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One-degree-of-freedom flow-induced vibration (FIV) and energy harvesting through FIV
of an elastically mounted circular cylinder with mechanically coupled rotation were
investigated numerically for low Reynolds number 100, mass ratio 8 and a wide range of
reduced velocities. The aims of this study are to investigate the effect of the flow direction
angle β on the vibration and energy harvesting through FIV. Two types of lock-in are
found: vortex-induced vibration (VIV) and galloping. The response amplitude increases
with the increase of β in both regimes. Both VIV response and galloping regimes are found
for β = 45◦ to β = 90◦. For β =−90◦ to β = 0◦, only VIV response regimes are found. The
fluid force and fluid torque play different roles in exciting/damping the vibration. In the
high-amplitude gallop regime, the fluid force excites the vibration, and the torque damps
the vibration. Energy harvesting at flow direction angle 90◦ is investigated as this flow
direction has the maximum galloping amplitude. The energy harvesting is achieved by
a linear electric damping coefficient in the numerical model. The maximum harvestable
power in the galloping regime is significantly greater than that in the VIV regime, and
it increases with the increase of the reduced velocity. When the reduced velocity is 20,
the harvested power is over 20 times that in the VIV regime, and can further increase if
reduced velocity further increases. The maximum efficiency over all simulated parameters
is 0.424, occurring when the reduced velocity is 20, and electric damping factor is 0.04.
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1. Introduction
Flow-induced vibration (FIV) has been studied extensively because it is a key mechanism
that causes fatigue failure of structures in fluid flow. An elastically mounted rigid
circular cylinder in a fluid flow has been used as the set-up for investigating fundamental
mechanisms of FIV. Vortex-induced vibration (VIV) is the main format of FIV, and it
occurs when there is synchronisation between the frequency of the wake vortex mode and
the frequency of the vibration (Williamson & Govardhan 2004). The non-dimensional
parameters that affect VIV of an elastically mounted circular cylinder are the reduced
velocity defined as Ur = U/( fn D), mass ratio defined as m∗ = m/md , and damping ratio
ζ = C/(2

√
km), where U is the free-stream velocity, f n is the natural frequency of the

system, D is the diameter of the cylinder, m is the mass of the cylinder, md is the displaced
mass, c is the damping coefficient, and k is the stiffness. One-degree-of-freedom VIV of
a cylinder in the crossflow direction has been the topic of many studies. Under low mass
ratios, the lock-in regime of the reduced velocity is divided into three branches: initial
branch, upper branch and lower branch (Khalak & Williamson 1996, 1999), and there
is hysteresis near the boundaries between branches. Various types of effective passive
and active flow control methods have been proposed to reduce VIV, and they have been
reviewed by Hong & Shah (2018) and Zhao (2023). Active flow control needs to input
energy into the system, and a passive flow control method reduced the VIV by attaching
some devices on the cylinder, such as control rods, helical strakes, splitters and fins.

Studies have also been conducted to enhance VIV as FIV can be utilised as a source
of renewable energy. Soti et al. (2017) developed a simple electromagnetic system for
energy harvesting from VIV, while Yadav & Baredar (2018) summarised the studies of
energy harvesting from VIV through piezoelectric systems. Taheri, Zhao & Wu (2023)
and Chen, Li & Yang (2024) used rotating control rod and shape optimisation to enhance
VIV, respectively. Taheri et al. (2023) reported that the vibration amplitude of the
cylinder increases with the increase of the rotation speed of the control rod. However,
the enhancement of the vibration is achieved at the cost of energy input that is used to
rotate the rod. By optimising the shape of the cylinder, Chen et al. (2024) achieved more
than a tenfold increase in the energy harvesting.

Nitti, De Cillis & De Tullio (2022) proposed a new concept of enhanced VIV through
an elastically mounted cylinder with mechanically coupled rotation, as illustrated in
figure 1(a) for reduced velocities up to 12. In the coupled system, the cylinder rolls along
a straight rail with rotation radius r. The rail has inclination angle β relative to the flow
direction in a fluid flow; β is 90◦ when the cylinder is on the upstream side of the rail,
and −90◦ when the cylinder is on the downstream side. For a cylinder with finite length,
the rolling of the cylinder can be achieved through a pair of linear guide rails with rack
gear installed on the two ends of the cylinder, respectively. In Nitti et al. (2022), the
configuration was treated as two-dimensional, and two-dimensional numerical simulations
were conducted. They investigated the case where the vibration direction is perpendicular
to the flow direction, i.e. the flow direction angle is β = 90◦. Nitti et al. (2022) found that
up to the reduced velocity Vr = 12, the vibration amplitude increases with the increase of
the reduced velocity, and the rotation radius r affects the response significantly.

Figure 1(b) is a sketch to demonstrate that the vibration amplitude will continue
increasing as the reduced velocity further increases. In the figure, the cylinder is moving
upwards with velocity Ẋ during vibration in the case β = 90◦. The upward motion
of the cylinder causes the rotation of the cylinder, with rotation speed θ̇ = Ẋ/r . The
rotation of the cylinder in the clockwise direction causes an upward force FX in the
X-direction due to the Magnus effect (Prantl 1926; Swanson 1961). When the cylinder
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Figure 1. Computational domain for simulating vibration of a circular cylinder mechanically coupled with
rotation using computational fluid dynamics. (a) Computational domain and (b) Velocity and force of the
cylinder at β = 90.

moves downwards, the force due to the Magnus effect is also downwards. This force that is
in the same direction as the velocity of the cylinder is equivalent to the negative damping
of flow-induced galloping; as a result, the vibration amplitude increases with the increase
of the reduced velocity. If the angle is β = −90◦, then the Magnus effect acts as positive
damping because its force is in the direction opposite to the velocity of the cylinder. Nitti
et al. (2022) predicted that the coupled rotation has potential to enhance energy harvesting.

In this paper, FIV and energy harvesting from FIV of a circular cylinder mechanically
coupled with rotation placed in a uniform flow as shown figure 1 are investigated for
flow directional angles (β) ranging from −90◦ to 90◦. The spring-supported cylinder
is allowed to vibrate translationally in the X-direction, which has inclination angle β
relative to the income flow direction. The cylinder rolls along a straight line with rotation
radius r. The angular displacement and angular speed of the cylinder’s rolling are θ and
σ , respectively. The vibration is a one-degree-of-freedom vibration because the cylinder
translational displacement X and the angular displacement θ are related by X = rθ . Nitti
et al. (2022) investigated the effects of the rotation radius r on the response for the case
where the vibration direction is perpendicular to the flow direction, i.e. β = 90◦, and
achieved significant increase in the vibration amplitude. In this study, the effect of the
vibration direction angle β on the response will be investigated. The Reynolds number is
Re = 100, and the mass ratio is m∗ = 8. The Reynolds number is defined as Re = UD/ν,
where ν is the kinematic viscosity of the fluid.

2. Numerical method
The dimensional equation of motion of the cylinder is (Nitti et al. 2022)(

m + I0

r̂2

)
d2 X̂

dt̂2
+ C

dX̂

dt̂
+ K X̂ = F̂e, (2.1)
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where variables with a hat are dimensional variables, X̂ is the displacement of the cylinder,
m and I0 are the mass and the polar mass moment of inertia of the cylinder, respectively,
C is the translational damping coefficient in the X-direction, t̂ is time, F̂X is the fluid force
in the X-direction, T̂θ is the fluid torque on the cylinder in the clockwise direction, F̂e =
F̂X + (T̂θ /r̂) is referred to as equivalent force, and r̂ is the rotation radius of the cylinder.
The cylinder is homogeneous, so the polar moment of inertia of the cylinder is I0 = ρc J0,
where ρc is the density of the cylinder, and J0 = πD4/32 is the polar area moment of
inertia. The mass ratio is m∗ = ρc/ρ, where ρ is the density of the fluid. The natural
frequency of the system is fn = (1/2π)

√
K/(m + (I0/r̂2)), and the reduced velocity is

defined as Vr = U/( fn D).
The non-dimensional displacement (X), coordinates (x, y), time (t) and velocity vector

(u, v) are defined as X = X̂/D, (x, y)= (x̂, ŷ)/D, t = Ut̂/D and (u, v)= (û, v̂)/U ,
respectively. The non-dimensional form of (2.1) is

m∗e
d2 X

dt2 + C∗ dX

dt
+ K ∗X = F∗, (2.2)

where e = Ac/D2 + J0/(D2r̂2), C∗ = C/(ρDU ), K ∗ = K/(ρU 2), F∗ = F̂X/(ρDU 2)+
T̂θ /(ρr D2U 2), and Ac is the cross-sectional area of the cylinder.

Figure 1(a) shows the rectangular computational domain with non-dimensional length
60 in the flow direction and height 100 in the crossflow direction for simulating the
fluid flow past the vibrating cylinder. The neutral position of the cylinder is located at
20 downstream from the inlet boundary. To account for the continuously moving boundary
caused by the vibration, the Navier–Stokes (NS) equations are solved using the arbitrary
Lagrangian–Eulerian (ALE) scheme that allows the mesh to deform. The non-dimensional
incompressible NS equations in the ALE scheme are

∂ui

∂t
+ (

uj − u j,m
) ∂ui

∂xj
+ ∂p

∂xi
= 1

Re

∂2ui

∂xj xj
, (2.3)

∂ui

∂xi
= 0, (2.4)

where subscript i = 1, 2 on a vector represents the components in the x- and y-directions,
respectively, the non-dimensional pressure is p = p/ρU 2, and u j,m is the velocity of the
computational mesh in the xj -direction.

The NS equations are solved using the Petrov–Galerkin finite element method and in-
house CFD software developed by Zhao et al. (2007), which has been successfully used
in studies of VIV or rotating and non-rotating cylinders (Zhao 2013, 2020; Munir et al.
2021; Taheri et al. 2023). The boundary conditions are specified as follows. On the inlet,
non-dimensional flow velocity is 1, and the pressure gradient in the streamwise direction
is zero. On the outlet, the reference pressure is zero, and the gradient of the velocity in the
streamwise direction is zero. On the surface of the cylinder, a no-slip boundary condition
is given, i.e. the fluid velocity is the same as the velocity of the cylinder surface. On the
two side boundaries, symmetric boundary conditions are used. The initial condition for all
the simulations is that the velocity is zero in the whole computational domain. The initial
condition may affect the response near the boundary between response branches where
the vibration is hysteretic (Prasanth & Mittal 2008). This paper is focused on identifying
response modes; identifying the effects of initial condition on vibration is not covered.

In the ALE scheme, the computational mesh is deformed to account for the updated
position of the cylinder in every computational time step. The equation for calculation of
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r = 0.5, Nitti et al. (2022)
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Figure 2. Comparison between the present numerical results and other numerical and experimental results at
β = 90◦: (a) r = 0.32, (b) r = 0.5.

the displacement of the finite element nodes is (Zhao & Cheng 2011)

∇ · (γ∇Si )= 0, (2.5)

where Si is displacement of the mesh nodes in the xi-direction, and γ is a parameter that
controls the deformation of the mesh. A refined mesh is used near the cylinder surface to
ensure that the flow separation is well predicted. To ensure that mesh near the cylinder has
smaller deformation, the parameter γ in a finite element is chosen as γ = 1/Ae, where Ae
is the area of the finite element. When (2.5) is solved by the finite element method, the
following boundary conditions are specified. On the inlet and outlet boundaries (the left-
and right-hand boundaries in figure 1a), S1 = 0 and ∂S2/∂x = 0. On the top and bottom
boundaries, S2 = 0 and ∂S1/∂x = 0. On the surface of the cylinder, the displacement of
the mesh nodes is the same as the displacement of the cylinder. The boundary conditions
allow the mesh nodes to slide on the four side boundaries.

In each computational time step, the NS equations are first solved, and the fluid force
and torque on the cylinder are obtained based on the fluid pressure and shear stress on
the cylinder surface. Then the equation of motion (2.2) is solved to obtain the cylinder’s
displacement and velocity. Finally, (2.5) is solved to calculate the updated displacement
of the mesh nodes, and find the mesh velocity ujm, which is required for solving the NS
equations using ALE.

3. Validation and mesh dependency test
The validity of the present numerical method for the case of a circular cylinder without
mechanically coupled rotation has been proved in our previous studies (Zhao 2013). To
further validate the numerical method for a cylinder coupled with rotation, figure 2 shows a
comparison between the present numerical results for m∗ = 8 and Nitti et al. (2022), where
the vibration amplitude A is defined as A = (Xmax − Xmin)/2, with Xmax and Xmin the
maximum and minimum vibration displacements, respectively. Good agreement between
the two sets of numerical results is obtained. In this study, simulations are conducted for
a much wider range of reduced velocity, and the vibration amplitude increases with the
reduced velocity nearly linearly at β = 90◦ until Ur = 20. The vibration amplitudes for
r = 0.5 are smaller than those for r = 0.32.

The enhancement of the vibration by the mechanically coupled rotation is due to the
Magnus effect that causes a net lift force on a rotating cylinder placed in a fluid flow
(Prantl 1926; Swanson 1961). The net lift force increases with the increase of the rotating
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speed. If the flow approaches the cylinder at β = 90◦, then the upward motion of the
cylinder causes the cylinder to rotate in the clockwise direction. The direction of the lift
coefficient of a rotating cylinder in the clockwise direction caused by Mingus effect is in
the same direction as the displacement; as a result, it further enhances the upward motion
of the cylinder. Similarly, the negative Magnus-effect-caused downward lift coefficient
when the cylinder moves downwards further enhances the downward motion. The above
mechanism is the typical mechanism of galloping. Vicente-Ludlam, Barrero-Gil &
Velazquez (2018) defined this type of response galloping. They experimentally tested VIV
of a circular cylinder in the crossflow direction under two coupled rotation conditions:
condition 1 where the rotation angle is proportional to the translational displacement of
the cylinder, i.e.

θ = k1 X, (3.1)

and condition 2 where the rotation angle is proportional to the translational velocity of the
cylinder (Ẋ), i.e.

θ = k2 Ẋ . (3.2)

The correlation between θ and X is θ = X/r for the coupled configuration in figure 1.
Equation (3.1) is equivalent to a coupled system with r = −1/k1, considering that the
direction of θ in this study is opposite to that defined by Vicente-Ludlam et al. (2018). The
mass ratio, the damping ratio and the Reynolds numbers in the experiments of Vicente-
Ludlam et al. (2018) are m∗ = 11.7, ζ = 0.0043 and Re = 1500–10 000, respectively.
Positive and negative values of k1 in (3.1) are equivalent to β = −90◦ and β = 90◦,
respectively. Vicente-Ludlam et al. (2018) found that a negative value of k1 enhances
vibration, and found that for k1 = −1.875 to k1 = 0, the lock-in regime is widened and the
maximum vibration amplitude in the lock-in regime is increased. However, at k1 = −2.125
(equivalent to r = 0.471), the cylinder’s amplitude increases with the increase of the
reduced velocity without stopping.

Nitti et al. (2022) have investigated the effects of rotation radius on the response for a
constant flow direction β = 90◦, and found that r = 0.32 has the maximum amplitude. In
this study, it is also proved that the vibration amplitude at r = 0.32 is much higher than
amplitudes at r = 0.5 in figure 2. We will focus on the effects of the flow direction on the
response for a constant rotation radius r = 0.32 in the rest of this paper.

A mesh dependency test is conducted to ensure that the mesh is sufficient dense for
accuracy. In addition to the mesh that is used in all the simulations, a coarser mesh
and a denser mesh are used to do the simulations for the case β = 90◦ and Ur = 20,
where the vibration amplitude is the maximum. The properties of the meshes are listed
in table 1, where W and H are the width and height of the computational domain,
respectively, Nc is the number of finite elements on the cylinder surface, and Δmin is
the minimum mesh size in the radial direction on the cylinder surface. Figure 3 shows
the time histories of the vibration displacements calculated from the three meshes; the
vibration is periodic for all three meshes. The error e(V) in the table is defined as the
difference between the result of any value presented by V and the result from the denser
mesh, i.e. e(V )= (|V − Vdenser mesh|/Vdenser mesh)× 100%. It can be seen from table 1
that the difference between the amplitudes of the normal and denser meshes has been very
small, indicating the convergence of the mesh. The difference in frequency (f ) between
the normal and denser meshes is smaller. The effect of the computational domain on the
results is also checked by simulating the vibration with a larger computational domain and
same mesh density as the normal mesh. The length and width of the larger domain are
1.5 times those in the normal mesh. The results for the larger domain shown in table 1
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Mesh W H Nc Δmin A E(A) f e(f )

Denser 60 100 160 0.0005 12.572 — 0.04458 —
Normal 60 100 120 0.001 12.626 0.43 % 0.04450 0.18 %
Coarser 60 100 96 0.0015 12.479 1.17 % 0.04459 0.21 %
Larger domain 90 150 120 0.001 12.183 2.35 % 0.04410 1.11 %

Table 1. Non-dimensional vibration amplitude and frequency for β = 90◦ and Ur = 20.

16

12

8

4

−4

−8

−12

−16
800 820 840 860 880

Coarser Normal Denser

900 920

t

X

940 960 980 1000

0

Figure 3. Comparison between the vibration time histories from three difference meshes.

have very small differences from the normal mesh results. The amplitude of the larger
domain’s amplitude is 2.35 % greater than that of the normal mesh.

4. Results
Figure 4 shows the variation of the vibration amplitude with the reduced velocity for all
the simulated flow direction angles. The vibration amplitude for β = 45◦–90◦ does not
stop increasing with the increase of the reduced velocity until Vr = 20. This is a typical
galloping response, which is self-excited instability with high amplitude and low frequency
(Joly, Etienne & Pelletier 2012). Galloping is a classical instability mechanism in which
a small transverse body motion creates an aerodynamic force that increases the motion
(Bearman et al. 1987; Luo, Chew & Ng 2003). Galloping does not occur for structures with
circular cross-sections if they do not rotate. However, the mechanical coupling between the
vibration with the rotation motion of the cylinder creates the condition for galloping.

When the flow approaching angle is β = −90◦, an upward motion of the cylinder causes
a downward Magnus lift force that has a damping effect on the vibration. As a result,
galloping ceases and the vibration amplitude at β = −90◦ is much lower than that of a non-
rotating cylinder, as illustrated in figure 4. Lu et al. (2011) and Vicente-Ludlam et al. (2018)
utilised oscillatory rotation of a circular cylinder as an active control method to suppress
FIV. The suppression mechanism in these two studies is the same as the one in this study at
β = −90◦. In Lu et al. (2011), the rotation speed of the cylinder was proportional to the lift
coefficient instead of the displacement cylinder, and achieved successful VIV suppression.
Vicente-Ludlam et al. (2018) found that a rotation that follows (3.2) suppressed the VIV
better than one that follows (3.1). When the angle of attack is between 45◦ and 90◦,
galloping is found, and the vibration amplitude during galloping is found to increase with
the increase of flow direction angle in figure 4. For −90◦ ≤ β ≤ 30◦, galloping is not found,
but a distinct lock-in regime is identified in figure 4(c).

1021 A26-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
66

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10668


M. Zhao, Q. Zhang and Y. Liu

14

12

10

8

6

4

2

0

0.25

0.20

0.15

0.10

0.05

100

10−1

10−2

10−3

10−4

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.5 10.09.0

0
2.0 3.0 4.0 5.0 6.0 7.0 8.02.5 3.5 4.5 5.5 6.5 7.5 8.5 9.0 9.5 10.0

β = 90◦
β = 75◦
β = 60◦
β = 45◦
β = 30◦
β = 15◦
β = 0◦
β = −15◦
β = −30◦
β = −45◦
β = −60◦
β = −75◦
β = −90◦

2 3 4 5 6 7 8 9 10 11

Vr

Vr

Vr

A

A

A

12 13 14 15 16 17 18 19 20

β = 45◦

β = 30◦

β = 15◦

β = 0◦

β = −15◦

β = −30◦

β = −45◦

β = −60◦

β = −75◦

β = −90◦

β = 90◦ β = 75◦ β = 60◦

β = 45◦ β = 30◦ β = 15◦

β = 0◦ β = −15◦ β = −30◦

β = −45◦ β = −60◦ β = −75◦

β = −90◦

(a)

(b)

(c)

Figure 4. Variation of the vibration amplitude with the reduced velocity for Re = 100, m∗ = 8 and r = 0.32.
(a) Global view, (b) Zoomed-in view of the lock-in range and (c) Logarithmic scale of the A-axis.

1021 A26-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
66

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10668


Journal of Fluid Mechanics

0.40

0.35

fn

fn

fn

0.30

0.25

0.20

0.15

0.10

0.05

0

0.20

0.19

0.18

0.17

0.16

f

f

0.15

0.14

0.13

2 3 4 5 6 7 8 9 10 11

Vr

12 13 14 15 16 17 18 19 20

2 3 4 5 8 96 7

Vr

10

β = 90◦
β = 75◦ β = 60◦

β = 45◦
β = 30◦ β = 15◦

β = 0◦
β = −15◦ β = −30◦

β = −45◦
β = −60◦
fn

β = −75◦
β = −90◦

β = 90◦

β = 45◦, 60◦, 75◦ and 90◦

β = 75◦
β = 60◦

β = 45◦
β = 30◦

β = −15◦
β = 15◦

β = 0◦
β = −45◦

β = −30◦

(a)

(b)

Figure 5. Variation of the vibration frequency with the reduced velocity. (a) Global view and Same as
(b) with zoomed-in view near the Strouhal frequency.

Figure 5 shows the variations of the vibration frequency with the reduced velocity
for all the simulated flow direction angles. The vortex shedding frequency of a non-
rotating, stationary cylinder (referred to as the Strouhal number hereafter) is f = 0.166.
At β = 0◦, where the cylinder vibrates in the in-line direction with a very small amplitude,
the frequency is twice the Strouhal frequency because the drag force has a frequency
twice the Strouhal frequency. For all the values of β, the vibration frequency is found
to deviate from the Strouhal number, and the vibration amplitude increases gradually
as the reduced velocity increases from 2 to 4.75 in figure 5(b). When the angle β is
negative, the sudden increase in the response frequency is found to occur at Vr = 5 for
β = −90◦ to β = −60◦, and these sudden increases are accompanied by a sudden increase
in the vibration amplitude in figure 4. At β = −30◦, this sudden increase of the vibration
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Figure 6. Mapping of lock-in regimes in the β–Vr plane.

frequency and amplitude occurs at Vr = 5.25. At β = −15◦, the vibration frequency
smoothly increases to its maximum value with the increase of Vr until Vr = 5.5. For
negative β values, the vibration frequency reduces with the increase of Vr after it increases
to its maximum value. For positive β = 15◦–45◦, the vibration frequency decreases with
the increase of Vr until its minimum value, then jumps to the value close to the Strouhal
number. At β = 45◦, the vibration is locked in between Vr = 5.25 and Vr = 6.5 because
the vibration amplitudes are significantly different from those outside the lock-in regime,
the frequency of the force is the same as the frequency of the vibration, and the vibration
frequency follows the trend of f n, instead of following the Strouhal frequency. At β = 45◦,
the vibration is galloping when is Vr is greater than 5.5 because the vibration amplitude
starts to increase with the increase of reduced velocity, as seen in figure 4(b), and the
vibration frequency deviates from the Strouhal frequency.

Lock-in is defined as the response of the cylinder with high response amplitude and the
matching between the vortex shedding frequency and the vibration frequency (Khalak &
Williamson 1999; Navrose & Mittal 2016). Outside the lock-in regime, the vortex shedding
frequency and vibration frequency follow the vortex shedding frequency of a stationary
cylinder (Navrose & Mittal 2016). Based on the definition of lock-in, the lock-in regimes
are mapped on the β−Vr plane in figure 6. In figure 4(c), the local maximum value of the
vibration amplitude at Vr = 3 for β = 0◦ and ±15◦ is not identified as lock-in, because the
vibration amplitude is extremely small (less than 0.002).

The response is classified into two types: VIV lock-in and galloping. In the VIV lock-
in regime, the vibration frequency and the frequency of the lift coefficient are the same,
while in the galloping regime, the vibration frequency remains slightly lower than the
natural frequency, but the frequency of the lift coefficient increases with the increase of
the reduced velocity. It is interesting that the angle β = 45◦ has both VIV lock-in and
galloping regimes, and these two regimes are separated from each other. The separation
of the VIV regime from the lock-in regime was also reported for FIV of a square cylinder
(Cui et al. 2015; Ji et al. 2024).

Figure 7 shows the variation of the response amplitude and frequency with the reduced
velocity in the lock-in regimes with β = −60◦ and 45◦. For β = −60◦, the lock-in regime
has a very narrow initial branch and wide lower branch, while for β = 45◦, the lock-in
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Figure 7. Difference between the lock-in regimes at β = 45◦ and β = −60◦.

regime has a very wide initial branch and a very narrow lower branch. Within the lock-in
regime, the vibration frequency crosses the natural frequency at a certain Vr for β = −60◦,
while it is always smaller than f n for β = 45◦. Lock-in regimes for β = −60◦ are similar to
those of a non-rolling cylinder reported previously (Ji et al. 2011). The vibration frequency
at β = 45◦ approaches fn, and the response amplitude increases gradually with the increase
of the reduced velocity. It is the closest to f n at Vr = 6.25, and suddenly increases to a value
close to the Strouhal frequency at Vr = 5, where the lock-in ends.

In the galloping regime, the response amplitude increases continuously with the increase
of the reduced velocity until the largest simulated Vr. The maximum amplitude in the lock-
in range of Vr is defined as peak amplitude Ap, and the vibration frequency corresponding
to Ap is defined as peak frequency fp. The variation of Ap and fp/f n with the flow direction
angle β is shown in figure 8. Because the drag force caused by vortex shedding has much
smaller amplitude than the lift force, the peak amplitude has the smallest value when the
vibration is in the in-line direction at β = 0◦. An increase of |β | in either the negative or
positive direction increases the peak vibration amplitude. The peak frequency is found to
be smaller than the natural frequency (fp/f n<1 in figure 8) for all values of β.

For an undamped system with spring constant K under an oscillatory external force, the
equation of motion is m Ẍ + K Ẋ = F0 cos(2π f t), and the theoretical solution is X (t)=
((F0/K )/(1 − ( f/ fn)

2)) cos(2π f t). The phase between the force F0 cos(2π f t) and the
displacement X(t) changes from 0◦ to 180◦ respectively when f exceeds f n. For a stabilised,
undamped, periodic vibration, the phase should be either 0◦ or 180◦ since there is no
energy exchange between the fluid and the cylinder. The phase may vary from period to
period if there is a beating in the hysteresis region (Leontini, Thompson & Hourigan 2006;
Jiang et al. 2024).

At high Reynolds numbers of the order of 103–104, and low mass ratios, the lock-in
range of the reduced velocity is divided into three branches: initial branch, upper branch
and lower branch (Khalak & Williamson 1996). The upper branch does not exist for
Reynolds numbers in the laminar regime (Singh & Mittal 2005; Ji et al. 2011). The initial
branch is a very narrow branch where the vibration amplitude increases quickly to its
maximum value with the increase of the reduced velocity. The vibration amplitude reaches
its maximum at the upper branch, and drops at the boundary between the upper and lower
branches, where �ψ changes from 0◦ to 180◦.
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Figure 8. Variation of the peak amplitude in the lock-in regime with the angle of attack.

The 0◦ to 180◦ phase jump was found to be at the boundary between the upper and
lower branches at low mass ratios and Reynolds numbers between 103 and 104 (Khalak &
Williamson 1999; Sarpkaya 2004). Since the damping ratio is zero in this study, the phase
(referred to as ψ) between the vibration displacement and the equivalent force Fe should
be either 0◦ or 180◦.

When galloping occurs, the force coefficient in the vibration direction has multiple
frequencies, and the high frequency components are caused by the vortex shedding. The
vibration is excited by the force component whose frequency is the same as the vibration
frequency. To determine the phase between vibration and force, the vibration displacement
and the force coefficient are decomposed into harmonics:

X (t)= X0 +
∑N

n=1
Xn sin(2πn f +ψx,n), (3.3)

Fe(t)= Fe0 +
∑N

n=1
Fe,n sin(2πn f +ψFe,n), (3.4)

where ψx,n and ψFe,n are the phases of the nth harmonics of X and Fe, respectively. The
phase difference between the first harmonics of X and Fe is defined as Δψ =ψFe,1 −
ψFe,1. Figure 9 shows the variation of �ψ with reduced velocity for all the β angles.
When there is a lock-in regime (β = −90◦ to β = 45◦), the phase �ψ changes from 0◦
to 180◦ at a critical Vr, which increases with the increase of β. When there is only a
galloping regime (β = 60◦ and 90◦), the phase difference �ψ remains 0◦ until the largest
simulated Vr = 20. It is interesting to see that at β = 45◦, �ψ changes to 180◦ in the lock-
in regime, and changes back to 0◦ in the galloping regime. Within the lock-in regime, the
frequency is always lower than f n at β = 45◦ because �ψ does not change from 0◦ to
180◦. At β = 0◦, the phase changes from 0◦ to 180◦ at Vr = 3.25, and changes back to 0◦ at
Vr = 3.5, because the vibration is driven by the drag coefficient, whose frequency is twice
the Strouhal frequency (see figure 5a). It can be concluded that the condition of galloping
is that the phase �ψ remains 0◦.
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Figure 9. Variation of the phase difference between the vibration displacement and equivalent force Fe with
the reduced velocity.

Since the vibration is driven by the combination of both lift force and the torque without
damping, the net exchange between the effective force Fe and the vibration must be zero
to maintain stable vibration with constant frequency and amplitude. The roles of the force
and torque on exciting/damping the vibration are quantified by the power that they have
towards the cylinder. The non-dimensional powers supplied by the force and torque are
represented by EF and ET , respectively, and they are calculated by

EF = CF V = F̂X V̂
1
2ρDU 3

, (3.5)

ET = CT σ = T̂θ σ̂
1
2ρDU 3

, (3.6)

where V = Ẋ is the non-dimensional velocity of the cylinder, σ is the non-dimensional
rotation speed of the cylinder, and the force coefficient CF in the X-direction and the torque
coefficient CT are defined by CF = F̂X/((1/2)ρDU 2) and CT = T̂θ /((1/2)ρD2U 2),
respectively. The time-averaged power done by the force and torque are defined as E F
and ET , respectively. Figure 10(a,b) show the variations of E F and ET with the reduced
velocity for some exemplar cases to demonstrate that E F and ET have same magnitude
but opposite signs, proving that the net power exchange between fluid and cylinder is zero.
Fluid force damps the vibration instead of providing power to the cylinder in some cases.
For example, in figure 10(a), E F is negative between Vr = 2 and Vr = 5.25 for β = 15◦, and
between Vr = 5 and Vr = 7 for β = 0◦, indicating that the fluid force damps the vibration.
The magnitudes of E F and ET are correlated to the vibration amplitude. In figure 10(c),
the values of E F and ET for large-amplitude galloping vibration for β = 75◦ and 90◦ are
a number of orders greater than their values for the small-amplitude VIV for β = 15◦ and
0◦. The powers of E F and ET for β ≤ 30◦ are too small to be seen when they are plotted
together with larger values of β in figure 10.

Figure 11(a) maps the roles of fluid force and torque in VIV on the β–Vr plane, and
figure 11(b) shows the contours of E F on the β–Vr plane. The whole plane is divided
into four zones: two A zones, where fluid force supplies power to vibration while the
fluid torque extracts the power from the vibration, and two B zones, where the roles of
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Figure 12. Vortex shedding in the galloping regime at β = 75◦ and Vr = 20. (a) t = 603.72, X = Xmin,
(b) t = 607.26, (c) t = 609.60, (d) t = 614.82, X = Xmax, (e) t = 618.60, (f ) t = 620.82 and (g) t =
625.86, X = Xmin.

fluid force and torque swap (see figure 11a). The red lines are the boundaries between
these zones. The VIV lock-in regime and the galloping regime are mapped into figure 11
using coloured areas. It can be concluded from figure 11 that galloping and VIV lock-in
are excited by fluid force (E F > 0) except for β = 0◦, while fluid torque can only excite
very weak vibration outside VIV lock and galloping regimes. The VIV lock-in regime for
β = 0◦ is in the zone with E F < 0; however, the peak amplitude of VIV lock-in at this
angle is negligibly smaller than for other angles (see figure 8). The roles of the fluid force
in exciting/damping vibration at positive β values are opposite to their roles at negative
β values. When β > 0◦, fluid force excites vibration at large Vr above the red line in
figure 11(a) (E F > 0), and damps the vibration at small Vr, while when β<0◦, flow force
excites vibration at small Vr below the red line. The two zones where fluid torque excites
vibration ET > 0 in figure 11(b) have negligible smaller |E F | than the zones with E F > 0.
As per figure 11(a), fluid torque can excite vibration only outside the lock-in and galloping
zones.

Figure 12 shows the vortex shedding process within one period of vibration in the
galloping regime for β = 75◦ and Vr = 20. The instants when the cylinder reaches its
maximum and minimum X-positions, represented as Xmax and Xmin, respectively, are
treated as the starting time of a half-period in the discussion. The vortices that are shed
from the cylinder are labelled by numbers in the figure. In figure 12(a), where the cylinder
is at its smallest X-position (X = Xmin), vortex 0 is the last vortex that was shed from the
previous period. Immediately after the cylinder changes its moving direction at X = Xmin,
the shear layers separated from the cylinder elongate and wrap around the last two vortices
that are shed in the previous half-period, instead of forming vortices, until t = 607.26.
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Figure 12(b–d) illustrate that eight vortices are shed from the cylinder while the cylinder is
moving from X = Xmin to X = Xmax. After the cylinder reaches Xmax, vortex shedding does
not form until 618.60 in figure 12(e). In the half-period where the cylinder moves from
Xmax to Xmin, ten vortices are shed from the cylinder (see figure 12(e–g)). The number
of vortices that are shed from the first half-period is one pair less that from the second
half-period because the velocity of the fluid flow relative to the cylinder in the first half-
period is lower when the cylinder is vibrating diagonally. Because of the difference in
the relative flow velocity, vortex shedding in the first half-period starts later than in the
second half-period, relative to the time when the cylinder changes it motion direction
at either Xmax or Xmin. Because the cylinder vibrates nearly in the vertical direction
with large amplitude, the vortices in the wake are aligned diagonally in a zigzag shape.
For flow past a rotating circular cylinder, vortex shedding ceases when the rotation rate
exceeds 1.8 for Re = 100 (Kang, Choi & Lee 1999). The maximum angular velocity for
all the simulated cases occurs at (β, Vr) = (90◦, 20) and the corresponding rotation rate
α = σ̂D/(2U )= 1.78, which has not passed the critical rotation rate for vortex shedding to
suppress.

5. Potential for energy harvesting using FIV
Nitti et al. (2022) recommended that the vibration of a circular cylinder mechanically
coupled with rotation has great potential. When vibration is used for energy harvesting,
a power generator receives energy and converts it to electricity. A damper for controlling
vibration also receives energy and converts it to heat. Power generators and dampers have
the same function of receiving energy from the vibration, but process the received energy
differently. Many researchers added an additional linear damping coefficient in (2.1) to
investigate the potential energy that can be harvested from the FIV (Chen et al. 2024;
Zhang et al. 2024). Considering the damping coefficient that accounts for the harvested
mechanical energy, the equation of motion (2.2) becomes

m∗e
d2 X

dt2 + (
C∗ + C∗

e

) dX

dt
+ K ∗X = F∗, (3.7)

where C∗
e = Ce/(ρDU ), and Ce is the energy harvesting damping coefficient due to the

extraction of mechanical energy from the vibration. The parameter C∗ = 0 is used to obtain
the maximum possible energy to be harvested. The damping ratio for energy harvesting is
defined as

ζe = Ce

2
√

Kme
. (3.8)

Since the maximum amplitude occurs at β = 90◦ based on the previous section, the
case β = 90◦ is considered when the energy harvesting is analysed. The time-averaged
non-dimensional harvested power is the net power that transferred from the fluid to the
cylinder:

E = E F + ET . (3.9)

In all the cases with β = 90◦, it is found that E F is positive and ET is negative,
indicating that the fluid force provides power to the cylinder, and part of the power
was used to rotate the cylinder. To validate the energy harvesting model, the simulated
results for the case where the cylinder is not mechanical coupled (C∗ = 0 , e = A/D2

and F∗ = F̂X/(ρDU 2) in (3.7)) are compared with the results at Re = 150, m∗ = 2, the
reduced velocity Ur = U/( fN D)= 5.2 and a wide range of ζe by Soti et al. (2017).
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Figure 13. The comparison between the calculated non-dimensional power with the numerical results by Soti
et al. (2017) at Re = 150, m∗ = 2 and Vr = 4.25.
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Figure 14. Variation of the non-dimensional power with the reduced velocity for a circular cylinder without
mechanically coupled rotation at Re = 100 and m∗ = 8.

Soti et al. (2017) defined the reduced velocity using the reduced velocity measured in fluid
fN considering the added mass coefficient CA = 1 instead of fn . The reduced velocity
Ur = 5.2 is equivalent to Vr = 4.25. Figure 13 shows very good agreement between the
present results and the results by Soti et al. (2017). The maximum non-dimensional power
found in this study is 0.128, occurring at ζe = 0.15. Simulations for Re = 100 and m∗ = 8
without mechanically coupled rotation are conducted, and the powers for different ζe are
shown in figure 14. The results for ζe = 0.03 and 0.05 are very close to each other, and the
maximum non-dimensional power is approximately 0.095. When ζe is less than 0.03 or
greater than 0.05, the maximum non-dimensional power reduces.

Since the maximum vibration amplitude occurs at β = 90◦, the energy of a cylinder
coupled with rotation at β = 90◦ is investigated for ζ = 0, ζe = 0.01−0.1, with increment
0.01. Figure 15 shows the time histories of the displacements of a cylinder normalised
by the maximum displacements |X|max for ζe = 0.05 and all the reduced velocities. The
vibration with damping coefficient ζe = 0.05 develops to equilibrium periodic stages very
slowly. For example, the vibration becomes stable at t = 1200 at Vr = 20 if ζe = 0.05,
and at t = 700 if ζe = 0. For some reduced velocities, such as Vr = 9.5 and ζe = 0.05, the
simulation needs to be run for t = 4000 to obtain the stable vibration stage. For a large-
amplitude galloping case, the cylinder gains energy gradually for a long period of time
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Figure 15. Time histories of the displacement X of a cylinder mechanically coupled with rotation r = 0.32
and ζe = 0.05.

until the vibration amplitude stabilises. Considering that the damper consumes energy, the
time for the cylinder to develop to stable condition for a damped case is longer than the
case without damping.

Figure 16(a,b) show the variations of the non-dimensional power from fluid force and
the power from fluid torque, respectively. Both E F and ET are very small at smaller
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Figure 16. Contributions of fluid force and fluid torque on the power generation. (a) Force contribution E F
and (b) Torque contribution ET .

reduced velocities, and the zoomed-in views at smaller reduced velocities are shown in the
insets. One can observe that both E F and ET increase with the increase of Vr, but their
signs are opposite at large reduced velocities. The contributions of E F and ET in energy
harvesting can be identified more clearly in figure 17, where their signs are mapped on
the ζe−Ur plane. When both ζe and Vr are very small, E F < 0 and ET > 0, indicating
that fluid torque provides energy to the cylinder, and fluid force consumes energy. When
Vr ≤ 4, both fluid force and torque supply energy to the cylinder in large range of ζe in
figure 17(a) because both E F and ET are positive. When Vr ≥ 4.5 and for the whole range
of ζe, fluid force supplies energy to the cylinder, E

∗
F > 0, while fluid torque extracts energy

from the cylinder, ET < 0.

1021 A26-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
66

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10668


M. Zhao, Q. Zhang and Y. Liu

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
0.01 0.02 0.03 0.04 0.05

ζe
0.06 0.07 0.08 0.09 0.10

E�F < 0, E�T > 0

E�F > 0, E�T > 0

E�F > 0, E�T < 0Vr

20 2.8

2.2

1.8

1.8

1.4
1.2 1

0.8

0.6

0.4

0.2

1.6

2

2.6

2
.419

18
17
16
15
14
13
12

3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

11
10
9
8
7
6
5
4
3
2
0.01 0.02 0.03 0.04 0.05

ζe
0.06 0.07 0.08 0.09 0.10

Vr

(a) (b)

Figure 17. (a) Contributions of E F and ET in energy harvesting. (b) Contours of the non-dimensional power
E on the ζe−Vr plane.

Figure 17(b) shows the contours of the harvested power from the fluid E = E F + ET on
the ζe−Ur plane. The maximum E is 2.8, which occurs at ζe = 0.04 and Vr = 20, which
is approximately 30 times the maximum E for a non-rotating cylinder. The maximum E
is greater than 1 because the cylinder’s large vibration amplitude harvests energy in a flow
zone in the crossflow direction wider than one diameter.

Figure 18 shows the variation of E with the reduced velocity. The power E increases
with the increase of Vr, with some oscillation in the galloping regime for all values of ζe.
Damping coefficients ζe = 0.03, 0.04 and 0.05 appear to perform equally well in the energy
harvesting, and they can achieve non-dimensional power between 2 and 2.5 at Vr = 20. The
maximum values of E occurring between Vr = 5.5 and 6 are found for ζe ≥ 0.04, and the
maximum value of E is 0.036 at Vr = 6 for ζe = 0.04. The peak power occurring between
Ur = 5.5 and 6 is negligibly smaller than the power at larger reduced velocities above 10; it
can only be identified in figure 18(b) with a logarithmic E-axis. For ζe ≥ 0.04, E reaches
its maximum value at a reduced velocities between 5.5 and 6, reduces, and increases again
at a critical reduced velocity, which is the lower boundary reduced velocity of the galloping
regime. Lower boundary reduced velocities of galloping regimes are Vr = 8.5, 10, 13 and
15 for ζe = 0.04, 0.05, 0.06 and 0.07, respectively, in figure 18, while galloping was not
seen until Vr = 20 at ζe = 0.1.

When the cylinder vibrates, the swept distance of the cylinder in the crossflow
direction is 2 Â + D, where Â is the dimensioinal vibration amplitude. The available
dimensional fluid power in the cylinder swept area is P̂ f = (1/2)(2 Â + D)ρU 3, and the
non-dimensional fluid power in the swept area is Pf = P̂ f /((1/2)DρU 3)= 2A + 1. The
efficiency η of energy harvesting is defined as the harvested power divided by the fluid
power in the cylinder swept area η= E/Pf . Figure 19 shows the contours of the energy
harvesting efficiency on the ζe−Vr plane. The maximum efficiency over the whole range
of simulated parameter space is 0.424, which occurs at (ζe, Vr )= (0.04, 20).
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Figure 18. Variation of the non-dimensional power with the reduced velocity for various values of ζe:
(a) linear scale E-axis; (b) same as (a) except that the E-axis uses a logarithmic scale.

6. Conclusions
The FIV of a circular cylinder mechanically coupled with rotation is investigated
numerically for Re = 100, m∗ = 8, r = 0.32, −90◦ ≤ β ≤ 90◦, 2 ≤ Vr ≤ 20. The coupled
system proved effective in enhancing vibration at β = 90◦ (Nitti et al. 2022). In this paper,
the effects of the flow direction angle β on the vibration are studied, and the potential
of energy harvesting from the coupled system was proved. Since β = 90◦ and r = 0.32
are the optimal flow direction angle and rotational radius, respectively, for achieving the
maximum vibration amplitude, they are used for the energy harvesting study.

Two types of lock-in are found: VIV lock-in, where the vibration and vortex shedding
synchronise, and galloping, where the vibration amplitude increases with the increase
of Vr without upper boundary. The vibration amplitude that the cylinder can achieve
in the VIV regime is much smaller than in the galloping regime. The effect of the
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Figure 19. Contours of efficiency on the ζe−Vr plane.

flow approaching angle β relative to the direction of vibration is investigated. Both
VIV response and galloping regimes are found at β = 45◦–90◦; the response amplitude
increases with the increase of the angle β in both regimes. For β = −90◦ to β = 0◦, only
VIV response regimes are found.

When the damping ratio is zero, fluid torque and force contribute to the vibration in
opposite ways, and the net power transfer from the fluid to the cylinder through force
and torque is zero. The β–Vr plane was divided into two type A zones, where fluid force
power is E F > 0 and fluid torque power is ĖT < 0, and two type B zones, where E F < 0
and ET > 0. Both galloping and VIV regimes are excited by fluid force instead of fluid
torque, and they are in type A zones. In the galloping regime, the number of vortices that
are shed from the cylinder increases with the increase of the vibration amplitude. At large
amplitude and when the cylinder vibrates nearly vertically, the vortex street is aligned in a
zigzag pattern because of the strong vibration.

Energy harvesting from FIV is investigated through an electrical damping coefficient
ζe at β = 90◦ where the vibration amplitude achieves its maximum compared with other
flow direction angles. The energy harvesting power in the galloping regime increases
with the increase of reduced velocity. The energy harvesting power in the VIV regime is
negligibly smaller than in the galloping regime. Damping coefficients ζe = 0.03, 0.04 and
0.05 perform equally well in the energy harvesting, and they can achieve non-dimensional
power between 2 and 2.5 at Vr = 20, which is over 30 times the maximum achievable
power of a non-rotating cylinder. The energy harvesting efficiency is defined as the ratio of
the harvested energy to the available flow energy in the cylinder swept area. The maximum
efficiency over the whole range of simulated parameter space is 0.424, which occurs at
(ζe, Vr )= (0.04, 20).
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The ζe−Vr space (see figure 17a) can be divided into three zones based on the
contributions of fluid force and torque on energy harvesting: force and torque damp and
provide energy, respectively, in zone 1 (both Vr and ζe are small), both force and torque
provide energy in zone 2 (Vr is below 4), and force supplies energy and torque damps
energy in zone 3 (Vr is above 4). The high-power galloping regime is in zone 3.
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