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Abstract. We prove that for any amenable non-singular countable equivalence
relation R <= X x X, there exists a non-singular transformation T of X such that,
up to a null set:

R={(x, Tnx);xeX, neZ}.
It follows that any two Cartan subalgebras of a hyperfinite factor are conjugate by
an automorphism.

Statement of the results
The main result of this paper is that, for any amenable non-singular (n.s.) countable
equivalence relation R <= X x X, there exists a non-singular transformation T of X
such that, up to a null set,

R={(x, Tnx),xeX,neZ}.
Roughly speaking, the equivalence relation R is amenable if and only if one can
define a measurable family of positive linear functionals px on lx(Rx) (where
Rx = Rn({x}xX))with

Px(D=l,
which is invariant in the sense that, for (x, y) e R, py is the image of px by the left
translation: (x, z)eRx •-» (y, z)eRy. If R is given by the (not necessarily free)
action of an amenable group, then it is straightforward to see that it is amenable.
However, the equivalence relation of a non-singular action of a discrete group F
can be amenable even though the group is not amenable. For instance, R. Zimmer
[32] showed that, if F is a discrete subgroup of a Lie group, then the action of F
on G/P where P is solvable, is amenable. In particular, F acting on the Furstenberg
boundary B(G) is amenable. As a rule it is easier to check the amenability of an
equivalence relation than to generate it by a single transformation. For instance,
let F<=SL(2, R) be discrete. Then it will act amenably on Pi(R). However, to
generate the corresponding equivalence relation by a single transformation is
delicate even in the simplest case when F = SL (2, Z).

Putting together the main result of our paper and the classification of W. Krieger
[18] of a non-singular transformation up to weak equivalence, we obtain that the
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amenable countable equivalence relations are classified by non-singular flows. The
amenability of a countable non-singular equivalence relation follows directly from
the amenability of the associated von Neumann algebra (via the so-called 'group
measure space construction').

This, together with the above-mentioned result, shows that a given amenable
von Neumann algebra M arises from at most one countable n.s. equivalence relation,
which implies the uniqueness, up to an automorphism of M, of a Cartan subalgebra
of M. In the case IIX, a Cartan subalgebra is simply a maximal abelian subalgebra
si of M whose normalizer generates M (as a von Neumann algebra). In the general
case one has to assume further that si is discretely imbedded in M, i.e. that it is
contained in the centralizer of a normal state (or equivalently is the range of a
normal conditional expectation).

Background
Since the papers of E. Hopf [15] and the first paper 'On rings of operators' [21]
of Murray and von Neumann, and their construction of factors from non-singular
actions of discrete groups on Lebesgue measure spaces, there has been a fruitful
interplay between the theory of von Neumann algebras and that part of ergodic
theory dealing with orbit equivalence.

In [22] Murray and von Neumann showed uniqueness, up to isomorphism, of
factors of type Hi which are well approximated by finite dimensional subalgebras;
they called this factor 'approximately finite'. Since factors of type Hi were also
called finite, the terminology was then modified, the above factor being called
hyperfinite. In [22] Murray and von Neumann showed that, if F is a locally finite
group, ergodic and probability preserving, then the factor obtained by the group
measure space construction is hyperfinite. They also stated that the condition T is
locally finite' can be replaced by T is abelian' (cf. [22] lemma 5.2.3): 'The proof
of this lemma is somewhat complicated. It requires some rather deep results on
the decomposition of mappings of measurable sets which will be published else-
where. We shall not pursue this matter further on this occasion.' In his two papers
[9], [10] H. Dye established the hyperfiniteness of the above factors with F abelian,
and also more generally for F of polynomial growth. In fact, he proved much more,
showing that the isomorphism of the factors occurs at a more basic and purely
measure theoretic level, as an orbit equivalence of the actions. Several years later
Belinskaya and A. M. Versik [1] and, independently, W. Krieger discovered the
connection between the work of H. Dye and the classical so-called Rohlin lemma
of ergodic theory. At this point we shall describe the history of the Rohlin lemma
in ergodic theory, which is one of the strands that led to the result of this paper.
Afterwards, we shall elaborate on the notion of amenability, the other strand
leading to our result.

In [24] Rohlin proved that an arbitrary aperiodic probability preserving transfor-
mation T can be well approximated by periodic transformations. For this purpose
he proved the lemma which now bears his name, which states that, given e > 0 and

, there exists a set B so that the T'B are pairwise disjoint for 0 < / < n , and
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cover the whole space up to s. This lemma was extended to the case of a general
non-singular aperiodic transformation by C. Linderholm (see [16] and [3]). At the
same time the Rohlin lemma turned out to be an extremely useful tool in the
ergodic theory of a single transformation, i.e. actions of the group Z. For the groups
Z", ceN, the analogue of this lemma was proved in the probability preserving case
by J. P. Conze [8] and I. Katznelson and B. Weiss [17], and in the non-singular
case by J. Feldman and D. Lind [11].

If the 'Rohlin lemma' holds for a non-singular action of a discrete group F, then
it follows easily that this action is orbit equivalent to a Z action. This latter property
was proved directly for solvable F by A. Connes and W. Krieger in [7]. The 'Rohlin
lemma' itself was proven for solvable F by D. Ornstein and B. Weiss in [23]. H.
Dye had conjectured in [10] that an arbitrary action of an amenable F is orbit
equivalent to a Z action; this conjecture was proved by D. Ornstein and B. Weiss
in [24]. The fact that an arbitrary action of an amenable F gives rise (via the group
measure space construction) to a hyperfinite von Neumann algebra had already
been established by purely operator theoretic methods by A. Connes in [5]. The
crucial property that the von Neumann algebra inherits from the amenability of F
is the property P, introduced by J. Schwartz in 1962 [26], which can be reformulated
as the existence of a projection E of norm one from all bounded operators onto
the algebra. In fact, for a free and probability preserving action of a discrete group
F, the associated algebra has property P if and only if F is amenable, as was already
observed by V. Golodets in [14]. In the non-singular case, however, non-amenable
groups can give rise to an algebra with property P. The fact that the associated
algebra has property P has a purely measure theoretical formulation, which was
investigated in detail by R. Zimmer in [30], [31], and which is the notion of
amenability for equivalence relations that we defined above. The present paper
closes this circle of ideas by establishing directly that an amenable non-singular
countable equivalence relation can be generated by a single transformation.

1. Discrete measured equivalence relations
Let X be a standard Borel space and R a Borel subset of XxX which is an
equivalence relation. We say that R is discrete if each R equivalence class is
countable. A measure /u. on X is said to be quasi-invariant for R if, for every
fi-nu\\ Borel set A <=X, the saturation of A, R(A) = {x eX, 3y e A, (x, y)eR}, is
/i-null.

By an isomorphism of discrete measured equivalence relations, from Ri to R2>

we mean a measure class preserving bijection a from X\ to X2 such that

By a partial transformation (j> of X we mean a pair of measurable subsets Dom </>,
Im </> <=X and a measurable bijection <j> from Dom <f> to Im <fr. We identify </> with
its graph,

{(x, </>(*)), xe Dom<£},
and write </> <= R if one has

(x, <t> (x)) e R for all x e Dom <f>.
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If <j> <= R then the image by <f> of a Borel /t-null set is ji-null, i.e. </> is non-singular.
We shall consider R as a groupoid, with units R(0) = X, range and source maps

r(y,x) = y, s(y,x) = x

and composition

(z,y)-(y,x) = (z,x).

There is a Borel homomorphism S,

S((x, y) • (y, z)) = 8(x, y)S(y, z), Vx, y, z,

from R to ]0, + oo[, called the module of ̂  such that, for every partial transformation
<f>eR, one has

a.e. on Dom </>.
One endows R with the measure

m = j i
where vx is the counting measure on

Rx={(x,y), y~x},

o r w i t h t h e e q u i v a l e n t m e a s u r e m 1 ,

dm~\x, y) = S~l(x, y) dm(x, y)

which is the image of m by

(x,y)eR H-» (y,x) = U, y)~\

Definition 1. (1) We say that the discrete measured equivalence relation R is of
type I (or smooth) when the quotient Borel space is, up to a null set, a standard space.

(2) We say that the discrete measured equivalence relation R is hyperfinite (or
approximately smooth) when it is, up to a null set, a countable increasing union
of type I equivalence relations.

Let us recall some well-known facts:
R is of type I if and only if A" is a countable union of subsets Xn on which R is

trivial. So, if R is of type I and Ri<=R, then Ri is of type I.
R is hyperfinite if and only if there is a measurable transformation T, such that

(up to an m-null set)

R = U Graph T"

(cf. [9]).
If R is hyperfinite and Ri<^R, then Ri is hyperfinite, as follows from the definition

and the above remark on type I equivalence relations.

2. Finite subequivalence relations
Let R be an equivalence relation as above. By a finite subequivalence relation
(f.s.r.), we mean a measurable subset T of R which is the graph of an equivalence
relation with finite equivalence classes on the subset

T(0) = Tn Rm = {x eX, (x, x) e T}
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of X. Given f.s.r. T <= V we say that T' is an extension of T when it is the union of
T and of a disjoint f.s.r. T". Equivalently,

(y,x)eT', xoiyeTm => (y,x)eT.

If (Tn) is a sequence of f.s.r. and rn+i extends Tn for all n, then

is also a f.s.r.
Let T be a f.s.r. We shall call a fibre any equivalence class of T. We let Q be

the space of fibres and /j,T the image on Q of the restriction of fi to T<0); Q is, of
course, a standard Borel space, up to a null set. For each fibre F one has the
probability measure vp on F which is the conditional measure of the restriction of
IL to r<0):

IxeA ^ ( y . x)

We describe the disintegration of /u./ T10' by a lemma.

LEMMA 2. For any measurable subset A of T(0) one has

fi(A)=\ vF(A)dnT(F).
JQ

3. Bounded subsets of R
Let K be a measurable subset of R. We shall say that K is bounded if Supx \KX\,
Supy |JKTV|, Sup* |Log <5| are all finite.

LEMMA 3. (a) R is a countable union of bounded measurable subsets.
(b) Any bounded subset K of R is equal to a finite union of graphs of partial

transformations <£,• with bounded Radon-Nikodym derivatives.

Proof. Even though the lemma can be easily deduced from [12] we shall sketch a
proof for the reader's convenience.

(a) The equivalence relation R is a countable union of graphs of Borel transfor-
mations <f>n (theorem 1 of [12]). The conclusion follows by restricting 4>n to Borel
subsets En<m of X,

L)En,m=X,
m

on which |log (dfi ° <f>Jdfi)\ is bounded.
(b) We can assume that R is identical as a Borel space with [0,1]. Then, with

n=Sup|ii:y|,
y

define the partial maps iph i = 1 , . . . , n, by
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where y,- is the rth element of Ky (in the ordering of [0,1]). Clearly, i//t is measurable,

Graph ty, <= R,
and

K = LJ Graph <£,.

i/f, can fail to be injective, but i/>, is at most m t o l , where

m=Sup|i«:x|.
x

Using again the ordering of [0,1], one writes
m

Dom tf/i = U D o m <Au
; = i

with if/ij injective,

ip.i(y) = <Pi(.y), Vy € D o m iA,,.

Then

is: = U Graph (i/f/y). D

The next lemma, though very easy, will be crucial in the proof. It expresses the
'local triviality' of the equivalence relation R.

LEMMA 4. Let K be a bounded subset of R. Then, for every Cl <= X, /JL (O) > 0, there
exists Cl' <= 0, fi(D,') > 0 with s(x • K) disjoint from s(y • K) for all x, y e O', x ^ y.

Proof. First let ^ be a partial transformation of X, (1<=X, fi(il)>0. Then there
exists H' <= fl, /u(n') > 0 such that one of the following three conditions holds:

(a) fl'n Dom 0 = 0 ;
(/?) 0 ' c Dom <t> and 0(0 ')nfl ' = 0 ;
(y) H'c Dom</.and^(A:) = A;,VjcGn'.

Now let 4>i be as in lemma 3(b). Applying the above procedure to the <£,7' ° <f>h one
obtains ft'cft,^ (£V) > 0, such that, for all (/, /), one has one of the three following
conditions:

(a') H 'nDom^r 1 <></>,• = 0 ;
(/8') H'c Dom 0T1 ° 0, and <l>Jl ° <f>,i£l')nCl' = 0 ;
(y') H'c Dom 0T1 ° <t>j and 0,-(JC) = (/>,U), Vx e O'.

For JC, yefi ' , j t ^y and 0,-(x) = <̂ y(y) one obtains yeDom^T1 °</>; and hence a
contradiction with (a'), (£') or (y'). •

4. Amenability of R
Let i?, (it and m be as above. For any function f on R and partial transformation
<f>, one defines a function /* (resp. fa) by

f*{y,x) = 0 iiy£lm<t>

(resp. /<<, = 0 if x^ Im 0);

(resp. Uiy, x) =f(y, 4>~l(x)) if x e Im </>). For functions / on AT, /,*, =/* is defined as
/ " 0 " 1 on Im ^ and 0 on (Im <j>)c.
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We now define the notion of a left (resp. right) invariant mean on R. As we shall
see, the existence of such a mean is a simple translation of the amenability of the
associated von Neumann algebra and is, of course, equivalent to the amenability
of R in the sense of R. Zimmer [27].

To motivate the definition, assume one is given for each xeX a state px on
l^iR*) in such a way that, for y e R, y: x -» y, one has

ypx = py

(i.e. Py(f) = px(f(y •)) and that, for feL°°(R, m), the function on X, x •-> px{f), is
jn-measurable. Then the map P from L°°(R, m) to L^iX, fi) such that

is a left invariant mean on R in the following sense.

Definition 5. A left (resp. right) invariant mean on R is a positive map P, P(l) = 1,
from L°°(/?, m) to L°°(X, fi) such that for any partial transformation 4><^R one has

P(f*) = (Pf)* (resp.
In the previous situation, one has

(then /*(*, a) = 0 for all a) and if x = <f>(b) one has with

so

It turns out, but we shall not need it, that the existence of a left (resp. right)
invariant mean on R is equivalent to the existence of a left (resp. right) invariant
family (px) as above. The main use of this fact is that the conditions satisfied by
the family (px) are easier to handle than those for P.

Definition 6. R is amenable if and only if it possesses a left (or equivalently a right)
invariant mean.

In the rest of this section we connect this notion with the amenability [5], [6] of
the associated von Neumann algebra. For the application to operator algebras we
need the construction of the projective regular representations of R [12].

Let c be a normalized multiplier for R, i.e. c is a Borel map from

R{2) = {(z,y,x)eX\x~y~z{R)}

to

such that, for all x ~ y ~ z ~ t(R), one has

c(t, z, x)c(z, y, x) = c(t, y, x)c(t, z, y).

For each Borel function a on R and each XBX, consider the matrix c(y, t, x)a(y, t),
where y and t vary arbitrarily in the (countable) equivalence class of x. We let ||a||oo
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be the essential supremum of the operator norms of the above matrices, so

IMU 6 [0,+00].

(Note that if x' ~ x one has

c(y, t, x')a{y, t) = o(y)c(y, t, x)a(y, f)o(r),

where a(y) = c(y, x,x') is a complex number of modulus one. Thus the operator
norm of the matrix c(y, t, x)a(y, t) is independent of the choice of x in its R-
equivalence class. In particular, if fi is ergodic, the above essential supremum is
also an essential value.) Let M be the vector space of all Borel functions a on R
such that ||a ||co < oo modulo the subspace {a, \\a ||oo = 0} of those which are zero almost
everywhere. Endowed with the pointwise product and * operation (which do not
depend on the choice of x in its R equivalence class) of the matrices
(c(y, t, x)a(y, 0)y,<~x, M becomes an abstract von Neumann algebra. It can also be
defined as the von Neumann algebra in L2(R,m) generated by the left regular
representation A of R defined as follows. To each <£<=/? one associates a partial
isometry A (<£) such that

(A(<£)/)(y, x) = c(y, <f>~\y), x)f*(y, x), VfeL2(R, m).

More generally, the bounded operator

(A(a)/)(y, x)=la(y, t)f(t, x)c(y, t, x), VfeL2(R, m),

corresponds to a e M. One defines in the same way the right regular representation
p, using the natural isometry from L2(R, m~l) to L2(R, m); p(<f>) acts in L2(R, m)
in the following way:

(p(4>)f)(y, x) = c(y, 4>-\x), x)Uiy, x).

The von Neumann algebras K{R),p{R) generated respectively by the
\(<f>), p(<j>), 4><=R, are commutants of each other. In \(R) the operators A (A), A
a measurable subset of X, are exactly the projections of a maximal abelian sub-
algebra A (X) of A (/?).

Up to algebraic isomorphism, the pairs (M, C) of a von Neumann algebra and
a maximal abelian subalgebra that one obtains in this way are characterized by two
properties. (They are called Cartan subalgebras in [12]; see also [28].)

(1) C is discretely imbedded in M; i.e. there exists a normal projection of norm
one of M on C.

(2) C is regular; i.e. its normalizer generates M as a von Neumann algebra.

one has the following:

for all /6L°°(R, m) and partial transformations <f> <= R.

PROPOSITION 7. Let E be a projection of norm one from the algebra S£{L (R, m))
of all operators in L2(R,m) on k(R) (resp. p(R)). Then the restriction of E to
L°°(/?, m)isa left {resp. right) invariant mean on R.
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Proof. One has

E(aTb) = aE(T)b

for a, b e A(R) and T e£{L2(R, m)). This shows that

£( / ) e A (R) n A (X)' = A (X)

for f<=L°°(R,m) and that

£(/*) = £(A (<£)/A (<£)*) = A (<£)£(/)A (<£)* = £(/)*. D

Conversely, if the discrete measured equivalence relation R is amenable, the
associated von Neumann algebra \(R) is the range of a projection of norm one
from Z£{L2{R, m)). Since we shall not need this converse, we shall content ourselves
with the following sketch of the proof, leaving details to the reader. In particular,
we ignore the cocycle c; i.e. we assume that

c(x,y,x)=\, Vx, y,zeX.

This allows one to describe A(i?) as the von Neumann algebra of random operators
(Ti)ien, where ft is the space of R-equivalence classes. For each /, 77 is a bounded
operator in the Hilbert space I2(l). One only considers bounded measurable random
operators. The measurability of T means that, if (ex)xei is the canonical basis of
I2(l), the matrix coefficients

a{y,x) = {Tlex,ey)

define a measurable function a on R. The boundedness means that

HrlU = Ess Sup IITIH
is finite. Finally, one neglects T if ||r||oo = 0, i.e. if T, = 0 a.e. Now the amenability
of R means that one can associate to each / € ft a positive linear functional pt on
'°°(0i Pi(l) = 1, in a measurable manner, i.e. in such a way that, for any / e L°°{R, m),
the function on X, x >-»pclass of *(/), is ̂ -measurable. Let N be the von Neumann
algebra in L2(R, m) of operators which are diagonal in the decomposition of
L2(R, m) as the direct integral

We have

Since JV is of type I, to show that A(i?) is the range of a projection of norm one
from S6(L2(R, m)) it is enough to construct one from N. An arbitrary element T
of N is a bounded measurable family (Tx)xeX, where Tx acts in I2 (class of x). Using
the above p, define, for / e ft, £ 77 e I2(l), the random operator p(T) by putting
{p{T)i£, -q) equal to pt of the function x >-> {Tx$, 77). It is then immediate that p is
a projection of norm one from N to \(R).

5. A F0lner condition
The following F0lner type condition is equivalent to amenability. We shall assume
that the discrete measured equivalence relation R is amenable and prove:
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LEMMA 8. For any bounded measurable subset K of R and any e >0, there exists
af.s.r. Tsuch that

m{yeK,s(y)eT(0\otr(y)<=Tl0\y£T}<eiM(T{0))*0.

Proof. Let </>,,/ = 1 , . . . , n, be partial transformations,

Graph <£, <= R,

with

|LogS|<C

on Ui Graph (/>, and

K <= LJ Graph <j>i

as in lemma 3. Let P be a right invariant mean on R and L = n P be the
corresponding state on L°°(i?, m).

For each i, let

[^((^"'Oc), x) if*Elm</>,,

lO otherwise;

and

if x 6 Doin <f>i,

otherwise.

For feL°°(R, m) define Tl/by

By hypothesis, we have

For any g 6 L°°(X, /J.) the equality

| = } at(x)g(x) dn(x)

shows that

L(r,/) = L(a,A i = l , . . . , n , V/eL°°(i?, m).

Let L°°{R, m)^<^L°°(R, m)* be the space of normal linear functionals on L°°(R, m).
In the Banach space product of n copies of L°°(R, m)* let

Q = {(/ • 7) - / • a,),=i,...,n, where / is a normal state on L°°(i?, m)}.

Then Q is convex, and its <x(L*, L°°) closure in L* contains 0, because L is in the
o-(L°°*, L°°) closure of normal states. Thus, since L°° is the dual of L%, the norm
closure of Q contains 0.

Let e > 0, / 6 L£+ be such that
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We identify L*{R, m) with Ll(R, m~l), and let / be the corresponding function on
R. We can assume that Supp / is bounded,

One has

-'-jajldm-1

J (T,f)ldm-1 = J A(x)/(y, 0,"1 (x))/(y, ̂ " ' ( y , x) dm(y, x)

- [ -1

since
dm(y, <f>i(x)) = dm(y, x) forxe Dora ̂ ,-.

Now

j (TJ)ldm * = j /(y,.

and the above inequality is equivalent to

I J \l(y, 4>t(x))-l(y, x)|a,(x) dm~\y, x)< e.

Let Ea be the characteristic function of [a, +oo[, a > 0. Then for t, t' > 0,

f= j £„( / )* , k - f ' l = f |£«W-Ha(/')|dfl,
Jo Jo

so that by Fubini's theorem one has, with la= Ea • I,

2, /a(y, <Pi\x)) — la(y, x) a,-(x) am (y, x)da<e ladm da.
, J J J J

So let a > 0 be such that

Recalling that

we obtain

I J I \L(y, <t>,(x))-la(y, x)\a,(x)8-\y, x) dfi(y)<e J ( l /a(y, x^S'^y, x) d/t(y).

Thus the set O of y 6 X with

I I \la{y,cl>i(x))-la{y,x)\8-\y,x)<e^la{y,x)8'\y,x)
i x e D o m 4>i x

is non-negligible.
Using lemma 4, let H'cfi be a non-negligible subset such that, for yu y2efl',

yi ̂  y2» s(yi • X"i) is disjoint from s(y2 • A"i) with iTi = K~1uK' and / (and also la)
equal to 0 in K'c.
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For each y e ft' consider

Fy = {x~y, la(y, x)=l}.

Then Fy<=-s(y • K') is finite (because K' is bounded) and the Fy's are pairwise
disjoint, so they define a f.s.r. T with

T = {(x',x)\x',xeFy for some y e ft'}.

For each fibre Fy of T we have by construction

I I \ y , ) I 1
i 3", Fy

where

BJ ={xeDom<f>h<l>i(x)eFy, x£Fy} u {

Applying lemma 2 to the f.s.r. with fibres
s(y -Kt) = F'y, ye ft'

we obtain

where

B, = U Bl
yefl'

Now K = U Graph <f>n, so each y 6 K is of the form

y = {a,

for some / and a e Dom <£,. If

let y Eft' with <^,(a)eFy. Then, unless a sBh one has Ky)eFy and yeT.ln the
same way, if r(y) e r<0>, i.e. a s F , for some y € ft', then <f>i(a) eFy and y e T, unless
a € B / . So if

5 = {y eX, y<̂  T, s{y) or r(y) e Ti0)},

then, recalling that dm(y, x) = dfi(y), one has

6. Hyperfiniteness
LEMMA 9. If R is amenable then, for any bounded measurable subset K of R and
any e>0, there exists a f.s.r. Tsuch that

m(K\T)<e.

Proof. Let ^ be the set of pairs (T, H), where T is a f.s.r. and H a measurable
subset of K satisfying the following conditions:

(1) m{K\H)<en{T(0));
(2) y G H and s(y) or r(y) e Ti0) ^ y e l
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For (T, H), (V, H') e %, we put {T,H)< (T', // ') when
(a) T' is an extension of T;
(b) H'aH,m(H\H')<e(i(Tm\Tm).

This defines an ordering on 'S, and the partially ordered set <£ is inductive: for any
totally ordered subset g" of %, take a sequence

(TmHn)eV

with

SupM(rL0)) = SuP

and put
T = \jTm H =

One checks (1), (2) for (T, H) so (T, H) e % and (a), (b) to see that

(Tn,Hn)<(T,H) for all n.

Thus, unless V has a largest element, one has

%'<(T,H).

Now let (T,H)e %, assume that

and let us construct

(T',H')e%, (T,

Let

A = (r(0))c,
and on A consider the equivalence relation

RA = {y £ R, s (y) 6 A, r(y) e A}.

As RA is amenable the F0lner condition is satisfied for the bounded subset

HA = {yzH,s(y)eA,r(y)eA}

otH.
Thus let T\ be a f.s.r. such that

m{y e //A, s(y) € T f or r(y) e Tf, r ^

Put

T'=T u Tu

H\H' = {y e //A, *(y) or r(y) e 7i0), y^ 7\}.

Let us check that (7", // ') e ?. We have

m{K\H')<m{K\H) +

which gives (1). If y e / / ' and s(y)e Tm, then, if s(y)€ T<0), one has y E / / and
hence y e T, since (T, / / ) € %. If s(y) € T?\ then y e T, c r . This proves (2).
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To prove (T,H)< (T, H') we have to show that

T = {yeT',s(y)orr(y)eTm}

which is clear by construction.
Now using the axiom of choice we have shown that there exists (T,H)&% with

T(0) = X a.e. Conditions (1), (2) give
(1)
(2) yeH ^yeTa . e . ,

which imply m(K\T)<e. Q

THEOREM 10. R is hyperfinite if and only if it is amenable.
Proof. If R is hyperfinite it is easy to see that it is amenable.

Conversely, choose a sequence Kn of bounded sets with

UKn=R

and by lemma 9 take f.s.r. Tn, bounded and such that, for all n,

m(Kn\Tn)<en, m(Tn\Tn+l)<en with en >0, I eB « » .

Then
Lim Tn = R

(where UmTn={Jnf\kSnTk contains Kn up to a set of measure I"e m ) .
Moreover,

is a f.s.r.,

and

T" c

\JT"

-n
fcan

= 7-

= R

Tk

a.e. • i

7. Applications
COROLLARY 11. LetMbe an amenable von Neuman algebra ands&\, si2be Cartan
subalgebras of M. Then there is an automorphism o~ e Aut M such that a{si\) = si2.
Proof. Let Ri,R2 be measured countable equivalence relations with cocycles c,
such that (\(Ri), \(Xt)) is isomorphic to (M, sdi) for / = 1, 2. Then, by proposition
7, Ri is amenable and hence hyperfinite, so the cocycles c, are trivial. So, by Krieger's
theorem [18], let o- be an isomorphism of R\ on R2 preserving the measure class.
Then the map which to A (<£i), <b\ <= R\, associates A M<£i)) extends to an automorph-
ism of M with the required properties (cf. [12]). •

COROLLARY 12. Let R be a discrete measured hyperfinite equivalence relation on
a measure space (X, fi), and 6 a non-singular, countable to one, measurable map
ofXin Xsuch that

x ~ y implies 6{x) ~ 6{y).
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Then the equivalence relation Re, (y, x)eRe if and only if 3n, msN with
d"(x) ~0m(y), is hyperfinite.

R

Proof. Let (px)xeX be a measurable family where px is a state on l°°(Rx) and ypx = py

for any y.x -» y, ye/?. We construct a measurable family (p'x)xsX, where p'x is a
state on /°°CR«), as follows. Let F be an element of l°°(Re)- Then, since for each
ksH the ^-equivalence class of dk(x) is contained in the Re class of x, we can
restrict F to /?*k(x) and obtain the scalar

Pekw(F(-)) = ak.

Now fixing an invariant mean p on /°°(N), we set

If we replace xbyx ' ~ *, we have

ek(x') ~ **(*),

so that none of the scalars ak changes, and

p'AF) = Px(F)-
If we replace x by dk(x), the sequence a is shifted, and by the invariance of p we
obtain

This shows that, if

x ~
Re

then

p'AF) = p'AF),
i.e. p' is invariant. The only delicate point is that one needs to choose p in such a
way that p' be measurable. There are two ways out: the first is to use a general
result of G. Mokobodski [20], asserting the existence of means like p which are
universally measurable. The second is to translate the above formulae algebraically
in terms of the projection P, and to define P'(F) for F e L°°(Re) using a weak limit
inL°°(X,M).

We shall leave the tedious verification to the reader. The main result of [7] is
the special case of the above corollary 12 when 6 is an invertible element of the
normalizer of the equivalence relation R. The following theorem, stated by Versik
in [29], is obtained as a corollary:

COROLLARY 13. Let Tbe a non-singular endomorphism of (X, (i) such that T^ix}
is countable for a.e. x eX. Then the equivalence relation, x~y if and only if3n, m € N
such that T"x = Tmy, is hyperfinite.

Proof. Apply corollary 12 with R = {(x, x), x e X} and T in place of 6. Note, however,
the simpler form of p'x in this special case. •

In [2] R. Bowen proved the hyperfiniteness of Anosov foliations by first establishing
an orbit equivalence with a certain endomorphism T and then showing by direct
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computations the hyperfiniteness. Corollary 13 shows that the special form of T
plays no role. Also, both Bowen and Versik deduce from this that the action of
SL (2, Z) on Pi(R) is hyperfinite. We obtain the result from the very general:

COROLLARY 14. Let G be a locally compact group, P an amenable closed subgroup
and F a discrete subgroup of G. Then the action of T on G/P is hyperfinite.

Proof. By [31] this action is amenable. •

We shall end this paper with a brief discussion of the case of equivalence relations
with not necessarily countable orbits. Let X be a standard Borel space and
R<=XxX a Borel subset which is an equivalence relation. The hypothesis of
discreteness of R is now replaced by the hypothesis of existence of a transverse
function v for R with vx ^ 0, Vx e X (cf. [4]). For each x, vx is a cr-finite measure
on Rx and one assumes:

(1) that v is invariant: i.e. yvx = vy, Vy: x -* y, ys-R;
(2) that v is proper: i.e. R is a countable union of Borel sets An such that vx(An)

is bounded for each neN.
Fixing such a transverse function v, and a module S, i.e. a Borel homomorphism
of the groupoid R to R*, the transverse measures A of module S on R correspond
bijectively to the ordinary measures ft on X such that the conditional measure of
fi on any /^-equivalence class / is proportional to 8~lv (cf. [4] thm. 3, §11) or,
equivalently, such that the measure

m=\ vxdfi(x)

on R satisfies
m"l = 8~lm.

The advantage of transverse measures is that we can, at will, change our choice of
v to another v', where v'x can be singular relative to vx for any x e X. Retaining
from A only its class, i.e. the notion of saturated A negligible subsets of X (cf. [4]
def. 7), we shall now define the amenability of the system (R, class of A). We shall
first define it relative to a choice of v and then show that this choice is unimportant.
Fixing v, the amenability means the existence for a.e. x e X of a state px on
L^iR", vx) in such a way that

(1) ypx=py,Vy:x -» y, yeR;
(2) for any f&L°°{R, m) (m =\ vxdfi), the function on X, given by x >-> px(f),

is /a-measurable.

LEMMA 15. The amenability of (R, class of A) is independent of the choice of v.

Proof. Let v' be another transverse function on R with v'x # 0 a.e. By [8] prop. 6,
§ 1, there exists a measurable map JC-»AX from X to positive measures on R,
with Ax carried by Rx for any x €X and such that

f(z) dv'x(x, z) = j J f(z) d\ y(y, z) di>x(x, y)

for any positive measurable / on {z, z ~x(R)}. Note that by the invariance of v
(resp. v'), dvx(x, z) just depends on z (resp. dv'x), and defines a measure vl on the
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/^-equivalence class of x. The above equality shows the existence of a bounded
positive map Ui of Lco(/, vl) in L°°(/, *>''), with t//(l) = 1, defined as the transpose
of the map from Ll(l, v'1) in Ll{l, vl) to which / associates the function

yel -»

Then if (pi)/en, fi the space of R equivalence classes, is a measurable family of
states on L°°(l, v'1), the family

is a measurable family of states on L°°(/, v'). •

Recall that, given an equivalence relation R as above, a transversal T is a measurable
subset of X such that the restriction of R to T is discrete. By a recent result of
A. Ramsay [25], the existence of a transverse function v with vx # 0, Vx e X, implies
the existence of a transversal T which intersects almost all /?-equivalence classes.
T gives rise to a transverse function vT, by denning vx

T to be the measure supported
on {yeT:y~x} with

The measure jn on X corresponding to any transverse measure A in our class
clearly has its support in T, and setting

we obtain a d.m.e.r. on (T, p). This we call the restriction of (R, A) to T. Changing
to a A' in the same class means changing to a \x in the same class, so we may speak
of the restriction of (R, class of A) to T. The amenability of (R, class of A) amounts
precisely to the existence of an invariant family (px) on the equivalence classes of
RT, by lemma 15. Thus by theorem 10 we obtain:

COROLLARY 16. Let {R, class of A) be an equivalence relation with transverse
measure class. Then it is amenable if and only if its restriction to some (equivalently
any) transversal is generated by a single transformation.

Remark. Instead of using transverse measures on equivalence relations, one can,
of course, use Mackey's notion of virtual group. Corollary 16 can be restated as:

COROLLARY 17. Any principal amenable virtual group is similar to a virtual sub-
group of the group of integers.

COROLLARY 18. Let the amenable locally compact Polish group G act ergodically
and non-singularly on the standard space (X,n). Then the ergodic equivalence
relation obtained from the orbits of G is hyperfinite.

Remark. For discrete G and free actions, this is obtained in Ornstein-Weiss [24].

Proof. Let p be a right invariant mean on L°°(G, dg), obtained as a medial limit
from a F0lner sequence in G. For each x eX, let px be the state on L°°(orbit of x)
denned by
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where f(g) = f(gx), VgeG. By [20] the family (px) is measurable and, by the
invariance of p,

Pgx = Px

for any g e G. So corollary 16 completes the proof. •

We obtain from this the following generalization of (part of) the Ambrose theorem
on flows, answering a question raised by Mackey [19]:

COROLLARY 19. Any ergodic non-singular free action of an amenable locally com-
pact Polish group G is the range of a transient homomorphism of an integer action.

This follows from Feldman-Moore-Hahn [13], cor. 7.9. We note that this has been
shown for connected nilpotent groups by R. Zimmer [30], and for solvable groups
by A. Stepin (personal communication).

The next proposition is of particular interest when applied with corollary 16 to
foliations with a fixed Riemannian structure g along the leaves, the transverse
function v being given by the Riemannian volume element, and the process v
defining the usual harmonic functions along the leaves.

PROPOSITION 20. Let (R, class of A) be as above, v a transverse function with
vx # 0 a.e., arid IT a Markov process on X, with TTX carried by the R-equivalence
class of x for each xeX, which is non-singular relative to v in the following sense.
For each R-equivalence class the measure

JV,
on I should be absolutely continuous with respect to v. Then if the only bounded
v-measurable ir-harmonic functions on each R-equivalence class I are the constants,
the equivalence relation (R, class of A) is amenable.

Proof. For each i?-equivalence class / e fl, the equality

defines a bounded positive map Ui of L°°(/, vl) into itself such that

Now any weak limit in L°°(l, v1) of the sequence
1 m

mm
is 7r-harmonic, and hence by hypothesis is equal to a constant. Choosing once and
for all a measurable limit procedure [20], one obtains a measurable family (pt)ien
of states on L°°(l, vl). •

COROLLARY 21. Let V be a manifold, F c TV a sub-bundle defining a foliation of
V, || || a Euclidean metric on F. Assume that each leaf of this foliation is of polynomial
growth (for the Riemannian metric defined by || ||), then the equivalence relation,
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x ~y in V if and only if the leaf of x is the leaf of y, with the smooth measure class,
is hyperfinite.

Proof. For a fixed leaf M, let x € M and Bn{x) be the ball of radius n and centre
x. Define a state px on L^iM) by

Pxif) = Medial Limit un,

where

volume (Bn{x
The polynomial growth of M, shows that px is independent of the choice of x in
M, hence the amenability of this equivalence relation follows, and corollary 16
completes the proof. •
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