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Abstract

Disruptions in circadian rhythms and sleep have long been associated with mood disorders. In
fact, sleepdisturbances are oneof thekey features used in theDiagnostic andStatisticalManual of
Mental Disorders, Fifth Edition (DSM-V-TR) diagnosis ofmajor depressive disorder and bipolar
disorder. Sleep/wake abnormalities can also precede mood episodes and predict treatment
response. Thus, precise measurement of specific sleep/circadian features is important as these
measures canbeused clinically to direct appropriate treatments. Thesemeasures can also be used
for research purposes to try to understand specific mechanisms by which circadian rhythm
disturbances and sleep/wake perturbationsmay lead to specific phenotypes. The purpose of this
review is to highlight recent advances in methodology which can be used to more precisely
measure sleep/circadian biology. This review will examine how these new methodologies can
better elucidate themechanisms linking sleep/circadian disruptions andmood disorders, as well
as how new technologies can be used therapeutically to treat sleep/circadian abnormalities.

Introduction

Sleep and circadian rhythm disturbances (SCRD) have long been implicated as a component of
psychiatric pathology, with sleep disturbances noted as a symptom of many psychiatric
disorders, including schizophrenia (Kaskie et al., 2017), mood disorders (American Psychiatric
Association, 2013), obsessive compulsive disorder (Segalàs et al., 2021), and substance use
disorders (Roehrs and Roth, 2015). Psychiatric disorders are also associated with circadian
rhythm disturbance; for example, evening chronotype, in which individuals demonstrate a
preference for activity in the evening rather than morning, has been associated with depression,
substance use disorders, and eating disorders, and is associated with more severe mood
symptoms for individuals with bipolar disorder (Zou et al., 2022). Individuals with major
depressive disorder exhibit lower amplitude circadian rhythms (Kang et al., 2024), which have
largely been assessed in humans using actigraphy (Lyall et al., 2018 ). Gene expression analysis of
human postmortem brain tissue has also revealed weaker circadian patterns in subjects with
depression when compared with controls (Li et al., 2013).

While SCRDmay first become visible to patients as apparent symptoms of psychiatric illness,
research has suggested a bidirectional causative role, with SCRD in fact contributing to the
pathological processes of these illnesses. SCRD have been identified as risk factors in the
development of bipolar disorder (Scott et al., 2022), major depressive disorder (Murphy and
Peterson, 2015), schizophrenia (Waite et al., 2020), substance use disorders (Hasler and
McClung, 2021), and other diagnoses.

However, investigation of sleep and circadian disturbance within human subjects has been
limited due to technological constraints, with few tools available to obtain accurate, continuous
rhythmic data. Polysomnography (PSG) and actigraphy play primary roles in the study of sleep
patterns, although they face some limitations. Polysomnography scoring is still performed in
part by individual scorers and can be subjective; additionally, participants receiving PSG are
susceptible to the “first night effect” of sleeping in an unfamiliar sleep lab, and consequently
producing sleep data whichmay not be representative of a typical night’s sleep. Actigraphy relies
primarily on movement data and may also give inaccurate information, often overestimating
sleep periods by labeling waking periods of rest or inactivity as sleep (Trust, 2022).

Circadian rhythms are likewise difficult to study. While sleep behavior (assessed via PSG,
actigraphy, or self-report) is often seen as a proxy for circadian rhythm, the true scope of
circadian timekeeping extends to multiple systems beyond the sleep/wake mechanism, and
originates at a molecular level which could ideally be measured using precise biomarkers.
However, tools for obtaining this data have been limited.

Some biomarkers for circadian rhythm have been used previously, with varying success.
Melatonin-based measure, such as salivary melatonin used to estimate dim light melatonin
onset (DLMO) and urinary 6-sulfatoxymelatonin, are convenient to obtain and provide
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information about the circadian phase of the subject (Crowley
et al., 2016). However, both methods are susceptible to a “masking
effect” in which light exposure may affect levels during sampling,
and protocols around these biomarkers should be carefully
designed to avoid this effect. Such a protocol design is possible
but highly restrictive, as for example the Constant Routine (CR)
protocol (Minors and Waterhouse, 1984), in which subjects are
exposed to constant dim light and behavior is strictly controlled
(i.e. via constant semi-recumbent posture, isocaloric food intake,
and continued wakefulness). Core body temperature and plasma
cortisol levels have also been used as biomarkers to inform
estimates of circadian phase, although they have been less reliable
when compared to melatonin markers (Klerman et al., 2002).

In order to more precisely understand the circadian profile of
individual subjects, some innovation of circadian measurement
tools is required. In the following review, we will examine the
emergence of new circadian data collection technology in recent
years, as well as novel protocols which have adapted existing
technologies to produce more accurate, reliable, and easily
obtainable data. We will examine the current state of clinical
research which seeks to establish causal links between SCRD and
mood disorders, and we will also review existing and emerging
circadian-based therapies which appear promising in the field.

Novel methods of circadian rhythm measurement

Numerous methodologies have emerged in recent years which
allow more precise, continuous measurement of circadian rhythm
using genetic, metabolic, and immunological markers. In this
section we will review some of these emerging methodologies
which may present new solutions to problems of circadian
measurement in research design.

The unique strengths and weaknesses of circadian measure-
ment techniques must be considered with respect to the specific
knowledge goals of the study, as well as logistical considerations,
cost, and the accuracy and precision possible via various
techniques. Circadian data is remarkably versatile in how it may
be obtained, as circadian mechanisms may be inspected within
every cell of the human body across tissue type. This leaves
researchers with the task of selecting the optimal circadian
measurement tool from many potential options.

For example, gene expression data may be collected serially (as
discussed below) in order to quickly obtain vast amounts of
information about circadian transcriptional fluctuations in a group
of subjects. However, this method is tissue-specific; circadian gene
expression data obtained from peripheral blood only tells a story of
gene expression within the blood, as this process is locally regulated
and may appear entirely differently within the brain. As the brain
cannot be accessed for serial tissue collection in living subjects, this
method is ultimately limited in terms of the brain-specific
continuous data measurement that would be of interest in
psychiatric research.

Metabolic methods are also discussed below; the circadian
nature of metabolism has been studied across discipline, with
endocrinology and kinesiology research also exploring new
methods of circadian measurement in this arena. There have
been remarkable technological advances in the study of metabo-
lism, with biosensors now showing promise for the collection of
continuous biodata along numerous parameters. While these
technologies measure peripheral markers, some of these markers
can also reflect rhythmic patterns in the brain (i.e. cortisol, which
connects peripheral and central systems via the hypothalamic-

pituitary-gonadal axis), consequently yielding potential usefulness
for psychiatric research.

Notably, for many of the methodologies discussed below, there
is currently a lack of extensive data verifying their utility, as they
involve novel techniques and technologies which have yet to be
tried in multiple research settings and study designs. However, we
present these methodologies here as a review of possibilities for
future circadian research, which may become more proven
with time.

Circadian patterns of gene expression

Gene expression patterns within various cell types are known to
vary throughout the 24-hour cycle, and may provide a rich
potential source of individual circadian data (Takahashi, 2017);
however, obtaining gene expression data from human subjects
around a 24-hour cycle poses challenges in feasibility. Here we will
review recent studies which have innovated existing techniques in
order to produce accurate circadian transcriptional data.

Oral sampling
Gene expression data may be painlessly obtained orally from
human subjects; when collected serially over multiple timepoints,
this data may be used to track transcriptional patterns of
individuals over the 24-hour cycle. For example, in 2024, Das
et al. collected serial saliva samples from children with fetal alcohol
syndrome in order to study the unique circadian expression of
core-clock genes and their regulatory genes in this disorder. In
2022, Vasko et al. utilized buccal epithelium sampling in order to
assess circadian variation of Per1, Clock, Bmal1, and Cry1 genes in
healthy subjects with different chronotypes, finding that those with
an evening chronotype had a higher evening expression of Clock.

Despite the convenience of this method for study subjects, oral
sampling is notably confounded by a high bacterial RNA presence
(Kumar et al., 2023). Indeed, the fraction of human RNA in saliva is
generally low due to bacterial contamination, thus compromising
the quality of genetic data obtained via this method. In 2022,
Ostheim et al. developed a novel protocol to address this issue,
using poly(A)þ-tail primers followed by qRT-PCR in order to
select for cDNA synthesis for human RNA species (Ostheim et al.,
2022). Use of protocols such as this one may improve the accuracy
of oral sampling in further circadian transcriptional studies.

Blood sampling
While an older method, serial blood sampling is still used to collect
circadian transcriptional data from study subjects by measuring
gene expression patterns within peripheral blood cells at different
points in time. Circadian disruption in the periphery has a noted
correlation with SCRD of central origin. Studying peripheral blood
cell gene expression can be useful for understanding the full scope
of circadian dysfunction within psychiatric disorders, and how this
disruption affects multiple organ systems. For example, Koritala
et al. described circadian disturbances seen in circulating
leukocytes in individuals with a night shift schedule (Koritala
et al., 2021). Tu et al. also recently studied peripheral blood gene
expression for patients with Parkinson’s disease (PD), a
neurological disease known to alter sleep patterns. Their findings
noted an altered rhythm of autophagy in PD when compared to
controls, raising questions about the transsystemic reach of central
circadian disruption and the mechanisms by which distantly
related biomarkers may be implicated in centrally-originating
SCRD (Tu et al., 2021).
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Cross-tissue analysis
Further research in circadian gene expression may be informed by
the Genotype-Tissue Expression (GTex) project of the Broad
Institute, which provides comprehensive data on gene expression
across tissue types. These samples are obtained from tissue samples
donated by subjects via postmortem autopsy or transplant settings
(Broad Institute of MIT and Harvard, 2025). Talamanca et al.
(Talamanca et al., 2023) developed an algorithm to study circadian
patterns within the GTex dataset, finding conserved timing of
clock transcripts throughout the body. However, they also noted
that circadian patterns were highly sex-dimorphic and that
rhythms generally dampened with age. These findings may be
useful when designing future studies which rely on peripheral
markers of circadian gene expression. In particular, the tight
conservation of these rhythms supports more generalizable
inferences regarding SCRD from the sampling of a variety of
tissue types; at the same time, sex and age differences should be
accounted for in order to ensure accurate interpretation of results.

Circadian patterns of metabolism and immune function

Metabolism and immune function both follow a 24-hour pattern
and have long been studied as circadian entities. In the past, this
has been done by tracking cortisol levels (which impact both
metabolic and immune function), or by tracking core body
temperature as a proxy of metabolic activity. In recent years,
research in this domain has transformed through the development
of new technologies which allow precise 24-hour data collection of
various metabolic biomarkers. Many of these technologies have yet
to be used in psychiatric research, and a multidisciplinary
approach may be required in order to better utilize these
techniques in psychiatric circadian science.

Advancements in actigraphy
Actigraphy has often been used as a proxy for metabolic activity, as
periods of rest and inactivity constitute one dimension of an
individual’s metabolic output. However, recent developments in
actigraphy have added to the usefulness of this tool. Multimodal
wearable sensing, such as that obtainable through Fitbit data,
allows researchers to combine multiple metabolic parameters
(heart rate, step count, and rest-activity data) in order to create a
more accurate metabolic proxy of circadian rhythm (Zhang et al.,
2024). Standard actigraphy has also improved through the
development of new mathematical models which improve its
ability to predict circadian phase. Moreno et al. developed such a
model which showed improved accuracy when compared to the
standard DLMO method (Moreno et al., 2022). Berlin et al. also
developed an “octagonal actigraph” which combined collected
continuous measurements from the hip and wrist and combined
this data with heart rate measurements; they found that their data
was comparable tooxygenconsumption values in termsof accurately
measuring metabolic rates over time (Berlin et al., 2007).

Biosensors
New biosensors have become available which allow for continuous
metabolic data collection from subjects throughout the 24-hour
cycle. While serial cortisol collection has been a staple of circadian
research for many years, new biosensors now allow for continuous
cortisol level tracking amongst study subjects (Kusov et al., 2023;
Trusso et al., 2022). Some researchers have used machine learning
to improve the efficacy of these sensors, with Shahub et al.
describing how they developed a machine learning guided

biosensor for detecting cortisol in passive sweat (see Figure 1)
(Shahub et al., 2022). Continuous glucose monitoring has also
benefited from improved biosensing technology, allowing for
circadian tracking of this biomarker as well (Sardesai et al., 2023;
Santos-Báez et al., 2024). Core body temperature is now being
incorporated into biosensing technology as well, improving the
accuracy of this basic metabolic datapoint (Żmigrodzki et al.,
2024). Biosensors can also continuously monitor inflammatory
proteins in the sweat, providing a window into immune function
over the circadian cycle (Jagannath et al., 2022).

Real-time breath analysis
Volatile metabolites can be collected from human breath in order
to obtain real-time metabolic data. The secondary electrospray
ionization machine (SESI) is one recently developed device which
allows for convenient collection of metabolites in the breath, and
has been used in order to collect serial metabolite samples, thus
enabling circadian rhythmic analysis (see Figure 2). (Brown and
Sinues, 2021)

Bioenergetic flux analysis
McClaren et al. describe their newly developed metabolic flux
analyzer, a device which requires just one blood sample in order to
analyze the circadian activity of mitochondria. The metabolic flux
analyzer allows for the observation of mitochondrial bioenergetics
and cross-correlates this data with the expression of Clock genes in
white blood cells, offering a fast and minimally invasive alternative
to other circadian data collection methods (McLaren et al., 2024).

Metabolic carts and metabolic chambers
Metabolic carts and metabolic chambers are both respiratory data
collection technologies used to track metabolic rate. Metabolic cart
technology includes a variety of systems used to measure the
resting metabolic rate of a subject by creating a closed breathing
system in which the subject’s minute-by-minute oxygen con-
sumption and carbon dioxide production may be measured. Some
metabolic carts position subjects beneath a ventilated hood, while
others require the donning of a mouthpiece or face mask attached
to the system (Chen et al., 2020).Metabolic chambers (see Figure 3)

Figure 1. Scaled photo of machine learning-guided cortisol biosensor (Shahub et al.,
2022). Image used under creative commons CC-BY license from Sensing and Bio-
sensing Research.
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(Chen et al., 2018), sometimes called respiratory chambers, are
sealed, airtight rooms which serve the same purpose; a subject is
placed alone in a chamber for a period of time, during which their
total oxygen consumption and carbon dioxide may be measured to
determine indirect calorimetry and metabolic rate over a period of
time (Ravussin et al., 1986). These techniques have recently been
used in various metabolic rhythm studies (Meng et al., 2020; de
Wit-Verheggen et al., 2023), and could be incorporated into
circadian rhythm study designs as well.

Combination protocols
Some recent research combines multiple methods in order to
generate more complete metabolic rhythm profiles for subjects.
For example, Harmsen et al utilized serial muscle biopsy
(examining peripheral Clock gene expression) along with serial
indirect calorimetry and serial metabolite sampling of glucose,
insulin, free fatty acids, and triacylglycerol, in order to generate
circadian metabolic data for their subject pool (Harmsen et al.,
2024). Dineen et al. used serial cortisol and cortisone blood
sampling, as well as serial adipose tissue microdialysis for cortisol

and cortisone, in order to obtain more accurate measurements of
these metabolic markers over time in their study of adrenal
insufficiency (Dineen et al., 2023). And Koch et al. combined
actigraphy data with energy expenditure calculations, indirect
calorimetry, and energy intake calculations in order to generate
metabolic data for their subjects over time (Koch et al., 2025;
McNeil et al., 2024).

Peripheral melatonin biomarkers: new approaches to
measurement

As discussed previously, salivary melatonin and urinary 6-
sulfatoxymelatonin are both established markers of circadian
phase which can be accurate and useful, as long as the masking
effect of light exposure is diligently avoided. Some recent efforts
have revisited these techniques in order to improve their accuracy
and better avoid the masking effect of light exposure. Murray et al.
developed a protocol for at-home salivary melatonin collection for
the purpose of DLMO calculation, in which they created stand-
ardized instructions to avoid light masking (Murray et al., 2024).

Figure 2. Commercially available secondary electrospray ionization machine (SESI) (Brown and Sinues, 2021). Figure used with permission from Springer Nature.

Figure 3. Metabolic chamber (i.e. respiratory chamber) concept diagram. Image inspired by design described by Chen et al. (Chen et al., 2018). Created and published with
permission by BioRender.

4 Katherine M. Lyman and Colleen A. McClung

Downloaded from https://www.cambridge.org/core. 03 Nov 2025 at 12:34:27, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Stone et al. examined the role of individual light sensitivity in
DLMO data, and developed data analysis methods to control for
this variable when determining circadian phase based on salivary
melatonin (Stone et al., 2020).

Urinary 6-sulfatoxymelatonin has likewise benefited from
recent analytical innovations which improve the usefulness of
this biomarker. Melone et al. (2023) and Doyle et al. (2022) both
describe new methods of rhythmic analysis which allow the
extrapolation of continuous circadian rhythm from serial urinary
6-sulfatoxymelatonin samples. Van Faassen et al. describe a
method to account for age and individual biological variation when
tracking 6-sulfatoxymelatonin levels, enabling more accurate
interpretation of this biomarker when inferring circadian rhythm
from individual samples (van Faassen et al., 2020).

Exploring mechanistic pathways: circadian rhythm and
psychiatric phenotypes

As novel circadian measurement methods continue to emerge,
circadian characteristicsmay bemore preciselymeasured in subjects
over time, thus allowing a more detailed study of the bidirectional
mechanisms linking circadian abnormalities and psychiatric
phenomena. Below we review recent longitudinal studies in which
researchers have designed novel protocols to study the relationship
between circadian rhythm disturbances and mood disorders.

Circadian alignment and depression

Recent studies have confirmed prior findings that circadian
alignment, i.e. alignment between an individual’s circadian phase
and the actual timing of their sleep cycle, is positively correlated
with mood. In 2023, Emens and Lewy published findings assessing
circadian alignment within a group of 25 medical students without
psychiatric pathology. In this population, they found that circadian
misalignment, specifically a later DLMO relative to midsleep, was
associated with worse mood (Emens and Lewy, 2024). Asarnow
et al., recently used a combination of actigraphy, DLMO
measurements, and self-report of sleep habits to assess alignment
between circadian biology and actual sleep-wake behaviors in
adolescents with depression symptoms; they found that as subjects’
circadian alignment improved, they also experienced a reduction
in depression symptoms (Asarnow et al., 2023).

Chronotype stability and bipolar disorder

Longitudinal chronotype tracking is a technique which reveals
extended patterns of chronotype, i.e. an individual’s preference for
mornings or evenings, and how this may vary over time. In 2024,
Sperry et al. analyzed chronotype patterns over several years in a
pool of subjects with and without bipolar disorder, finding that a
bipolar disorder diagnosis is characterized by greater chronotype
instability compared to controls (Sperry et al., 2024).

Delayed circadian phase and depression

Delayed circadian phase, which refers to a later timing of various
circadian timepoints compared to average values, has often been
found in association with psychiatric pathology. Zhang et al.
reexamined this finding using multimodal wearable sensing via
Fitbit, which tracked sleep patterns, M10 onset, and heart rate
acrophase in a group of subjects over two years. Their findings were
consistent with previous studies showing that delayed circadian
rhythms were associated with increased depression symptoms
(Zhang et al., 2024).

Sleep variability and depression

Matcham et al. used Fitbit to track sleep patterns and depression
symptoms in their subjects; they found that greater sleep variability
was predictive of major depressive disorder (MDD) relapse
amongst their participants (Matcham et al., 2024).

Novel device-guided circadian therapeutics

Therapies targeting circadian disturbance have often proved
beneficial in the treatment of psychiatric disorders, with patients
seeing total psychiatric improvements beyond the resolution of
their isolated sleep concerns. Given an increasing awareness of the
mechanistic relationships between circadian rhythm disturbance
and psychiatric pathology as a whole, as well as the development of
new devices which manipulate these mechanisms, device-guided
circadian-targeted therapies may become increasingly utilized by
clinicians. Examples of such new technologies are described below.

Near-infrared transcranial photobiostimulation

Near-infrared transcranial photobiostimulation has gained
momentum in recent years as a noninvasive technique which
improves mitochondrial function in the brain, with measurable
benefits for neurodegenerative disorders such as Alzheimer’s
disease (Zomorrodi et al., 2019). More recently, this technique has
been shown to produce antidepressant and hypnotic effects which
may be useful for the treatment of SCRD and mood disorders. In
2024, Guu et al. adapted this technology into a wearable headband
which could administer treatments at home. Participants reported
improved sleep quality via the Pittsburgh Sleep Quality Index,
which persisted for the 12 weeks of the study (Guu et al., 2025).

Parcel-guided transcranial magnetic stimulation (TMS)

Recent studies have examined the use of transcranial magnetic
stimulation (TMS) in treating SCRD. Tang et al. developed a
protocol in which TMS targets were selected on an individual basis,
dependent on functional connectivity network data from
individual study participants. Anomalies in individual connectivity
networks were detected using a machine-learning connectivity
software, and then translated into TMS targets with the goal of
modifying participants’ central executive, salience, and default
mode networks. This individualized approach produced favorable
results, with participants showing improvements in Pittsburgh
Sleep Quality index scores as well as improvements in depression
and anxiety symptoms (Tang et al., 2024).

Conclusion

The relationship between sleep and circadian disturbances and
mood disorders has been explored through decades of research
which shows clear associations between SCRD, negative mood
states, and the occurrence of psychiatric pathology. Therapies
targeting sleep and circadian symptoms often foster an incidental
improvement of mood disorder symptoms as well, further
suggesting a causal relationship between the two phenomena.
However, our understanding of this causal relationship has
remained limited by the scarcity of tools traditionally available
for studying circadian rhythm fluctuations in human subjects
using precise biomarkers. A review of the field suggests that many
new techniques have emerged in recent years which will allow
more precise collection of circadian data as it appears in gene
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expression patterns, metabolic patterns, and other biomarkers;
however, these techniques have yet to be widely adopted by
researchers conducting longitudinal studies in human subjects. At
this time, the field of sleep and circadian disturbances and mood
disorders offers rich opportunity for those looking to implement
new techniques in the examination of these two closely related
phenomena.
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