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ON SOME ANALOGUES OF TITCHMARSH DIVISOR PROBLEM
AKIO FUJII

§1. Introduction

In [15] Titchmarsh posed and solved under the generalized Riemann
Hypothesis, the problem of an asymptotic behavior of the number of the
solutions of the equation 1 = p — nm, for a prime p < x and natural
numbers n, and n,, When we put z(n) = > 4,1, then the above problem
is to get an asymptotic law for the sum

Sitp—1).

244

Later Linnik [11] solved this unconditionally using his dispersion method.
The proof without the dispersion method is also known (Cf. [3] and [14]).
Here we are concerned with an asymptotic behavior of the sum

t(p, — 1),

Ppy<ad,pa<a1—3

where p; and p, run over primes and ¢ is in 0 < § < 1/2. Linnik’s disper-
sion method solves this for 0 <o <1/6. But it does not work for
other values of 4. Barban [1] solved this for § =1/2. Here we shall
prove

THEOREM 1. Suppose that § is in 0 <06 < 1/2 and 6logx tends to
oo as x tends to co. Then we hove

315 3 =
1) =
pzimenn PP = ) = o S S Tog

+ O(xs~'(log x) 2(log log x 4 7))

uniformly for 8, where {(s) is the Riemann zeta function.
We shall also prove
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THEOREM 2.

>0 (o, — 1) = 315z7*¢(3)x log log x + O(x) .

F2v2%%4

To prove our theorems we need the following mean value theorems.
We shall state them in the more general form than we need in this paper.
For simplicity we put

Eg;a,d= 3y -1-H0

= a.p(ﬁl%d d) SD(d)
where
L= % +ow
2 logx

and ¢(d) is the Euler function. Then we shall prove

THEOREM 3. Suppose that 3 ,...|b(m)} € x(log x)¢ with some positive
absolute constant C. Then for any positive constants A and b (< 1),
there exists a positive constant B such that

> Max | > bmE(2?; am*, d)| € xz(log x)~4

d<Q (a,d)=1|1<m<ad
(m,d)=1

uniformly for 6 im 0<Ld<1-— (logx)®, where Q = x'*(log x)"% and
mm* =1 (mod d).

The conclusion still holds even if we replace E(x'~?; am*,d) by
E(x/m;am*,d). We call this Theorem 3’. In §2 we shall list up and
prove some lemmas. We shall prove Theorem 3 in §3, Theorem 1 in
§4 and Theorem 2 in §5. We shall also give some remarks in §6.

§2. Some lemmas

LEMMA 1. For an arbitrarily given small positive e, for all d € x*~*
and (a,d) =1, we have

x log log «

.1 ,
< o(d) log x

pqs%q(ﬁz\f)d d)
where p and q run over primes.

Proof. Let » be a small positive number less than ¢/2. Now the
left hand side is
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<K Z 1"‘2 Z 1221+Zz;

z7<p5q ja a<a/p
PIST (p,d)=1 g=ap*(mod d)
pe=a(mod d)

say.
2 K @/ ((d) log x)
by Selberg’s sieve method as usual.
22K pé,, x/(plog z-o(d) < x log log z/(p(d) log x)
by the Brun-Titchmarsh theorem. Hence we get our conclusion. Q.E.D.

LEMMA 2. Let m be an integer different from 1. Then we have

2 X(m)l <|m—1,d)],
x
where in the summation, y runs over all primitive characters mod d.

Proof. We denote the sum in the left hand side by S*(d,m). We
put S(d,m) = 2,4, x(m), where y runs over all non-principal characters
mod d. We know for (m,d) =1,

old) —1 if m =1 (mod d)
—1 otherwise .

S, m) = {

Suppose that d = [[p* and (m,d) =1. Then S*(d,m) = [],.S*®*, m).
Suppose that p = 2. We denote the primitive character attached to x
by y*. Then

S(p*, m) = ; x(m) = é‘] rF(m) = Zs S*(p?, m)
=20 1¥2g v>ji=1
= S*(p*, m) + S(p*~',m) .
Hence for v > 1,
S*(p*, m) = S(p*, m) — S(p*~t, m)
o) — (@™ if p’im —1
= —o(p*™) if p~Ym —1
0 otherwise .

Next for p =2 and for v > 2,
S@,m) = 3 S*@2/,m) = S*@,m) + S, m) .

2722
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Hence for v > 1, we get
©(2) — (27 if 22/m —1
S*(2*, m) = { —p(2°77) it 27Ym — 1
0 otherwise .
Hence we have

|85, m)| < ] 18", m)|
< 160 =@ T oo™

v

S n pv n pv—l

im-1 -1|m~1

<|m—1,d)]. Q.E.D.
LEMMA 3.
1 ® M+N }2 ( N M4+N 2
e @) 2 |n2t H | <@+ f) pIRL

(Cf. (10) of [6] or (3) of [2]).

LEMMA 4. For d < x'**, and for (a,d) =1,

> i) K w(ﬂ A —opY-log (x/d))a/d .

n<x
n=a(mod d)

(Cf. Lemma 1.1.3 of [11]).
LEMMA 5. For all d L 2%, (a,d) =1 and for 0 <5< 1/2,
-1 L 67/ (p(d)(log x)?) .

g=a (mod d)
z?sx", g<z1-90

(Cf. Lemma 3.6 of [1])

§3. Proof of Theorem 3 and 3’

3-1. We shall prove only Theorem 3 since Theorem 3’ can be proved
in a similar manner (Cf. [4] and [5]). By Bombieri’s mean value theorem
we may suppose that ¢ > A’loglog x/logx for a sufficiently large con-
stant A’. For simplicity we put o’ = a’, " = 2%, £ = log« and =(x, x)
= D <z X®). We also put Q = 2¢~2 with sufficiently large B which
will be chosen appropriately in the following, Q; = 27¢? for j =0,1,2,
...,J, where J satisfies 277142 < Q < 27¢4? and D is a sufficiently large
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constant. We always denote an arbitrarily small positive number by e,
a sufficiently large constant by F and some positive absolute constants
by C. Now for d < Q, (m,d) =1 and (a,d) =1,

E@"; am*,d) = ~1—— >0 x@xmyz(x”, )
o(d) =%

1 ( : ,) 1
—_— ‘1—Lia”) — —— -1
+ o(d) péu 1 o(d) p;%,,

= 70(37) ;4_,—'1 1(@ymya(x”, x) + 0@ 4~ Fp(d)™)

by the prime number theorem. Since

77.'((17”, x*) - %: X*(p) = 71'(.7}”, X) ’

blax
p<E”
we have
2, Max | > b(m)E(x”;am*,d)'
a<Q (a,d)=1 m<x’
(m,d)=1
<3 Ao 3 by, 7%
ige o(d) = nZa
1

——_ Max

2 2 ¥@ X bm)grm) 3 x*(o)
i@ o(d) (a.m=1 ma a

XY, o]
° (m,d)=1 Dra*
Pz

+ 2l E=8 +8,+ x0°F,
say, where d* is the conductor of .

3-2. We shall estimate S, first. Using Lemma 2, we get

Si< 5 Max 2 > 5 [b(m)]| 2 w@rmp)|
E D) won GTTe G

« Y- Max > > 3 (|b(m)||Gmp — a,d¥)|

iZe ¢(d) (a,m=1 a pidar mw

>1 p<z’ (m,d)=1
& £° Max S, ,
1£a<5Q

where we put

So= 25 1/(kik;) pIZkI 2, 10m)]|(mp — a, k)| .

k1k3a<@Q
P
(a,p)=1
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Sa < 22 1k 2 |[b(m)||(mp — @, k)| 3 1]k,
©1<@Q m<a’,p<z”’ ka<Q

(@, p)=1 ik

<3 pmip > d > 1k,

m(az;;?=1x lImp—al  dlk1,k1<Q
<4 2 Jbm)|z(mp — a)/p
.

< ﬂ“«’ﬂ""( 2, 2, (mp — aD/ﬂ’)“2

m<z’ P
(a,p)=1

& gox/l/zsg/z R

gay. If 0<4d<1/2, then S, € 24%2’ K x.
If 1/2 <6 <1, then

Se< 2 1p 3, <(mp — a) < @b

p<z
(a,p)=1

using Lemma 4. Hence always we get S, € %*/24¢, and

S, L xM0/2Y0 & x4~ F uniformly for 0 <o <1 — (logx)™?.

3-3. Next we shall estimate S,.
S« ¢Max S, ; ,
1<H<Q

where we put

Sio = 2 S
0<j<Jd
with

S = 3 L3 3T ymbm)(a”, )
Qs-1%0<@; ¢(d) %2 =

for 0<j<J and Q_, =1.
By Siegel-Walfisz theorem (Cf. p. 134 and 144 of [18]), we get

S1,6(0) € @™ * .

Now

s,,,,(f)<<( I

Qj-1<d<Qy go(d) xd

> myb(m) |)’

m<x’

(, 2. Sl Dr)

Qj-1<d<Qy 90(d) rd

=TTy,
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say. By Lemma 3, we get

20K @ + 2'Q7 2 [bm)F < 2"4%(Q; + 2'Q77) -

Similarly we get
22K @)+ 2"Q)x .
Hence S, ,,(j) € ¢~ F by taking B and D sufficiently large. Hence S, € x4~ %.

Combining this with the estimate of S,, we get our conclusion.
Q.E.D.

§4. Proof of Theorem 1
We put for simplicity 2, = 2%, 2, = 2'"%, ¢ =logax and Q = xV24 B
with a sufficiently large constant B. Now

2o, — D= 3 > -1

Disg Di<i dlppp—1

=23, 2 A0 3 5 )

ad<Q P <d< ¥z elpypy—1
@i pypy~1 \ pis;

= Zl + O(Zz) ’
say.

2a=22, 2 ( 2. '1—Lixz/¢(d))

asQ py<ey p2<T3
(p1,d)=1 \p,=pf(mod d)

+23 2 Lixz/ﬁo(d)

d<Q m<T1
(p1,d)=1

— O(w4~4) + 2 Lia, Li xz( b ?(1d_))

= Li x, Li 2, 315¢(3)(2x*) ! log «
4+ O(i z, Li z,log log ) .

On the other hand by Lemma 5,
>, & 6'wloglog z/(log x)*  uniformly for 0 <5< 1/2.
Hence we get our conclusion. Q.E.D.

Remark. To prove our theorem 1 just for any ¢ in 0 <5 < 1/2 we
do not need Barban’s Lemma 3.6 (namely, Lemma 5 in §2). Because by
the Brun-Titchmarsh theorem we get

> & xlog log x/(log x)* .
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§5. Proof of Theorem 2

Let 6 be any number in 0 <6 <1. We put 2’ =% 2" =2, Q =
2*(log x)~% and F(3,%) = 2 <z (0 log (x/p))"'. Now

> tlpg — 1)
DPIL®
= > tlpg—1) + 3 olpg—1) — 3] z(pg — 1)
<z’ q<z” p<z’
PIST ye< q<a”
== Zl -+ Zz - Zs ’

say. By Theorem 1 3, € z(log x)™".
2u=22, 2. Li(@/p)/e(d)
a<Q (Z'Sx'

p,d)=1
+ O(Z 2 2 1—-Li (x/p)/sa(d)))
(p,d)=1 qsg*s(;/gd d)

d<@ p<a’ (
Q<a< 7z pQEplq(Isn:gd a)

= 315£(3)(2x*) "'z log xF'(d, ) + O(x log log xF(0, x))
+ O(z(log log x)*(log 2)™Y)

-1 1 1
+ O(x(log ) «1;@ W %}2‘6 ;) .

The last term is € z. In a similar way we get

> = 3152x%) ¢ (3)x log xF (1 — 4, x)
+ O(x log log 2F (1 — 3, %)) + O(%) .

Now

! 1
= — 1 __d(>1
F@, = L,z tlog (z/0) d(;% )
= (loglog x + logd — log (1 — 9))/log z + O((log )™ .
Hence
F@,2) + F(1 — 5,x) = 2loglog 2/log x + O(1/log z) .

Hence we get our conclusion. Q.E.D.

§6. Concluding remarks

6-1. Theorem 1 and 2 for the sum of (N — p,p,) or z(p,p, — a) can be
similarly proved.
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6-2. More generally, if £ >1,6,+d,+ --- +0, =1, 5, > 0 for each
1 and §; + §, > 3/4 for some 7,4 in 1 < j, ¢ <k, then we have

Z (0D, P — 1)

pi<zdt
315 z(3) x o
B x log log z/(log x)¥) .
27t 6,6, 0, (logz)*? + O(x log log 2/ (log x)*)

For k =2, this is nothing but our Theorem 1. (Cf. [1] and [9] for
previous weaker results.).

Further, under the same condition of 4,,4,, - - -, d,, We have an asymp-
totic formula for the sum

2 DD D — @) for almost all a
pi<adi

and for each m > 3, where

)= 2, -1.

n=didges+dm

(Cf. [16] for £k =1 and for m > 3.)

6-3. In a similar manner to the proof of Theorems 3 and 3/, we get
the following inequality; for any positive constants 4 and b (< 1), if
D im<z | bM)F L z(og 2)°, b(m) K 2'~°"¢ for m < #°, B = (logx)~/ with some
fin b < f <1, then there exists a positive constant B such that

ST Max Max| 37 bom) — —L 37 b(m)| < a(log x)~4
d<Q (a,d)=1 1<y<z %&s&ﬁoﬁﬁ go(d) %I;fcg

uniformly for ¢ in 0 < § <1 — (log #)7?, where Q = z’(log 2)~2. Using
this, Theorems 3 and 3’ and Hooley’s argument in [8], we can show an
asymptotic formula for the number of the solutions of the equation

N=pp, +a*+y* for pp, <N .

We do not need Linnik’s dispersion method. (Cf. [11] and [12] for a
proof of this using the dispersion method.) As is seen in [11] or [12]
we may improve the remainder term in Theorem 2 if we use the disper-
sion method.
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