clique,
N(u) N N(v) = &, so that {x, y, r, s} is a set of four distinct vertices, and since G is
a D-graph, it follows that {x, y,r,s} is complete. Thus {u,v,x, y,r,s} induces a
subgraph of the indicated form.

DErFINITION. Two endpoints u and v of a graph G are coincident if and only if
N(u) = N(v).

Among those graphs that have no cliques of order larger than three, our next
result characterizes those that are point determining D-graphs.

THEOREM 2. If G is a connected graph with no cliques of order larger than
three, then G is a point determining D-graph if and only if every edge of G
either lies in exactly one triangle or is an endline adjacent to no other endline.

PrROOF. Suppose G is a point determining D-graph. Let e = uv be an edge of
G. If e does not lie in any triangle, then {u, v} forms a clique and so, since G has
no complete subgraphs of order four, it follows from Corollary 4 that e is an
endline. Since G is point determining, e cannot be adjacent to any other endline.
As a consequence of Theorem 1 with k = 2, e lies in at most one triangle.

Conversely, suppose G satisfies the given conditions. We first observe that G
is point determining. For it N(u) = N(v) for distinct vertices u and v, then we may
choose we N(u) = N(v). However, not both of uw and vw can be endlines since
they form adjacent edges. Hence we may assume that uw lies in a triangle. Thus
there is some x € G with x ~ u and x ~ w. But then x ~ v so that the edge xw lies
in the two triangles xwv and xwu.

Finally, suppose that G is not a D-graph. Let E be a clique in G with E = N(x)
U N(y) and x ~ y. Then there exist a,be E witha # b,a ~ x,and b ~ y. Thus
ab is not an endline and hence lies in a unique triangle abc. But then E must be
{a, b, c}. Without loss of generality, ¢ ~ x. But then the triangles cax and abc both
contain the edge ac.

Our next theorem characterizes those D-graphs that are point closed.

THEOREM 3. If G is a D-graph, then G is point closed if and only if for every
clique E of G and u¢ E, there exist vy, v, € E with v, # v,, u ~ vy, and u ~ v,.

PRrOOF. Suppose G is a point closed D-graph and E is a clique in G. Let u ¢ E.
Then there exists vy € E with u ~ v;. Suppose ue N(E — {v,}). Then since
N(N(v,)) = {v,}, we have u¢ N(N(v,)) so there exists we G with w ~ v, and
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w ~ u. But then E = N(u) U N(w) with w ~ u, but that is impossible in .
D-graph.

Now suppose G is such that for every clique E and u ¢ E, there exist v,,v, €l
with u ~ v, and u ~ v,. Suppose N(N(u)) # {u}. Let E be a maximal complet:
subgraph of N(u). Then E U {u} is a clique of G and if ve N(N(w)) — {u}, ther
v is adjacent to all but one element of E U {u}, but that is impossible.

COROLLARY 5. In a connected, point closed D-graph with at least thre
vertices, there are no cliques of order two, and every clique of order three meet:
every other clique in at most one vertex.

COROLLARY 6. Let G be a point closed D-graph and ve V(G). Then one of the
following holds:

(i) v lies in exactly one clique;

(ii) v is the point v in an induced subgraph of the form (a) below, or

(iii) v is the point v in an induced subgraph of the form in (b).

(a) (b)

PRrROOF. Suppose v lies in at least two cliques. Then there exist a, be G with
v ~a,v~ b,and a ~ b. Let E be a clique containing {a, v}. Then b ¢ E, so there
exists ce E — {a} with ¢ ~ b. Let F be a clique containing {b,v}. Then a ¢ F, so
there exists de F — {b} with d ~ a. If d ~ ¢, then {a,b,c,d,v} induces a sub-
graph of the form in (a). If d ~ ¢, then let D be a clique containing {v,d, c}. Then
since a ~ b, D & N(a) U N(b) so there exists ye D with y ~ aand y ~ b. Thus
{a, b,c,d,v, y} induces a subgraph of the form in (b).

COROLLARY 7. A graph G is complete if and only if it is a connected, point
closed D-graph that does not contain an induced subgraph of the form (a) or (b)
of Corollary 6.

The following result is proved in Sumner [8].

THEOREM 4. If G is a point determining, connected graph that is not com-
plete, then there exists an edge e of G such that G ~ e is also point determining.

We note that every complete graph is a point closed D-graph and also that
the removal of any edge of a complete graph resuits in a D-graph. It is curious that
these properties, in fact, characterize complete graphs.

THEOREM 5. A graph G is complete if and only if G is a connected, point
closed D-graph in which the removal of any edge again results in a D-graph.
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ProoF. Suppose G satisfies the given conditions but is not complete. Then
since G is point closed, it is also point determining and hence by the previous
theorem, there exists an edge e of G such that G — e is also point determining. Let
e = uv. Let E be a clique of G which contains u and v. Then F = E — {u} and
D = E — {v} are complete in G — e and from Theorem 3, denoting the neighbor-
hood sets in G —e by Ny, No(E — {u}) = No(E — {v}) = & since G is point
closed. Thus F and D are cliques in G — e. Hence E — {u, v} is a complete subgraph
of order IE[ — 2 which is contained in the two cliques F and D of G — e both
having order IE j — 1. But this is impossible since by Theorem 1 we would have
G — e not point determining.

DEFINITION. Let G be a graph. We will say that the large cliques are sparsely
scattered if and only if there do not exist cliques A, B, and C, all of order at least
four such that,A F\B, = 2and|B N C[ = 2.

COROLLARY 8. Let G be a graph such that the large cliques are sparsely
scattered. Then G is a point closed D-graph if and only if for every clique E and
u ¢ E, there exist v,,v, € E with vy # v,, v, » u, and v, ~ u.

PRrOOF. As a consequence of Theorem 3, it is enough to show that under the
assumption that the large cliques of G are sparsely scattered, the given condition
implies that G is a D-graph. Suppose G is not a D-graph. Let B be a clique of G
and let u and v be distinct vertices of G with B < N(u) U N(v) and u ~ v. Since
u ¢ B, there exist a,be B with {a,b} N N(u) = ¢J. Hence a, b e N(v). Similarly,
there exist ¢,d € N(x) N B such that {c,d} N N(v) = . Let A and C be cliques
containing {a, b,v} and {c,d, u}, respectively. Since ¢ must be nonadjacent to at
least two elements of A and a is nonadjacent to at least two elements of B, we have
|A] 24 and [C| 2 4. But clearly |B| 24, |4 NB| 22, and |[BNC| 22
contrary to the assumption that the large cliques are sparsely scattered.

As an immediate consequence of this we obtain a result originally due to
Greechie and Miller [6].

COROLLARY 9. Let G be a graph such that every clique has order at least three
and no two cliques meet in more than one vertex. Then G is a point closed
D-graph.

We may generalize this result in another direction by:

THEOREM 6. Let G be a graph and let k = O be an integer such that for
every two cliques E, and E,, IE, N Ezl < k. Then if for every clique E with
|E| < 2k there is some r = 0 such that E contains 2r + 1 vertices no r + 1 of
which are in any other clique, then G is a D-graph.
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PROOF. Suppose G is not a D-graph and let E be a clique with E = N(a)
U N(b) and a ~ b. Thus there exist x, ye E witha ~ xand b ~ y. Let F and D
be cliques of G such that {a} U (N(a) NE) = F and {b} N (N(b) NE) < D.
ThenE < (F NE) U (D N E)sothat |E| £ |[F NE| +|D N E| £ 2k. But for
every r = 0 and any 2r + 1 vertices in E, there are r + 1 of themin F or r + 1 of
them in D, both cliques different from E. Thus this is a contradiction and G must
be a D-graph.

However, a graph satisfying the conditions of the previous theorem need not
be point closed (nor even point determining) as may be seen by considering K,
with one edge deleted.

DEFINITION. If G is a graph, then by the line graph of G we mean the graph
L(G) whose vertices are the edges of G; two vertices of L(G) are adjacent if and
only if they are adjacent edges in G.

The next theorem characterizes those line graphs which are also D-graphs. The
proof is straightforward but tedious and is omitted. The proof may be found in
Sumner [9].

THEOREM 7. Let G be a connected graph of order at least five. Then the line
graph L(G) is a D-graph if and only if every triangle in G contains two vertices
of degree two and for each v e V(G),

(i) If 8(v) = 2, then v either lies in a triangle or is adjacent to an endpoint.

(ii) If 6(v) = 3, then N(v) is an independent set.

(iii) If 6(v) = 4, then the graph induced by N(v) contains an isolated vertex.

CoRrROLLARY 10. If G is a connected graph with IG[ =5 and 6(G) = 3, then
L(G) is a D-graph if and only if G has no triangles; and in this case, L(G) is
also point closed.

We will denote the diameter of a graph G by d(G) and the distance between
two vertices x and y by d(x, y). We have the following bound on the diameter of a
D-graph.

THEOREM 8. Let G be a connected D-graph of order p and let &(G) be the
order of a largest clique in G. Then d(G) £ [(1/2)(p — &(G) + 4)].

ProoF. Let d(G) = d. Fix x,ye G with d(x y) = d, and let P be a path
X = poPy - Pa = y from x to y of length d. The theorem is trivially true ifd < 2,
so we will suppose d = 3. Since P is a shortest path between x and y, we have
p; ~ p; for p;, p;e P if and only if|i —j] = 1. Thus fori = 1,2,---, d — 2, let E;
be a clique containing {p;, p;1}. Then p,_; ~ p;1,, 80 E; € N(p; 1) U N(p;+2);
hence there exists x;e€ E; with x; ~ p,_; and x; ~ p;,,. Therefore since P is a
shortest path between x and y, N(x;) N P = {p,, pi+}- Thus Q = {x, X3, -, X4}
is a set of d — 2 distinct points and Q N P = .
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Let E be a clique in G of order &G). We claim that l En(Puyu Q)[ <3
Clearly | E N Pl < 2.

If ENP = {p,p;i+1}, then E N Q can contain at most x,. f E N P = {p,},
then E N Q can contain at most {x;,,,x;}. Thus in either of these cases,
[ENn(PU Q|3

Suppose that E N P = . Then if x, , x,,,x,, and x,, are elements of E N Q
with r; < r, < ry < ry, the path pop; - p, X, X,,D,,+1 -+ Pa has length d — 1, but
that is impossible. Hence | E N Q| < 3. So here too, | E N (P U Q)| < 3.

Therefore we have

p2|P|+|0|+(JE|=3) = @+ D+ (-2 +&G) - 3.

SO
d < ¥p — &(G) + 4).

3. Hereditary Dacey graphs

DEFINITION. A graph G is an HD-graph if and only if every induced subgraph
of G is a D-graph.

Our purpose in the remainder of this paper is to develop the previously known
results on HD-graphs in a shorter and more constructive manner. Also we will
establish some interesting connectivity properties of HD-graphs, the most sur-
prising of which is Theorem 10.

We will henceforth refer to a path of length three as a hook.

The next lemma is well known (see Foulis [3]).

LEMMA 1. 4 graph G is an HD-graph if and only if it does not contain a
hook as an induced subgraph.

Proor. Since a hook is not a D-graph, no HD-graph can contain a hook as an
induced subgraph

On the other nand, suppose that G contains no hook as an induced subgraph.
We first observe that such a graph must be a D-graph. For suppose E is a clique of
G and u,ve V(G) such that E < N(v) € N(u) but u ~ v. Then v¢ E so there
exists x € E with x ~ v and so x ~ u. Similarly there exists y € E with y ~ u and
y ~ v. But then uxyv is 2 hook in G. Thus any graph without an induced hook is
a D-graph. However, if G has no induced subgraph isomorphic to a hook, neither
does any induced subgraph of G. Thus by our observation above, every induced
subgraph of G must be a D-graph and hence G is an HD-graph.

REMARK. It is evident that every two vertices of a connected HD-graph are a
distance at most two apart. In fact, an equivalent condition for a connected graph
G to be an HD-graph is that every induced, connected subgraph of G have diameter
at most two. It is also worth noting that every induced subgraph of an HD-graph
is again an HD-graph.
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DEFINITION. If G is a connected graph and A and B are disjoint subsets of
V(G) with V(G) = AU B, then we write G =A@ B if and only if acA,
beB = a ~ b. In this case, we say that A (and B) is a direct summand of G.

LEMMA 2. Let G be a connected HD-graph of order p and let ve V(G) be a
cutpoint. Then 6(v) = p — 1.

PROOF. Suppose v is a cutpoint of G and ue G — v such that v ~ u. Let 4 be
the component of G — v which contains u. Since G has diameter at most two, there
exists a vertex we A with w ~ u end w ~ v. Let B be any component of G — v
other than A. Then since G is connected, there exists t € B with ¢t ~ v. But then
tvwu forms a hook. But this is a contradiction.

If G is connected and A < V(G) such that G — 4 is not connected, we will
refer to A as a cut set of G. If no proper subset of A4 is a cut set, we will say that 4
1s a minimal cut set.

THEOREM 9. If G is a connected HD-graph and A < V(G) is a minimal cut
set of G, then G = A ® (G — A), i.e., A is a direct summand of G.

Proor. If ‘Al = 1,then G = 4 ® (G — A) by the the previous lemma. Hence
we may assume that ]A] 2 2. Let ae A. Then by the minimality of 4,4 — {a}
is not a cut set. Thus G — (4 — {a}) = (G ~ A4) U {a} is a connected HD-graph
having a as a cutpoint. Hence by the previous lemma, a is adjacent to every ele-
ment of G — A4 and since this holds for every a € A4, the theorem follows.

COROLLARY 11. Let G be a connected HD-graph of order p = 2. Then

(i) k(G) + A(G) = p, where k(G) is the connectivity of G and A(G) is the
maximal degree of G.

(i) A(G) 2 p/2.
(iii) If G is regular and p = 3, then G is Hamiltonian.
Proor. All of (i), (ii), and (iii) are clear for complete graphs, and so we will
assume G is not complete for the remainder of this proof.
(i) Let A4 be a cut set of order k(G). Then G = A ® (G — A) and hence for
any ae 4, A(G) 2 5(a) 2 |G — A4|. Thus
p = |A|+|G— A| £ kG) + AG).

(ii) Since A(G) = k(G) = p — A(G), it follows that A(G) = p/2.
(iii) For p = 3, denoting the minimal degree of G by 8(G), we have for a

regular HD-graph G,6(G) = A(G) = p/2 and hence, by the well-known theorem
of Dirac [2], G is Hamiltonian.

The next two corollaries were known previously (see Foulis [3]).
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COROLLARY 12. A nontrivial connected graph G is an HD-graph if and only
if there exist subgraphs A and B of G which are HD-graphs and G = A @ B.

PRrOOF. If G is not complete, then for any minimal cut set 4,G = A @ (G — A).
If G is complete, then G = A @ (G — A) for any subgraph 4 of G.

Conversely, if G = A @ B, then any induced hook of G must lie entirely in
either A or B and hence if A and B are both HD-graphs, then so is G.

COROLLARY 13. If G is a nontrivial HD-graph, then exactly one of G and G
(the complement of G) is connected.

PROOF. At least one of G and G must be connected, so we may assume that
G is connected. Thus G = 4 @ B for some subgraphs 4 and B. But then no vertex
of A is adjacent to any vertex of Bin G. Thus G is not connected.

COROLLARY 14. A graph G is a complete bipartite graph if and only if G is a
connected D-graph with no triangles.

Proor. Clearly every complete bipartite graph is a connected D-graph with no
triangles.

Suppose G is a connected D-graph with no triangles. Then G must clearly be
an HD-graph and hence G = A @ B for some subgraphs A and B. But then if
either of 4 or B contained an edge, G would contain a triangle. Thus each of A
and B is an independent set of vertices and G is a complete bipartite graph.

LemMma 3. If G is a nontrivial connected HD-graph and S is a maximal
independent set in G, then N(S) # (& and N(S) is a direct summand of G.

Proor. By Corollary 12, G contains two subgraphs 4 and Bwith G = A @ B.
Since Sisindependent, S < A or S & B. Without loss of generality, we can assume
that S € 4 so that J # B < N(S). Let ve N(S). If G — (S U N(S)) = &, then
G = S @ N(S)and we are finished. So we suppose there existsu € G — (S U N(S)).
We claim that v ~ u. Suppose not. Then since u ¢ S, there exists we S with w ~ u.
But u ¢ N(S), so there exists t€ S with t ~ u. Since ve N(S),v ~ w,and v ~ 1, S
is independent so that ¢t ~ w. Thus uwot is a hook, but this is a contradiction.
Hence every u, v with ve N(S), u ¢ N(S) are adjacent and thus N(S) is a direct
summand of G.

DEerFINITION. Let G be a connected, nontrivial graph. A subset 4 = V(G) will
be called a disconnecting set if and only if G — A is either a disconnected graph or
the trivial graph. If no proper subset of A is also a disconnecting set, then we will
say that A is a minimal disconnecting set.

THEOREM 10. If G is a nontrivial connected HD-graph, then S < V(G) is a
maximal independent set if and only if N(S) is a minimal disconnecting set.
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PrOOF. Let S € V(G) be a maximal independent set. Then G = N(S)
@ (G — N(S)). We claim that G — N(S) is not connected or is trivial. If S = {v}
for some vertex v, then N(S) = N(v) = G — v and in this case, G — v is a minimal
disconnecting set. Hence we may assume that S is nontrivial. Since S € G — N(S),
G — N(S) is nontrivial. Let 4 = (G~ N(S8))— S.If A = ¢, then G- N(§) = S
is not connected. Hence we may assume 4 # (. Let a € 4 such that |N(a) N SI
is as large as possible. Since a ¢ N(S), there exists 5o € S with a ~ 5,. Now suppose
that A U S = G — N(S) is connected and hence a connected HD-graph. Then in
A U S, d(a,sg) = 2, so there exists be A such that a ~ b and b ~ 55. Now let
se N(a) N S. Then in order that sabs, not be a hook, we must have s ~ b. Thus
seN(b) N'S. Hence since soeN(b) NS while s,¢N(a) NS, |N(a) NS}
< lN(b) N S] which is contrary to the choice of a. Thus G — N(S) is not con-
nected. Since G = N(S) @ (G — N(8)), no proper subset of N(S) can disconnect
G. Hence N(S) is a minimal disconnecting set.

Now suppose that 4 is a minimal disconnecting set. If G—A4 = {v}, then by
the minimality of 4, G — (4 — {a}) = {a, v} is connected for each a € A. Therefore
N(v) = Aand S = {v} is a maximal independent set. Thus we may assume G — A
is nontrivial and thus A is a minimal cut set. Hence G = A ® (G — A)and G — 4
is not connected. So if we choose S, S,, :--, S; maximal independent subsets of
each component of G — 4, we obtain S; U S, U --- U S, = S is a maximal in-
dependent subset of G such that N(S) = A.
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