
ON THE PRODUCT OF TWO KUMMER SERIES 

P E T E R HENRICI 

1. Introduction. Let a, £, n, V, z be complex numbers such that 2JU and 2v 
are not negative integers. Using the notation of (4) for generalized hyper-
geometric series, we set 

and define an = an(a, 0, n, v) by 

(2) ' * ( * ) = S anzn. 
n=0 

It is evident that the function <j>(z) does not change if the parameters are 
subjected to the transformation 

S: (a, p , \x, v; z) —• (j8, a, v, /z; — z); 

this merely interchanges the two factors in (1). The function <j>{z) also admits 
of a further, and less evident, transformation. Applying Rummer's trans­
formation (4, 6.3 (7)) to the two series on the right of (1), we find that 
<t>(z) can also be written as follows: 

(3) 0 o o - X ^ L 2M + 1 J X ^ L 2P + 1 J. 
Thus, 0(2) is invariant under the transformation 

T: (a, p, n, v, z) —> ( - a, - 0, /i, 1/; - z). 

It follows from the above that the coefficients an satisfy 

(4) an(J3, a, v, /i) = an(- a, - 0, /*, v) = ( - l ) n an(a, 0, ju, ?). 

These relations of symmetry are not completely mirrored in the representation 
(1) of the generating function of the an. While it is true that the function 
<j> (z) as a whole is invariant under both transformations S and T, the particular 
factorization (1) is invariant only under 5 but not under T. 

The primary objective of this paper is the derivation of a generating function 
for the coefficients an which renders explicit both relations (4). Widening the 
scope of our problem somewhat, we shall in fact derive a complete set of generat­
ing functions of the form 
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(5) iKz) = X) ^answ, 

where the cn are quotients of products of factorials and the functions \[/(z) 
are products of two (generalized) hypergeometric series. Any generating func­
tion of this type belongs to exactly one of four classes according to the in­
variance of the factorization of \f/(z) under none, exactly one, or both of the 
transformations S and T. The set of generating functions to be given below 
is complete in the sense that each class is represented in it. Applying the 
transformations under which the factorizations are not invariant, we shall 
obtain 4 + 2 + 2 + 1 different factorizations for generating functions of the 
form (5). 

Our results do not answer completely the following question raised by a 
referee. Do there exist generating functions of the form (5) with factorizations 
which are invariant under ST but not under both 5 and 7? It is easy to 
show that any factorization left invariant under ST and one of the trans­
formations S and T is left invariant also under the other, but our method fails 
to show whether there exists a generating function with a factorization which, 
although invariant under ST, is changed by both S and T. 

2. Representations of an in terms of terminating 3F2. By Cauchy multi­
plication of the two series on the right of (2) we get the expression 

(*\ n - (y + 2 - £)n F [~- 2v - n, ix + \ - a, - n\\ 
W n " (2, + l)nn\ 3^2L2M + 1 , - v + p - n + h J 

We shall now utilize some results of a theory due to Whipple on transformations 
of functions 3̂ 2 with unit argument (2, chapter I II) . According to Whipple, 
any terminating 3F2 can be represented as a product of factorials and a ter­
minating 3F2 in eighteen different ways. We divide the resulting eighteen 
representations of an into four classes, according to whether they are invariant 
under none, exactly one, or both of the transformations S and T. (Two repre­
sentations which are obtained from each other by reversing the order of 
summation in the hypergeometric sum are hereby considered identical.) The 
representation (6) is typical for the class invariant under 5 but not T. The 
following are typical representatives of the other classes: 

m - (M + y - « - g + l)» v l~2/i + 2v + n + 1, M + \ - a, - n;"| 
V) a»~ {2v + l)nn\ 3^2L 2M + l,M + v - a - / 3 + l J* 

(not invariant) ; 

(Q\ n - (M + P - t t — P + !)»(/* + \ + d)n 
W an~ (2M + l ) . (2v + l ) , n ! 

— M — v — a — 13 — n, IJL + ^ — a, — n; \ 
.JUL + v — a — j8 + 1, — M — OL — n -\- \ J 

(invariant under T) ; 
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(Q\ n (M + j + <*)n(v + \ - P)n 
W an~ (2M + l)n(2, + l ) n n! 

J- TM + h - «i ? + i + P, - n; 1 
2 L - n — a — n + %, — v + 0 — n+ij 2 -

(invariant under 5 and T). 
Applying to these formulae the transformations under which they are not 

invariant, we get three new representations of the form (7) and one new re­
presentation of each of the forms (6) and (8). This, together with the reversed 
series, makes up Whipple's total of eighteen series. 

3. The complete set of generating functions. We now assert that the 
following identities hold: 

(10) 1Fo[2,+ 2v+l;ZhF2\" + V+^" + V + 1 ^ + \ - a ' - ^ f \ 
L Z/JL -j- 1, fx -\- v — a — p + 1 

= g (2? + l)w(2/* + 2? + 1) 
£ o (n + v — a — P + l)n 

(not invariant) ; 

(invariant under S) ; 

no\ i? I *• + ? ~ a; - z \ \y.+ \+a;z \ 
(12) lFlL + V-a-p+l]lFlW + V + a + fi+ll 

= f. (2M + 1),(2»> + 1), „ 
£ o 0* + v + a + 0 + lUa + v - a - 0 + 1)„° nZ 

(invariant under 2") ; 

(13) 2^0 [M + \ - a, v + \ + 0; - 2] 2̂ 0 [M + 1 + «, * + i - fii z] 
OO 

= E (2M+l ) , (2^+ l )„« r c Z " 

(invariant under both 5 and T). 
Here we have listed for completeness as (11) once again the generating 

function (2). Applying the transformations under which the factorizations 
are not invariant, we obtain three new generating functions of the form (10) 
and a new factorization for each of the functions (11) and (12). 

The proof of (12) and (13) follows from (8) and (9) by the equations 4.3 
(13) and 4.3 (15) of (4). In order to prove (10), we denote the product on the 
left of (10) by \f/(z) and observe that 

*(*) = É cp(- 4z)> (1 - s)"2"-2-1-2*, 

where 
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:2 

= (M + V + \)y(p + V + 1)P(/X + J" - tt)p 

(2/x + 1),(M + v - a - fi + l)pp\ 

Using the binomial expansion and rearranging, we get 

m = Ê cP(- *r Ê (2M + 2 ' + 2 ^ + 1}* ** 
- V ^ V ( AVr (2M + 2v + 2y> + I V 
- éfo2 è l < 4) C* (n~-p)\ 
= f, (2/1 + 2 . + 1), n A ( - n)p(n +h~ a)p{2n + 2v + n + l)p 

Ùo n\ Z h (2fx + l)p^ + v - a - P+l)pp\ ' 

The inner sum is readily expressed in terms of an by (7), and (10) follows. 
It will be noted that the generating function (13), which possesses the 

highest degree of symmetry, diverges for every z ^ 0, unless both series 
on the left terminate. As a formal Cauchy product it retains a meaning in the 
case of divergence. 

4. Identities of Cayley-Orr type. Evidently our results can be interpreted 
as identities between the coefficients in the expansion of certain products of 
hypergeometric series. Such identities were first studied by Cayley and Orr 
(see 2, chapter X ) ; more recently, the subject has been taken up again by 
Burchnall and Chaundy (3) and the author (6). In fact, the implication 
(2) —» (12) is a confluent form of equation (24) of (3). 

5. An application to the product of two Whittaker functions. In this 
section we shall use the notation of (4) for Whittaker functions and Jacobi 
polynomials. In (5) we have proved a result which can be stated thus: Let 
a, j3, M, v, p, T be arbitrary complex numbers such that none of the numbers 
2ju, 2v, 2/x + 2v is a negative integer, and let an be defined by (2). Then the 
following identity holds: 

(14) \P
t-^) Ma.,\^r-)-\pt-f±) * Mp.,(r^) 

(2M + 2v + 1 + n)n
 anPn ( r ) p Ma+^+v+i+n{p). 

We now see that the coefficients an can be defined by any of the generating 
functions given in §3, in particular by the symmetric function (13). Also, 
making use of the results of Bailey (1) on cases where products of two hyper­
geometric functions can be expressed in terms of a single such function, we 
now could give a systematic account of those special cases of (14) where an 

can be expressed in terms of factorials only. Most of these cases were noted in 
(5), using ad hoc methods. A further result can be obtained by applying 
equation (2.10) of (1). We have, provided that 2/x is not an integer, 

(ju — n/Z)n+1n\ 
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After some simplification we thus obtain from (14) 

(16) ( ^ ) ~ V a , , ( p ^ ) ^ . _ , ( p ^ ) 

w=o {Zny.Kji — n/2)n+1 

This expansion is a counterpart of the following result, which (in a different 
notation) can be found in (5 ) : 

(17) ( L ^ Z ! ) " ^ . , ( P L ^ I ) ^ . , ( P 4 L I ) 

- TO,, 4 - 1Ï V (M + I - «)n0< + è + «)n p - 2 „ , x , , , s 

In both (16) and (17) P denotes the Legendre function of the first kind on 
the cut (4, 3.4(6)). The limits of (16) and (17) as \x —> 0 can be written in the 
form 

(18) ^LJ^^LJ^L^ 

= Z (J^)|(~ 1)B(a ~n+ *)2»-P2„(r)Af2a.2„+è(p) 

where L denotes the Laguerre function and P the Legendre polynomial. For 
a — | all terms on the right of (18) vanish except the first. The relation then 
becomes trivial, since L0 = 1, ilfi,i(p) = e~p/2. 
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