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Abstract

This review examines the critical role of meteorological data in optimising flight trajectories and enhancing oper-
ational efficiency in aviation. Weather conditions directly influence fuel consumption, delays and safety, making
their integration into flight planning increasingly vital. Understanding these dynamics becomes essential for risk
mitigation as climate change drives more frequent and severe weather events. Synthesising insights from 57 studies
published between 2001 and 2024, this article highlights key variables — such as wind, temperature and convective
weather — significantly impacting flight operations. A framework is proposed to improve air traffic management’s
safety, efficiency and cost-effectiveness. The findings emphasise the need for systematically incorporating meteoro-
logical inputs into trajectory optimisation models, such as wind shear, convective storms and temperature gradients.
This integration improves operational predictability and safety while advancing sustainability goals by reducing fuel
consumption and CO, emissions — an increasingly important priority amid rising climate variability and global air
traffic demand.

Nomenclature

ATM Air Traffic Management

ATC Air Traffic Control

CB Cumulonimbus

CAT Clear Air Turbulence

ERAS ECMWEF Reanalysis v5

ECMWF European Centre for Medium-Range Weather Forecasts
FMS Flight Management System

BADA Base of Aircraft Data

ADS-B Automatic Dependent Surveillance—Broadcast
Mode-S Mode Select Surveillance

ML Machine Learning

RL Reinforcement Learning

GA Genetic Algorithm

1.0 Introduction

Weather analysis plays a crucial role in the aviation industry, as it directly impacts flight planning, fuel
consumption and overall operational efficiency. By integrating meteorological information into flight
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route optimisation strategies, airlines can minimise delays, reduce fuel costs and enhance the overall
travel experience for passengers.

Furthermore, with advances in technology and data analytics, the accuracy of weather forecasting has
improved significantly. For instance, the average error in 72-hour hurricane forecasts has decreased from
over 400 nautical miles in the 1970s to less than 80 miles in recent years [1]. As a result, the enhanced
reliability of weather forecasts has empowered airlines and air traffic controllers to make dynamic, real-
time routing decisions that better adapt to evolving atmospheric conditions.

Population growth and industrialisation have significantly contributed to atmospheric degradation,
including increased greenhouse gas emissions and pollution. These changes have intensified the effects
of climate change, which pose growing challenges to the aviation industry, such as increased turbulence,
more frequent weather-related delays, and operational uncertainty. With climate change, meteorological
parameters — such as wind shear, convective storms, icing conditions and sudden pressure fluctuations —
have become increasingly volatile and impact flight operations [2]. Extreme weather events occur more
frequently worldwide, including thunderstorms, turbulence and low visibility due to fog or heavy precip-
itation. The severity of these conditions has been linked to several aviation accidents; for example, the
2009 Air France Flight 447 crash was partially attributed to weather-related factors. Therefore, accu-
rately reading, interpreting, and managing meteorological inputs from forecast models and real-time
observations is vital for ensuring flight safety and operational efficiency.

Effective flight operations require integrating meteorological considerations at all stages of flight.
Pre-flight planning must account for forecasted weather conditions to avoid hazardous zones; in-flight
decisions should adapt dynamically to real-time meteorological inputs; and post-flight assessments
should evaluate encountered weather for operational learning. Accurately interpreting this data is funda-
mental to assess hazards that may not be eliminated or controlled and to determine their potential impact
on safety. Mitigating or minimising these risks through adaptive routing and informed decision-making
is a cornerstone of modern flight safety management.

Efficient air traffic management requires precise planning of flight trajectories and airport operations
[3]. Deviations in flight paths can trigger cascading effects, disrupting sequencing, spacing and slot
allocations for other aircraft, ultimately resulting in operational inefficiencies and increased costs [4].
The inherent uncertainties in meteorological forecasts further complicate this process by introducing
dynamic variables that are difficult to predict and mitigate in real-time [5]. To address these challenges,
modern air traffic systems — including flight management systems (FMS) — use both weather forecast
data and wind measurements obtained from onboard sensors to optimise flight trajectories and antici-
pate potential disruptions [6]. Integrated enhanced meteorological forecasts into trajectory optimisation
models, underlining their contribution to flight predictability. As demonstrated inRef. (7), the tailored
descent wind method provides customised wind fields based on the selected landing procedure, using
fine-scale regional forecasts. This enables FMS to compute continuous descent operations (CDO) with
greater accuracy and robustness. Nonetheless, weather impacts on aviation are not limited to forecast
uncertainties in wind fields; a wide spectrum of hazardous phenomena also plays a decisive role in oper-
ational efficiency and safety. Microbursts, convective storms, icing, wind shear, turbulence, low visibility
and cumulonimbus (CB) cloud formations have been directly linked to delays, rerouting, and, in some
cases, safety-critical incidents [2, 8].

Meteorological variables contributing to adverse weather must be carefully monitored and anal-
ysed to mitigate the operational impacts of such phenomena. Parameters, including wind speed and
direction, temperature, dew point, cloud density and atmospheric pressure, play a vital role in flight tra-
jectory optimisation. Although these variables are factored into flight planning, the dynamic nature of
the atmosphere often leads to deviations between the planned and actual flight paths. These discrepan-
cies can increase fuel consumption, delays, airspace congestion and broader technical and commercial
consequences.

This review article synthesises recent advancements in flight route optimisation and planning
methodologies that incorporate meteorological data. While particular attention is given to the chal-
lenges posed by adverse weather conditions — such as turbulence, thunderstorms, wind shear and low
visibility — the review also encompasses studies that address general meteorological variables such as
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wind, temperature, pressure and humidity, within both strategic and tactical flight planning contexts.
A summary of different research efforts, practical implementations, algorithmic techniques and fore-
cast objectives is provided to present the current state of knowledge on this topic. This research aims
to identify key meteorological variables and optimisation strategies that help researchers and practi-
tioners develop robust routing frameworks in aviation. We conducted a systematic literature review
using databases such as Scopus, Web of Science, Semantic Scholar and Google Scholar, covering peer-
reviewed publications from December 2001 to March 2024. From this, 57 studies were selected for
detailed analysis. Our analysis indicates that the majority of the reviewed studies emphasise the integra-
tion of real-time meteorological data — especially convective weather, wind and turbulence — into route
optimisation frameworks. These studies consistently report improved fuel efficiency, reduced delays,
and enhanced operational safety when such parameters are accounted for in the planning process.

This paper is organised as follows. Section 2 introduces meteorological-based route planning and
optimisation. Section 3 presents our proposed approach to our review method. Section 4 discusses the
survey results, including the integration of meteorological data, practical algorithms and methodologies,
the impact of meteorological conditions, trade-offs in optimisation objectives, practical applications
and projected objectives. Finally, Section 5 concludes the article with a summary of the findings and
suggestions for future research directions.

2.0 Route planning and optimisation problem based on meteorological conditions

This section provides the technical and conceptual background necessary to understand the scope
and significance of flight route optimisation in meteorological conditions. It introduces fundamen-
tal concepts such as trajectory planning, strategic vs. tactical decision-making, and the influence of
weather on flight operations. This section establishes the analytical foundation upon which the sur-
veyed literature builds by clarifying how optimisation problems are formulated and solved using various
techniques — including traditional and machine learning-based methods. The definitions and categori-
sations presented here support the structure of the literature review in Section 3 and guide the thematic
synthesis of findings throughout the article.

Route planning and optimisation in aviation involve selecting the most efficient and safe flight tra-
jectory while considering fuel consumption, flight time, aircraft performance, meteorological hazards
and regulatory constraints. The process is inherently complex due to the dynamic and uncertain nature
of atmospheric conditions, requiring both forecast-based planning and real-time decision-making. It is
therefore essential to distinguish between strategic (pre-flight) planning — based on forecasted weather
and airspace structure — and tactical (in-flight) planning, which accounts for updated meteorological
observations and operational constraints.

Trajectory optimisation typically begins with defining the origin and destination, available company-
preferred routes and forecasted weather conditions (e.g. thunderstorms, turbulence, icing). These
predefined routes are evaluated for feasibility, and if adverse weather is unavoidable, dynamic re-routing
is conducted using trajectory optimisation models and meteorological inputs. This adaptive framework
enables the minimisation of delays and fuel usage while maintaining safety and compliance with air
traffic control (ATC) regulations.

Flight route planning is a multi-stage process designed to minimise operational costs while ensuring
safety under dynamic atmospheric conditions. Modern air traffic management distinguishes between
strategic (pre-flight) and tactical (in-flight) planning, which differ in their time horizons, data inputs and
decision-making methods [9, 10].

The route optimisation problem relies on three main input categories: meteorological forecasts (e.g.
ECMWF Reanalysis v5 (ERAS) and World Area Forecast System (WAFS) products, which provide
wind, temperature, turbulence, and convective airspace), aircraft performance models (such as Base
of Aircraft Data (BADA) or manufacturer-specific fuel flow tables) and air traffic restrictions (includ-
ing restricted areas and ATC flow regulations). Commonly used datasets in aviation are detailed in
Section 4. Flight planning is typically divided into two phases: strategic planning, performed several
hours before takeoff using forecast data and predefined routes, and tactical planning, performed in flight
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with near-real-time updates from onboard radar, ADS-B, and uplink forecasts to enable dynamic rerout-
ing. This layered structure ensures that the optimisation remains feasible despite forecast uncertainties
and changing atmospheric conditions.

To formally describe the route optimisation problem under meteorological constraints, we define the
total cost functional J, which quantifies the cumulative operational cost of a given flight trajectory x (¢)
over the flight time interval [z, ;):

J= / ' [CaaaK(0), 4()) + Camel(E(t), (1)) + Cnenrr K0, ), WO 1d,

1
where:
 x (f): the state vector (e.g. position, velocity)
« u (¢): the control input vector (e.g. heading, throttle, climb rate)
« (1): the meteorological field (e.g. wind, turbulence, CB clouds)
e Cye: fuel consumption cost
o Cine: time-dependent cost

o Cyeaner: Weather penalty function

The optimisation is subject to:
x()=fx@®,u(),w(®) (aircraftdynamics),

and additional constraints including aircraft performance limitations, airspace regulations and meteoro-
logical hazards.

This formulation is widely used in trajectory optimisation frameworks. Figure 1 presents the gen-
eral framework, illustrating how meteorological data and operational constraints are integrated into the
weather avoidance optimisation process and how the strategic and tactical planning phases interact to
maintain safety and efficiency.

The challenges in flight route planning are typically formulated as multi-objective optimisation prob-
lems, aiming to minimise parameters such as flight time, fuel consumption and environmental impact
while adhering to safety constraints and regulatory requirements. With the integration of meteorological
factors — especially stochastic variables like wind fields, turbulence and convective weather — these prob-
lems become inherently nonlinear and time-dependent. As a result, optimisation algorithms must be both
robust and adaptive. Recent studies have employed metaheuristic approaches, such as genetic algorithms
(GA) and ant colony optimisation (ACO), to incorporate weather-aware multi-objective route optimi-
sation scenarios [11]. In addition, reinforcement learning (RL)-based strategies are emerging in air
traffic management as effective tools for real-time adaptive routing under meteorological uncertainties
[12, 13].

Weather-related factors, such as wind patterns, convective weather, turbulence and temperature vari-
ations, can significantly affect flight trajectories. For example, strong headwinds can increase fuel
consumption, while turbulence can affect flight stability and passenger comfort. In addition, extreme
weather events, such as thunderstorms or hurricanes, can require significant deviations from planned
routes, further complicating air traffic management. Hence, optimising flight paths based on meteo-
rological data involves balancing these factors to find the most efficient and safe route under weather
conditions.

Advances in optimisation techniques, particularly the integration of machine learning (ML) algo-
rithms, have introduced new strategies for solving complex, weather-dependent route planning prob-
lems. Unlike traditional algorithms — which often rely on static rule-based systems or deterministic
models — ML approaches can process large-scale historical weather and flight performance datasets to
identify patterns and make probabilistic predictions. For example, supervised learning models have been
used to forecast convective weather zones and estimate their future movement, allowing for proactive
route adjustments. By learning from environmental feedback, reinforcement learning algorithms have
also demonstrated the ability to optimise real-time trajectory decisions under uncertainty. In contrast,
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Tactical (In-flight)

See and avoid
Pilot visual assessment: Tactical (In-flight)

Fuel+minima

Airborne Weather Radar

Avoid convective cores: Turbulence,
Thunderstorm, Cumulonimbus, hail,
lightning

Tactical (In-flight)

ATC Coordination
Tactical reroute, ADS-B, reroute clearances Strategic (Pre-flight) + Tactical (In-flight)
Perform FMS, meteorological forecast

Preflight Planning

Meteorological Data: METAR, TAF, SIGMET, AIRMET,
Significant Weather Chart Strategic (Pre-flight)

Use WAFS/ERAS, BADA,AIP/TSFMS
Strategic route optimization (A*/DP/optimal control/RL)

Figure 1. Hierarchical representation of operational aspects for weather avoidance in aviation. The
pyramid distinguishes between strategic (pre-flight) and tactical (in-flight) measures.

while effective for structured optimisation, conventional methods such as dynamic programming and
genetic algorithms often struggle with scalability and adaptability in highly dynamic, data-intensive
environments.

3.0 Research method
3.1 Research questions

This section outlines the research methodology used to conduct a comprehensive survey of the litera-
ture on route optimisation and planning based on meteorological data. The review adopts a systematic
approach to identify and analyse relevant studies published in the past two decades. The methodology
involves formulating key research questions, developing a search strategy, and applying inclusion and
exclusion criteria to select primary studies.

The four research questions guiding this review were formulated based on recurring themes, chal-
lenges, and knowledge gaps identified in the literature. Existing studies often explore route optimisation
under fixed or limited meteorological scenarios, lack integration of real-time weather data, or focus on
isolated objectives such as fuel efficiency without addressing safety trade-offs. Therefore, the research
questions aim to synthesise fragmented findings, highlight underexplored areas, and provide a structured
basis for evaluating the current state-of-the-art and future research opportunities.

« Q1. How can meteorological data be integrated into route optimisation algorithms to enhance
flight efficiency and safety?

o Q2. What are the most effective algorithms and methodologies for route optimisation considering
meteorological data?

« Q3. How do different meteorological conditions impact flight route planning and optimisation?
e Q4. What are the trade-offs between optimisation objectives, such as fuel consumption, flight
time and safety?
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These questions aim to address the central challenges of optimising flight paths in dynamic atmospheric
conditions, providing a foundation for analysing existing methodologies and proposing future research
directions.

3.2 Searching and selection primary studies

A systematic search was conducted using multiple academic databases, including ScienceDirect, IEEE
Xplore, SpringerLink, Web of Science, Scopus and Google Scholar. The search covered peer-reviewed
journal articles and conference papers published between December 2001 and March 2024.

The following Boolean search query was used (with minor adaptations depending on database
syntax):

("route optimisation" OR "flight planning") AND ("meteorological data" OR
"weather information") AND ("air traffic" OR "trajectory" OR "flight path")

Searches were conducted in English only, and duplicates across databases were removed. Articles
were screened in three stages:

1. Title and abstract screening: Papers clearly unrelated to aviation or meteorology were
excluded.

2. Full-text eligibility: Papers that mentioned meteorological influence but did not include it in
optimisation or planning processes were excluded.

3. Final selection: Studies were included if they proposed, evaluated or applied an optimisation or
planning model incorporating meteorological variables.

In total, 184 papers were initially identified. After removing duplicates and irrelevant entries,
57 studies were selected as primary sources for full review and synthesis.
This process ensured the transparency and reproducibility of the literature review.

3.2.1 Search strategy
As introduced in Section 3.2, a structured search strategy was employed to ensure reproducibility. This
subsection details the selection and use of keywords during the search.

We categorised keywords into two groups:

o Primary Keywords: Core terms essential to the study scope, such as ‘route optimisation’, ‘flight
planning’, ‘meteorological data’, ‘air traffic management’ and ‘trajectory optimisation’.

» Secondary Keywords: Complementary terms that enhance coverage of relevant techniques and
subtopics, such as ‘weather forecasting in aviation’, ‘machine learning in flight optimisation’
and ‘meteorological integration in air traffic control’.

The following Boolean query was used to combine these terms:

("route optimisation" OR "flight planning") AND ("meteorological data" OR
"weather") AND ("air traffic" OR "trajectory")

This query was adapted to fit the syntax of each academic database. The keyword classification helped
to prioritise core topics while expanding the scope through related terms.

3.2.2 Inclusion and exclusion criteria

A rigorous set of inclusion and exclusion criteria was applied during the screening process to ensure
the relevance and quality of the studies included in this review. These criteria guided the title/abstract
screening and the full-text evaluation phases.

Inclusion criteria:
« Studies that explicitly focus on flight route optimisation or planning.

« Studies that incorporate meteorological data into the optimisation or decision-making process
(e.g. wind, convective weather, turbulence).
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« Peer-reviewed journal articles, conference papers, or substantial technical reports published by
recognised academic publishers.

« Publications dated between December 2001 and March 2024 to ensure contemporary method-
ological and technological relevance.

Exclusion criteria:

« Studies that do not pertain to aviation or address route optimisation in other transportation
domains (e.g. maritime or urban mobility).

« Studies that mention meteorological terms do not integrate weather data into the route planning
or optimisation framework.

« Non-peer-reviewed materials include editorials, blog posts, opinion pieces, or student theses.

« Studies published in languages other than English due to resource limitations for translation and
consistent interpretation.

These criteria were applied manually by reviewing the titles, abstracts and full texts where neces-
sary. The aim was to ensure that only methodologically rigorous and thematically relevant studies were
included in the final analysis.

3.2.3 Selection process
The selection process was conducted in three main stages:

1. Initial Search and Screening: The database search returned 184 records. After removing 26
duplicates, 158 unique studies remained. These were screened based on title and abstract. At
this stage, 79 papers were excluded because they were clearly unrelated to aviation or route
optimisation.

2. Full-Text Review: The remaining 79 studies were reviewed in full. After applying the inclu-
sion and exclusion criteria, 22 additional studies were excluded, primarily due to insufficient
methodological detail, lack of meteorological data integration, or non-peer review.

3. Data Extraction: A final set of 57 studies was selected for detailed analysis. Relevant data from
each study — such as reference number, task/objective, methods used and meteorological data
involved — were extracted and organised in a summary table (see Table 4; 6; 8; 10; 12).

This multi-step selection procedure is illustrated in Fig. 2, which shows the number of records
identified, screened, excluded and included at each stage of the review process.

This structured multi-step process ensured that the final corpus represents a robust and thematically
relevant set of studies for analysing the integration of meteorological data into flight route optimisation
and planning.

4.0 Synthesis of research on route optimisation based on meteorological conditions

This section synthesises the findings of 57 selected studies on route optimisation and planning under
meteorological conditions. The analysis is organised into six thematic categories: (1) classical rule-
based optimisation methods — where ‘classical’ refers to non-Al, deterministic, or heuristic approaches
such as dynamic programming, Dijkstra-based shortest path algorithms and predefined operational rules,
which rely on fixed constraints and do not adapt through data-driven learning; (2) data-driven and Al-
based approaches; (3) hybrid and integrated frameworks; (4) trade-offs and operational considerations;
(5) practical implementations in real-world systems; and (6) research gaps and future directions.

Each subsection summarises the relevant literature, highlights the type and source of meteorolog-
ical data used (e.g. forecast, measured, simulated), discusses methodological choices regarding flight
planning stages and evaluates the advantages and limitations of various optimisation strategies. The
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Figure 2. Flow diagram of the article selection process.

corresponding tables provide a structured overview of the reviewed studies’ objectives, techniques and
atmospheric variables. These are complemented by dataset usage statistics and visualisations that quan-
tify the prevalence of each data source in the literature, enabling a clear comparison of methodological
trends and meteorological parameter integration.

Understanding the prevalence and characteristics of meteorological datasets is vital for interpret-
ing the methodological choices observed in the reviewed studies. The frequency with which certain
atmospheric parameters (e.g. wind speed/direction, convective weather indicators) are employed directly
influences the optimisation approach, from cost function design to constraint formulation. In this context,
the subsequent analysis quantifies dataset usage across the literature, highlighting which data sources
and parameters are most frequently integrated into route optimisation workflows.

To better understand the role of meteorological datasets in trajectory optimisation, Table 1 sum-
marises the most commonly used data sources in the reviewed studies. For each dataset, the table
specifies the provider, main meteorological or operational parameters, temporal and spatial resolution
and its typical use in optimisation workflows. This structured overview facilitates a clearer comparison
of the capabilities and limitations of different datasets, enabling researchers to select appropriate sources
for specific optimisation objectives.

In addition to describing the datasets themselves, quantifying their prevalence in the reviewed litera-
ture provides deeper insight into current research practices. Table 2 summarises the number of studies in
which each dataset type has been employed, together with the corresponding references. This synthesis
not only identifies the most frequently adopted data sources but also highlights underutilised datasets
that may offer valuable opportunities for future research in trajectory optimisation under meteorological
constraints.
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Table 1. Commonly used datasets in aviation trajectory optimisation and their characteristics

Dataset Name Provider/Source Main Parameters Temporal/Spatial Resolution  Typical Use in Optimisation
Meteorological
ECMWEF Reanalysis v5 ECMWF Wind, temperature, humidity, 1 h/0.25° Weather avoidance; fuel/time
(ERAS) turbulence proxies optimisation
Global Forecast NOAA/NCEP Global wind, temperature, 1-6 h/0.25°-1° Global-scale route
System/Global Ensemble pressure fields optimisation; weather
Forecast System (GFS/GEFS) avoidance
Ensemble Prediction System ECMWF Probabilistic forecasts of 6 h/0.25° Uncertainty-aware trajectory
(EPS) wind, temperature, pressure planning
NEXRAD (Next-Generation NOAA Precipitation intensity, 5-10 min/radar coverage Convective weather
Radar) convective activity avoidance
EUMETNET EUMETNET Members Surface and upper-air Varies/station-based Regional weather monitoring
meteorological observations for route adjustment
World Area Forecast System ICAO/WMO Wind, temperature, clear-air 6 h/1.25° Pre-flight route planning
(WAES) turbulence (CAT)
Corridor Integrated Weather FAA Convective weather nowcasts 5—15 min/CONUS Tactical rerouting to avoid
System (CIWS) convective weather
Meteorological Aerodrome  ICAO Surface weather (wind, Hourly/station-based Departure/arrival safety
Report (METAR) visibility, ceiling, Runway
Visual Range (RVR),
phenomena)
Significant Meteorological ICAO Hazards (Thunderstorm (TS), As issued/FIR-based Tactical hazard avoidance
Information (SIGMET) Cumulonimbus (CB), CAT,
icing, ash)
Airmen’s Meteorological ICAO Moderate hazards As issued/FIR-based Short-term hazard awareness
Information (AIRMET) (turbulence, icing, Instrument
Flight Rules (IFR))
Pilot Weather Reports FAA/ICAO Turbulence, icing, cloud As reported/along route In-flight decision support
(PIREPs) information
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S

Table 1. Continued g
Dataset Name Provider/Source Main Parameters Temporal/Spatial Resolution  Typical Use in Optimisation 0§<
Operational Flight Data N
Automatic Dependent OpenSky, FlightRadar24, Position, speed, altitude, Seconds/meters Real trajectory validation 2
Surveillance—- FlightAware heading; Mode-S weather e
Broadcast/Mode-S data g
(ADS-B/Mode-S)
Airline Operational Control  Airlines Operational Flight Plan Per flight Pre-/in-flight planning
(AOC) Data (OFP), route, Cost Index (CI),

fuel load

DDR (Demand Data EUROCONTROL Historical and planned flight Daily/European airspace Traffic flow analysis and
Repository) trajectories capacity planning
Aircraft Performance
Base of Aircraft Data EUROCONTROL Thrust, drag, fuel flow, mass  Aircraft type Performance modeling
(BADA)
National Aeronautics and NASA Aviation safety, atmospheric ~ Varies/mission-specific Safety analysis; algorithm

Space Administration
(NASA) Datasets
Airspace & Navigation
Aeronautical Information
Publication (AIP)

Air Traffic Services (ATS)
Data

Network Strategic Tool
(NEST)

Traffic Flow Management
Data (TFMS/ETEMS)

National Air Navigation
Service Providers (ANSPs)
National ANSPs
EUROCONTROL

FAA/EUROCONTROL

research datasets

Airways, waypoints,
restricted zones
Airway structures, ATC

sector boundaries, restrictions
Network demand/capacity

scenarios, regulations
Traffic demand, sector
capacity, slot times

Regular updates
Regular updates/FIR-based
Strategic planning

horizon/European network
5-15 min/sector

development

Route feasibility checking

Route structure validation and
compliance

Flow management strategy
optimisation

Congestion avoidance
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Table 2. Dataset usage in reviewed trajectory optimisation studies

Dataset Studies References
Count
ECMWEF Reanalysis v5 (ERAS) 4 14-17)
Global Forecast System/Global Ensemble Forecast 4 (18-21)
System (GFS/GEFS)
Next-Generation Radar (NEXRAD) 1 (18)
Ensemble Prediction System (EPS) 4 (17, 22-24)
World Area Forecast System/National Weather Service 14 (17,25-37)
(WAFS/NWS)
European Meteorological Network (EUMETNET) 1 (38)
Corridor Integrated Weather System (CIWS) 5 (39-43)
Meteorological Aerodrome Report (METAR) 2 (18, 44)
Significant Meteorological Information (SIGMET) 4 (16, 18, 26, 44)
Airmen’s Meteorological Information (AIRMET) 1 45)
Pilot Weather Reports (PIREPs) 2 (18, 44)
Automatic Dependent Surveillance—Broadcast/Mode-S 7 (27-29, 44, 46-48)
(ADS-B/Mode-S)
Airline Operational Control Data (AOC Data) 26 (5,12, 15, 18, 20, 21, 30, 35-37,
40, 4245, 49-59)
Demand Data Repository (DDR) 1 24)
Air Traffic Services (ATS) 3 (18, 23, 59)
Network Strategic Tool (NEST) 1 22)
Base of Aircraft Data (BADA) 18 (5,14, 17,20, 22, 27-29, 31, 32,
36, 38, 46, 48, 49, 59-61)
National Aeronautics and Space Administration 8 (19, 31, 33, 39, 40, 62-64)
(NASA)
Aeronautical Information Publication (AIP) 6 (17, 20, 32,43, 57, 65)
Traffic Flow Management System/Enhanced TFMS 4 (33, 34, 55, 65)

(TFMS/ETFMS)

Meteorological datasets — particularly global forecasting products such as WAFS and National
Weather Service (NWS) — constitute the largest share (~45% of all cases), reflecting their high temporal
coverage, global spatial resolution and operational reliability. These datasets are widely adopted because
they provide standardised, continuously updated weather parameters indispensable for trajectory optimi-
sation, including wind fields, temperature profiles and convective weather indices. Operational datasets,
such as flight plans and air traffic flow management (ATFM) data from European Organisation for the
Safety of Air Navigation (EUROCONTROL) and International Civil Aviation Organization (ICAO)
sources, account for ~30% of usage. Their popularity stems from their ability to capture real-world
constraints, such as sector capacities, airspace restrictions and preferred routings, enabling more real-
istic and implementable optimisation outcomes. Performance datasets (*15%), often derived from
aircraft manufacturer data or models like BADA, are crucial for accurate fuel burn and climb/descent
profile estimation. Navigation datasets (*10%), while less frequently used, provide fundamental route
structure and waypoint information that can significantly affect optimisation when combined with mete-
orological and performance parameters. This distribution highlights not only the dominance of certain
well-established datasets but also the potential research opportunities in underutilised sources — such as
high-resolution local weather observations or advanced turbulence detection products — that may offer
improved trajectory efficiency under challenging atmospheric conditions.
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4.1 Classical and rule-based optimisation methods

Table 3 summarises the studies that utilise classical optimisation techniques, such as graph-based algo-
rithms (e.g. A*, Dijkstra), control theory methods, and deterministic models, to optimise flight routes
under meteorological constraints.

Classical and rule-based optimisation methods and graph-based pathfinding algorithms are fre-
quently employed in pre-flight planning due to their computational efficiency and deterministic
behaviour. These methods are instrumental when operating under relatively stable meteorological condi-
tions or in systems requiring rapid, repeatable solutions with limited uncertainty handling. For example
[44, 66], applied graph-based algorithms to minimise en-route phase duration or path length, relying
primarily on wind and convection forecasts.

Classical methods such as Dijkstra and A* are inherently deterministic and are most commonly
applied with static or forecast-based meteorological inputs. This limits their adaptability in rapidly
changing weather conditions. Nevertheless, several studies have extended these algorithms to incor-
porate uncertainty through stochastic cost functions, probabilistic weather fields or scenario-based
graph structures. Such extensions demonstrate that while the baseline formulation does not inherently
capture probabilistic predictions, the methods can indeed be adapted to address uncertainty. Despite
these advances, their deterministic use remains far more common in operational practice due to its
computational simplicity and transparency.

These approaches are best suited for strategic planning phases — where weather data can be integrated
from forecast models with lower temporal resolution — and less applicable to tactical, in-flight decision-
making. Nevertheless, their simplicity, speed and low computational load make them strong baseline
solutions or complementary components within hybrid frameworks.

In addition to their methodological characteristics, these approaches demonstrate a specific pattern
in how meteorological data is integrated into the optimisation process.

The classical optimisation methods reviewed in this section primarily rely on forecasted meteoro-
logical parameters — especially wind and convection data — to construct feasible and efficient routes.
Usually, these weather inputs are incorporated as static or semi-dynamic fields into cost functions or
graph weights. For instance, wind vectors are used to calculate ground speed and fuel cost in graph-
based models like A* or Dijkstra, while areas with convective activity are treated as high-penalty or
no-fly zones. Although effective for route planning under predictable conditions, these approaches often
lack adaptability to real-time weather changes and probabilistic uncertainty, limiting their use in highly
dynamic environments.

4.2 Data-driven and Al-based optimisation methods

Table 4 summarises the studies that leverage ML, deep learning (DL) and other data-driven approaches
to enhance route optimisation under dynamic meteorological conditions.

Data-driven and Al-based approaches have gained substantial traction in recent years due to their
ability to learn complex patterns from large-scale historical and real-time data. These methods are par-
ticularly suited for scenarios where meteorological variables exhibit nonlinear, time-dependent, and
uncertain behaviour — conditions under which classical methods struggle. For instance, deep learning
models such as long short-term memory (LSTM) and convolutional neural networks (CNN) have been
effectively used to capture temporal and spatial patterns in convective weather and turbulence, enhancing
the ability to forecast hazardous regions and adapt flight trajectories accordingly [39, 40, 55].

Yuan et al. [46] employed a Multi-Agent Reinforcement Learning (MARL) framework to manage
spacing among multiple aircraft while minimising fuel consumption autonomously. Although weather
uncertainty was not explicitly modeled, their approach demonstrates the potential of MARL in han-
dling complex decision-making tasks in multi-aircraft operations, which could be extended to include
meteorological variability.
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Table 3. Summary of classical and rule-based optimisation studies; summary of data-driven and Al-based optimisation studies

Ref. Tasks/Objective Methods Meteorological Data
(44) Minimise the enroute flight time Graph-based pathfinding algorithm Convective weather, Wind
(45) Minimise path length A* algorithm Airmen’s Meteorological Information
(AIRMET) data
(66) Minimise path length and flight time Pontryagin principle, Bellman/Dijkstra Wind (speed and direction)
algorithms, Euler/Lagrange equations
(31) Minimise CO, and NO,, and noise emissions Dijkstra, genetic algorithm, Pareto front Pressure, temperature, relative humidity, wind
(speed and direction), clouds reflectivity
(32) Minimise cost (fuel consumption, emissions, Dijkstra’s algorithm Temperature, wind (speed and direction),
flight time, and the cost index (CI)) geopotential altitude
(67) Minimise path length and fuel consumption A *search algorithm Adverse weather
(68) Minimise exposure to convective weather and Hybrid cellular automaton (CA) model Convective weather cells (CWCs)
restricted areas
(69) Minimise total delivery time and energy usage  Constraint optimisation problem (COP) model  Air density, wind (speed and direction)
in IBM ILOG
(61) Minimise airspace congestion and enroute Ordered upwind method (optimal control Storms, turbulence, wind
flight time framework)
(70) Minimise path length Obstacle avoidance algorithm Bad weather treated as obstacle
(23) Minimise flight time Mixed-integer linear programming (MILP) Temperature and wind uncertainty
(59) Minimise path length Optimisation component uses A* algorithm; Convective weather, vertically integrated liquid
heuristics include k-means clustering (VIL)
(34) Minimise flight time The Eulerian discretisation in the ordered Wind (speed and direction)
upwind method, Hamilton-Jacobi equation
corresponding to the optimal control problem
is based on Bellman’s optimality principle in
discrete case
(33) Minimise flight path Dynamic programming (Bellman-Ford Storm cells, raw radar reflectivity (dBZ), VIL,
variant), discretised airspace search rainfall rate, NWS levels (0-6)
(48) Minimise fuel consumption and flight time Floyd—Warshall algorithm Temperature, wind (speed and direction)

[PUANO[ IDIUNDUOLIY Y |

€l


https://doi.org/10.1017/aer.2025.10075

14

Akdogan and Sahin

Table 4. Summary of data-driven and Al-based optimisation studies

Ref.  Tasks/Objective Methods Meteorological Data
(53) Maximise flight flow, Random forest (RF) Convective weather
minimise rerouting
distance and delays
(55) Minimise flight cost LSTM-based Wind, temperature,
(fuel/time), maximise encoder-decoder, deep convective weather, high-res
efficiency generative model atmospheric info
(47)  Minimise path length Long short-term memory Pressure, temperature, density
(LSTM) network
39) Minimise weather-induced Convolutional RNN, LSTM Echo top (ET), vertically
uncertainties affecting encoder 4+ mixture density integrated liquid (VIL)
flight safety decoder
40) Minimise fuel consumption = Conditional GAN (CGAN) Echo top (ET)
and the delays with LSTM + CNN
(42)  Minimise deviation Bayesian deep learning Convective weather, ET, VIL
between planned and (BDL),
actual flight trajectories CNN + RNN + FCNN
architecture
(56)  Minimise fuel prediction Gaussian Process, MLP, Wind (speed and direction)
error SVM, linear interpolation
(64) Develop generalised CNN, LSTM, GRU, ET, VIL, temperature, wind
models for flight route SA-LSTM, SA-GRU, arv)
prediction IndRNN
(71)  Minimise ATC Evolutionary algorithm Weather forecast data (wind,
coordination workload temperature, pressure)
while preserving airspace
sector geometry
(15) Conflict detection Probabilistic transformation, Wind uncertainty
Monte Carlo method
(41)  Minimise flight time Hamilton-Jacobi-Bellman VIL, precipitation
approximation
(25)  Maximise probability of Stochastic reach-avoid Thunderstorms (position,
safe arrival method [72] size, movement)
43) Maximise terminal A*-based routing with ET, VIL
capacity convective forecast
integration
(73) Optimise route with Dynamic programming with Convective weather, VIL,

expected cost of deviation

probabilistic storm exposure

uncertainty modeling

Pang et al. [52] developed a machine learning-enhanced aircraft landing scheduling approach that
accounts for operational uncertainties, including those caused by weather disruptions. Their work high-
lights the feasibility of integrating data-driven techniques into arrival management systems, offering
more resilient and adaptive scheduling under uncertain conditions.

Training models often achieve the integration of meteorological data in Al-based frameworks on
features such as wind speed and direction, temperature gradients, convective indices (e.g. Echo Top
(ET), Vertically Integrated Liquid (VIL)) and high-resolution atmospheric fields. These parameters can
be used as direct model inputs or as part of a preprocessing step to generate weather impact metrics.
For example, random forest and supervised learning algorithms have been employed to classify weather
severity or predict delay probabilities based on input features derived from meteorological data [53, 56].
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Figure 3. Integration of meteorological data into Al-based route optimisation frameworks.

A key advantage of these approaches lies in their adaptability and predictive power — especially in
real-time applications. However, their performance is highly dependent on the availability and quality
of training data, and they may suffer from generalisation issues when deployed in regions or timeframes
not well represented in the dataset. Furthermore, the interpretability of complex Al models remains a
concern in safety-critical domains such as aviation.

Al-based methods offer promising enhancements to weather-aware route optimisation, particularly in
tactical and short-term planning phases. They are most effective when real-time or probabilistic weather
inputs enable dynamic decision-making in volatile atmospheric environments.

Figure 3 presents an integrated framework that combines meteorological data sources (e.g. ECMWF
Reanalysis v5 (ERAS), Meteorological Aerodrome Report (METAR), Terminal Aerodrome Forecast
(TAF), and aviation advisories such as Significant Meteorological Information (SIGMET) and Airmen’s
Meteorological Information (AIRMET)) with key atmospheric parameters including wind, temperature,
pressure, jet streams and convective indices. These inputs are processed through Al-based optimi-
sation models — ranging from time-dependent A* and deep learning architectures (e.g. LSTM) to
Reinforcement Learning (RL/MARL) and supervised learning approaches such as random forest for
delay prediction. In parallel, operational considerations, including airspace restrictions, aircraft perfor-
mance limits and safety criteria, are embedded into the decision-making process. The integration of
meteorological variability with operational constraints enables the generation of optimised routes that
minimise fuel consumption, reduce flight time and enhance safety through proactive risk avoidance.

4.3 Hybrid and integrated frameworks

Table 5 summarises selected studies that implement hybrid optimisation frameworks, combining mul-
tiple algorithmic approaches — such as deterministic models with machine learning — or integrating
meteorological data across multiple stages of the flight planning process.

Hybrid and integrated frameworks represent a growing trend in route optimisation research, where
multiple algorithmic strategies are combined to address the inherent complexity and uncertainty of mete-
orologically influenced flight planning. These approaches often merge traditional pathfinding algorithms

https://doi.org/10.1017/aer.2025.10075 Published online by Cambridge University Press


https://doi.org/10.1017/aer.2025.10075

16

Akdogan and Sahin

Table 5. Summary of hybrid and integrated optimisation studies

Ref.

Tasks/Objective

Methods

Meteorological Data

(74)

(42)

(64)

(18)

A7)

(58)
(75)
(47)
(38)

(57)

Minimise flight cost and
probabilistic exposure to
convective weather
Minimise deviation
between planned and
actual flight trajectories
Develop generalised
models for flight route
prediction

Minimise flight time

Minimise fuel consumption
and flight time

Minimise flight time and
Hausdorff distance
Minimise path length

Minimise path length
Minimise fuel consumption
and flight time

Minimise fuel consumption
and flight time

Probabilistic thunderstorm
nowcasting + robust optimal
control

BDL, CNN + RNN + FCNN

architecture

Hybrid recurrent models:
CNN-LSTM, CNN-GRU,
SA-LSTM, SA-GRU,
IndRNN

Hybrid: A* algorithm +
free-flight approach
Probabilistic execution plan
(PF) + ARS (Nesterov
updates)

A* 4 free-flight hybrid

Quadratic objective +
Hamilton-Jacobi objective
LSTM network
Augmented random search
(ARS) algorithm

Machine-learning based
backward Dijkstra with
A*-variant

Convective weather, RDT
characteristics (perimeter,
motion, cloud top pressure)
Convective weather, ET, VIL

ET, VIL, temperature, wind
(U/v)

Wind, convective SIGMET,
PIREP

Density, temperature, wind
(speed and direction) at
pressure level

Convective SIGMET
(Hurricane Laura, 2020)
Convective weather, VIL

Pressure, temperature, density
Instantaneous surface rain
rate, maximum reflectivity,
hourly rainfall accumulation
Wind, temperature

with data-driven or probabilistic models to leverage interpretability and adaptability. For instance, sev-
eral studies combine deterministic methods like A* with machine learning or probabilistic control to
enhance real-time responsiveness while retaining trajectory stability under uncertainty [17, 18, 58].

Barea et al. [51] proposed an integrated framework that optimises runway assignments and aircraft
trajectories, demonstrating how coupling airport-level decisions with en-route optimisation can enhance
operational efficiency and airspace utilisation. While meteorological uncertainty was not the primary
focus, the framework could be extended to incorporate weather-aware constraints.

A notable contribution of these frameworks lies in their capacity to process multi-source meteoro-
logical inputs across different planning layers — strategic (pre-flight), tactical (in-flight) and predictive
(nowcasting). Some studies incorporate probabilistic nowcasting of convective weather to adjust routes
under uncertain storm development scenarios dynamically [74]. Others integrate Bayesian inference or
deep hybrid architectures (e.g. CNN + RNN + FCNN) to capture spatiotemporal weather patterns and
refine trajectory predictions [42, 64].

The flexibility of hybrid models enables the integration of diverse meteorological parameters —
such as Echo Top (ET), (VIL, Significant Meteorological Information (SIGMET) and pressure-level
wind data — not just as static constraints but as dynamic elements driving decision-making. Despite
their potential, these frameworks often require high computational resources and reliable real-time data
streams, which may limit their deployment in specific operational contexts. Nonetheless, they repre-
sent a promising direction for developing robust and scalable route optimisation systems in aviation,
particularly under volatile weather conditions.
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Figure 4. Hybrid and integrated optimisation structures used in meteorologically informed flight route
planning.

As illustrated in Fig. 4, hybrid optimisation frameworks often combine classical pathfinding with
probabilistic or machine learning-based modules to support weather-aware flight planning.

4.4 Trade-offs and multi-objective optimisation

Table 6 summarises selected studies that address route optimisation as a multi-objective problem, aiming
to balance trade-offs between operational efficiency, fuel consumption, safety, environmental impact and
predictability.

In addition to optimising flight time and fuel usage, recent studies have incorporated climate-related
externalities into the objective functions. For example, Rosenow et al. [49] proposed a parametric model
that integrates climate cost factors — such as CO, emissions and contrail impact — into network-level
trajectory optimisation. Their results emphasise the growing need for environmental effects in strategic
route planning.

Zhang et al. [50] addressed the departure phase of flights by applying multi-objective optimisation
techniques to minimise fuel consumption, noise and emissions simultaneously. Their study demon-
strates the potential of such approaches to balance conflicting objectives, particularly in airport vicinity
operations where environmental and operational constraints are significant.

The reviewed studies in Table 6 highlight the increasing importance of multi-objective optimisation
in meteorologically aware flight route planning. Unlike single-objective approaches, these models aim
to balance competing goals such as minimising fuel consumption and emissions, reducing flight time,
enhancing predictability and maintaining safety under dynamic weather conditions. This is particularly
important in real-world operations where optimising one metric (e.g. fuel burn) may adversely affect
another (e.g. safety or delay).

Several studies adopt formal methods such as mixed-integer linear or nonlinear programming and
Pareto front-based approaches to explore trade-offs and identify optimal compromises systematically
[23, 31, 36]. Others use robust control frameworks or probabilistic execution models to mitigate
uncertainty in meteorological forecasts while optimising multiple performance indicators [14, 17].
These methodologies often incorporate meteorological parameters — such as wind vectors, convec-
tive precipitation, relative humidity and atmospheric pressure — as dynamic constraints or cost function
modifiers.

Despite their strengths, multi-objective models introduce additional computational complexity,
particularly when considering high-resolution weather data. Additionally, the interpretation and pri-
oritisation of conflicting objectives remain context-dependent, requiring integration with decision
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Table 6. Summary of multi-objective optimisation studies

Ref.  Tasks/Objective Methods Meteorological Data
(14)  Maximise performance Robust optimal control Temperature, geopotential
(flight time, fuel methodology height, convective
consumption), precipitation, wind (U/V)
predictability, and
minimise exposure to
convection
(23)  Minimise flight time Mixed-integer linear Uncertainty of temperature,
programming wind (speed and direction)
(31)  Minimise CO, and NO,, Dijkstra, genetic algorithm, Pressure, temperature,
and noise emissions Pareto front relative humidity, wind, cloud
reflectivity
(17)  Minimise fuel consumption  Probabilistic execution plan Density, temperature, wind at
and flight time + ARS with Nesterov updates  pressure level
(27)  Minimise fuel consumption = Dynamic programming (DP)  Wind, geopotential altitude,
and flight time temperature, upward wind
flow, relative humidity
(36) Minimise fuel Mixed-integer nonlinear Temperature, wind, relative
consumption, CO, programming humidity
emissions, flight time, and
persistent contrail
formation
(29)  Minimise CO, and NO, An integer multi-objective Temperature, pressure,
emissions programming relative humidity, wind
(speed and direction)
(54)  Minimise flight time and Quantum genetic algorithm Wind
path length
(19)  Minimise cost: fuel A* shortest path algorithm Wind, temperature, relative
consumption, emissions, with environmental data humidity, pressure altitude
flight time layers
(76)  Minimise flight time and Dynamic programming (DP) ~ Wind (16 pressure levels),
fuel consumption model with detailed weather precipitation, ET
input
(58)  Minimise flight time and A* algorithm with free-flight ~ Convective SIGMET
trajectory error modeling using real hurricane  (Hurricane Laura)
data
(28) Minimise flight time and DP model with Pressure levels, wind, temp,
fuel consumption high-resolution vertical RH, vertical wind
structure
(24)  Minimise flight time and Simulated annealing Uncertainty of temperature,
fuel consumption metaheuristic approach wind (speed and direction)
(77)  Minimise the expected Dynamic programming Storms (as a weather pattern)
delay techniques (Bellman’s
recursive solution)
6) Performance calculations A new atmospheric data Temperature, wind (speed

(fuel consumption, flight
time, total cost)

model (ADM), The 4D linear
interpolation methods

and direction)
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Table 6. Continued

Ref.  Tasks/Objective Methods Meteorological Data

(20)  Minimise operational costs ~ Legendre—Gauss Pressure levels, horizontal
(e.g. fuel consumption) in pseudospectral method wind field, stationary
descent trajectories (LGPM) atmospheric conditions

(21)  Optimal sequencing, CDM, robust optimal control, 31 separate weather forecast
minimise fuel consumption  mixed-integer nonlinear scenarios
and flight time programming

(78)  Minimise expected delay, Markov decision process, Storms (as a weather pattern)
fuel/time cost or maximise  stochastic dynamic
profit/safety under storm programming, linear
probability estimation programming, combinatorial
errors auction techniques

(35)  Minimise flight cost, fuel Mixed integer and nonlinear Convective weather
consumption and flight programming (MINLP) (cumulonimbus) uncertainty
time

support systems. These studies demonstrate that multi-objective optimisation is feasible and essential for
balancing operational, economic and environmental goals in weather-sensitive air traffic environments.

4.5 Operational applications and technology readiness

Table 7 highlights selected studies that demonstrate the application of route optimisation frameworks
across different technology readiness levels (TRLs). Instead of broadly classifying these works as ‘real-
world’ or ‘semi-operational’, the discussion explicitly positions them along the TRL spectrum, which
provides a more rigorous assessment of technological maturity.

In this context, approaches validated only in simulation environments are positioned at TRL 34,
reflecting proof-of-concept studies that confirm feasibility under controlled conditions. Frameworks
evaluated using operational flight datasets or prototype implementations fall under TRL 5-6, marking
the transition from research concepts toward operational prototyping and testing in relevant environ-
ments. Finally, solutions that are embedded into air traffic management (ATM) tools or airline dispatch
systems are aligned with TRL 7-9, indicating a high degree of maturity and near-operational or fully
operational deployment.

By mapping existing contributions to the TRL framework, it becomes possible to assess not only
the scientific novelty of these works but also their potential for adoption in operational aviation envi-
ronments. This structured classification highlights the extent to which meteorological intelligence has
moved beyond theoretical models, offering a transparent view of progress toward deployable, data-driven
decision support systems in aviation.

Several route optimisation frameworks have been proposed and tested across different stages of tech-
nological maturity. As summarised in Table 7, these contributions can be systematically mapped onto
the TRL spectrum, reflecting their readiness for real-world deployment.

At the TRL 3—4 level (simulation-based proof-of-concept), methods such as augmented random
search for trajectory optimisation [17] or machine learning-enhanced Dijkstra variants [57] remain
validated only in controlled or simulation environments. Probabilistic rerouting models for convective
weather avoidance [37] also belong to this group, demonstrating feasibility but not yet tested in oper-
ational conditions. These studies highlight the potential of Al and optimisation methods but remain
limited by their reliance on synthetic or purely historical datasets.

Moving toward TRL 5-6 (prototype validation with operational datasets), approaches begin to incor-
porate real-world flight and meteorological data. For instance, deep learning-based models for trajectory
conformance monitoring [42], free-flight A* routing with Significant Meteorological Information
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Table 7. Summary of route optimisation frameworks positioned within the TRL spectrum

Ref. Objective Methods Meteorological Data

TRL 3-4: Simulation-based proof-of-concept

(17) Minimise fuel consumption  Augmented random search Temperature, wind, pressure
and flight time (ARS)

(57) Minimise fuel consumption = Backward Dijkstra with ML Wind, temperature
and flight time module

(37) Weather-based rerouting and Probabilistic framework Thunderstorms, convective
delay estimations integrated into airspace weather patterns

planning

TRL 5-6: Prototype validation with operational datasets

(42) Minimise deviation between Bayesian deep learning Convective weather, ET, VIL
actual and planned (CNN + RNN + FCNN)
trajectories

(18) Minimise flight time A* with free-flight approach Wind, convective SIGMET,

PIREP
(22) Minimise cost Robust control 4 thunderstorm Thunderstorm observations,
radar integration wind reanalysis

(26) Minimise route deviation and A* + Theta* with reflectivity Thunderstorm reflectivity, hail,
fuel consumption nowcasting lightning

(30) Minimise flight time The DIVSIM software package DIVMET (adverse weather

diversion model), DIVSIM
(DIVMET + air traffic
simulation NAVSIM), SWIRLS
nowcasting system, radar
reflectivity polygons

TRL 7-9: Operational or near-operational systems

(60) Air traffic guidance with AMAN (arrival manager) Instability, thunderstormes,
operational weather system squall lines, hail
integration
(65) Maximise airspace capacity  Greedy prioritisation, STARs,  National convective weather
while ensuring safety flow-based route planner diagnostic NCWD), severe
(FBRP), free flight weather coverage values

(SIGMET) and Pilot Weather Reports (PIREP) integration [18], and robust control frameworks leverag-
ing thunderstorm radar observations [22] demonstrate stronger alignment with operational conditions.
Similarly, dynamic routing methods such as A* with reflectivity nowcasting [26] and integrated software
packages like DIVSIM [30] use real atmospheric inputs, moving closer to practical application.

Finally, a smaller subset of works has reached TRL 7-9 (operational or near-operational systems).
These include weather-aware arrival management systems (AMAN) for traffic sequencing under convec-
tive disturbances [60] and large-scale automated rerouting frameworks designed to maximise capacity
under severe weather constraints [65]. Such implementations directly interact with air traffic manage-
ment tools and demonstrate the highest maturity, bridging the gap between research and operational
deployment.

By explicitly positioning studies within this spectrum, the progression from conceptual simulation to
pre-operational validation and near-operational integration becomes evident. This structured perspective
not only highlights scientific innovation but also clarifies which methods are approaching real-world
applicability in meteorology-driven flight optimisation.
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4.6 Research gaps and future directions

Despite the growing body of research on flight route optimisation based on meteorological data, several
significant research gaps remain. These gaps limit the applicability, scalability and reproducibility of
many proposed approaches. A comprehensive analysis of the reviewed studies reveals limitations in
data usage, methodological diversity, evaluation rigor and operational integration.

This section identifies and categorises these gaps into four main areas: (1) limitations in meteorolog-
ical data utilisation, (2) methodological shortcomings, (3) challenges in evaluation and reproducibility
and (4) potential directions for future research. Addressing these aspects is crucial for advancing the field
and ensuring that route optimisation models can be reliably applied in dynamic, real-world air traffic
management environments.

4.6.1 Gaps in meteorological data utilisation

While many studies incorporate meteorological inputs into route optimisation models, the scope of
utilised weather data is often limited to a narrow subset — most commonly wind speed and convective
activity. Despite their operational importance in aviation, less emphasis is placed on integrating addi-
tional significant atmospheric parameters such as turbulence intensity, icing conditions, visibility or
low-level wind shear.

Moreover, most models rely on forecast data from a single source, such as GFS or ECMWF, without
comparative evaluation across different meteorological datasets (e.g. Meteorological Aerodrome Report
(METAR), SIGMET, ECMWEF Reanalysis v5 (ERAS), PIREPs). This lack of data diversity can reduce
model robustness and limit the ability to generalise across regions or flight phases.

Another key limitation is the underutilisation of spatiotemporal variability and uncertainty within
weather data. Many approaches treat meteorological inputs as deterministic layers rather than proba-
bilistic fields, which can lead to oversimplified route cost estimations and suboptimal flight planning
outcomes.

Addressing these gaps would require integrating multi-source, high-resolution and uncertainty-aware
weather products that better reflect the dynamic and heterogeneous nature of atmospheric phenomena
affecting flight safety and efficiency.

4.6.2 Methodological limitations

Despite the rapid evolution of optimisation techniques, many studies adopt simplified or idealised
assumptions that limit their real-world applicability. Many approaches still assume static weather inputs
or operate in offline environments without accounting for meteorological conditions’ dynamic and
rapidly changing nature during actual flights. A vital review by Simorgh et al. [79] emphasised the
need for climate-optimal aircraft trajectory planning, highlighting that most existing methods inade-
quately account for long-term environmental impacts such as NOx emissions and contrail formation. The
study identified significant methodological gaps in integrating climate-aware constraints into trajectory
optimisation models.

Another methodological constraint is the lack of generalisability of proposed models. While some
algorithms perform highly in selected case studies or specific airspaces, they are rarely validated across
diverse flight corridors, operational contexts or weather regimes. This raises concerns about their
scalability and robustness in global aviation scenarios.

Furthermore, although machine learning and metaheuristic methods are increasingly used, little
attention is often paid to model interpretability, convergence guarantees or the computational cost of
implementation — especially under real-time constraints. Only a few studies provide complexity analysis
or assess the feasibility of deployment in existing airline or ATC systems.

To overcome these limitations, future methodologies should focus on adaptive, data-driven, and
explainable frameworks that can operate under uncertain, time-varying conditions while meeting
operational performance requirements.
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4.6.3 Challenges in evaluation and reproducibility

One of the significant obstacles in advancing meteorology-based route optimisation research is the lim-
ited transparency and reproducibility of existing studies. A significant portion of the literature does
not provide access to the datasets, code repositories, or experimental configurations used — hindering
comparative benchmarking and validation by other researchers.

Moreover, evaluation procedures often lack standardisation. Performance metrics vary widely across
studies, with some focusing solely on fuel savings, others on route length or delay reduction, and only
a few considering safety-related outcomes such as storm avoidance or trajectory deviation. This het-
erogeneity in evaluation practices limits the ability to draw generalised conclusions about algorithm
performance.

Another key concern is the absence of independent validation using unseen flight or weather sce-
narios. Many models are tested on the same dataset they are trained or tuned on, which raises concerns
about overfitting and limited generalisation capacity.

Future research should prioritise open science practices, including the publication of benchmark
datasets, shared codebases and standardised evaluation protocols. These practices would foster collabo-
rative progress and allow the field to move toward more trustworthy, repeatable and practically relevant
solutions.

4.6.4 Future directions

Based on the gaps identified in previous sections, several promising avenues emerge for future research.
First, integrating multimodal meteorological data — combining satellite imagery, radar reflectivity and
in-situ reports — could enhance situational awareness and enable more informed decision-making. Such
data fusion could support high-resolution weather-aware trajectory optimisation, particularly under
convective or low-visibility conditions.

Second, real-time and adaptive decision-making frameworks such as RL remain underexplored in
operational flight routing. Unlike traditional models, RL can continuously learn from environmental
feedback, adapting dynamically in uncertain atmospheric conditions. Integrating RL with live weather
updates may allow for more flexible and resilient in-flight routing solutions.

Third, future efforts should aim to align trajectory optimisation with sustainability goals. This
includes incorporating environmental performance indicators — such as CO, and NO, emissions — into
the objective functions of optimisation models. Developing green trajectory frameworks that balance
efficiency with ecological impact is especially crucial in the context of climate change and international
aviation regulations.

Finally, a key research direction involves the development of deployable decision support systems that
can be integrated into existing ATM or airline dispatch platforms. These systems must operate within
strict time constraints while handling heterogeneous weather inputs, regulatory rules and operational
preferences. Collaboration between researchers, meteorologists and aviation authorities will be essential
for bridging the gap between theoretical advancements and practical deployment.

5.0 Conclusion and future work

This review provides a structured synthesis of recent studies on flight route optimisation and planning
based on meteorological data. Integrating weather parameters — particularly wind, convective activity
and turbulence — into optimisation models has significantly enhanced operational safety, efficiency and
fuel economy in aviation.

The surveyed studies employed various methodologies, from classical graph-based algorithms to
advanced machine learning and hybrid optimisation techniques. These approaches demonstrate promis-
ing results, but several challenges persist, including the limited use of diverse meteorological datasets,
lack of real-time adaptability and insufficient validation under dynamic conditions.
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Recent advances in artificial intelligence, intense learning and reinforcement learning open new
opportunities for adaptive, scalable and context-aware optimisation. These data-driven approaches offer
the potential to learn from historical and real-time meteorological inputs, enabling more intelligent and
more responsive decision-making in flight operations.

Future research should prioritise the development of robust, explainable and computationally effi-
cient frameworks that can integrate high-resolution, multi-source meteorological datasets (e.g. ECMWF
Reanalysis v5 (ERAS), Next-Generation Radar (NEXRAD), Ensemble Prediction System (EPS, World
Area Forecast System/National Weather Service (WAFS/NWS), Mode-S/ADS-B observations). Such
integration would enable optimisation models to capture fine-scale weather dynamics and improve reli-
ability under rapidly changing atmospheric conditions. In addition, future studies should systematically
validate proposed methods through large-scale scenario testing and real-world case studies, rather than
relying solely on idealised simulations.

Equally important is the alignment of optimisation objectives with sustainability metrics, including
quantifiable reductions in fuel consumption, CO, emissions and operational delays. Addressing these
goals not only advances scientific rigor but also supports the decarbonisation targets of international
aviation organisations (e.g. ICAO, International Air Transport Association (IATA)). Finally, embedding
these models into airline decision-support systems and air traffic management platforms will be critical
for translating theoretical advances into operationally viable and industry-adopted solutions.
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