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We develop a new scaling theory for the resistive tearing mode instability of a current
sheet with a strong shear flow across the layer. The growth rate decreases with increasing
flow shear and is completely stabilized as the shear flow becomes Alfvénic: both in the
constant-Ψ regime, as in previous results, but we also show that the growth rate is in
fact suppressed more strongly in the nonconstant-Ψ regime. As a consequence, for suffi-
ciently large flow shear, the maximum of the growth rate is always affected by the shear
suppression, and the wavenumber at which this maximum growth rate is attained is an
increasing function of the strength of the flow shear. These results may be important for
the onset of reconnection in imbalanced MHD turbulence.
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1. Introduction

Current sheets (CS) are characterized by sharp rotation of the magnetic field
across a narrow CS width a; often, they are extended in their other dimensions, with
a CS length L � a. They form generically in many plasmas (Chapman & Kendall
1963), and have more recently been shown to form naturally at the small scales
of magnetohydrodynamic (MHD) turbulence (Boldyrev 2006; Zhdankin et al. 2012,
2013; Mallet et al. 2016; Mallet & Schekochihin 2017), the motivation for this paper.
Within the framework of resistive MHD, the CS width a is regularized by the resis-
tivity η: below a certain scale, the magnetic field is no longer frozen into the flow,
leading to magnetic reconnection. Reconnection is important in a wide range of
physical situations, for example sawtooth crashes in tokamaks (Kadomtsev 1975),
solar flares (Yan et al. 2022), the dynamics of the magnetosphere and its interaction
with the Solar wind (Gershman et al. 2024), and, in the relativistic case, the non-
thermal emission from extreme astrophysical objects (Sironi, Uzdensky & Giannios
2025). Typically, the Sweet-Parker theory (Parker 1957; Sweet 1958) of current sheet
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reconnection predicts a reconnection rate orders of magnitude too slow to explain
the observed fast reconnection.

However, CS are usually unstable to the tearing instability (Furth, Killeen &
Rosenbluth 1963; Coppi et al. 1976). It has been realised that this instability means
that CS cannot thin below the width acrit at which the tearing growth rate becomes
comparable to the sheet formation timescale, resulting in fast ‘plasmoid-mediated’
reconnection (Pucci & Velli 2014; Uzdensky & Loureiro 2016; Comisso et al. 2017).
This theory has been applied to the current sheets formed dynamically in MHD tur-
bulence, resulting in the prediction of a dramatic change in the turbulent cascade
below a certain scale (Mallet, Schekochihin & Chandran 2017; Loureiro & Boldyrev,
2017a). This was recently confirmed in high-resolution MHD turbulence simulations
(Dong et al. 2022).

As a preliminary, it will be useful to review the standard theory of the tear-
ing mode (Furth et al. 1963; Coppi et al. 1976), usually derived within the
framework of 2D incompressible resistive MHD. The usual magnetic equilibrium
involves a transverse magnetic field pointing in the ŷ-direction and varying in the
x̂-direction,

b0y(x) = vAy f (x/a), (1.1)

where we have written the magnetic field in velocity units b = B/
√

4πni mi . The
constant vAy (the typical in-plane Alfvén velocity) parametrizes the overall size of
the reconnecting magnetic field. The function f (x/a) describes the reversal of the
in-plane magnetic field across the CS: we assume f (x/a) to be antisymmetric about
x = 0, and moreover that f (x/a) ≈ x/a for x � a, and f (x/a) → const. for |x | � a.
The length a defines the scale over which the in-plane equilibrium magnetic field b0y

reverses direction. A constant ‘guide’ magnetic field in the out-of-plane ẑ-direction
may also be added without issues if desired. Additionally, it is usually assumed that
there is no equilibrium flow, u0 = 0. This results in the growth rates (Furth et al.
1963; Coppi et al. 1976)

γ a

vAy
∼
{

(ka)2/5(Δ′a)4/5S−3/5, Δ′δin � 1

(ka)2/3S−1/3, Δ′δin � 1,
(1.2)

where S ≡ avAy/η is the Lundquist number and η is the resistivity. The modifications
resulting from including viscosity ν 
= 0 were incorporated into the standard tearing
mode theory by Porcelli (1987); here, we assume ν = 0 for simplicity. We assume
S � 1, so that the width of the inner layer where resistivity becomes important
δin � a. Here, Δ′ is a measure of the ideal discontinuity regularized by the resistivity
within the inner layer, and Δ′ > 0 is required for instability. For sufficiently long-
wavelength modes ka � 1,

Δ′a ∝ (ka)−n, (1.3)

with n = 1 for a Harris type equilibrium with f (x/a) = tanh(x/a) and n = 2 for
f (x/a) = sin(x/a) (see, e.g. Boldyrev & Loureiro 2018). The inner lengthscale
δin � a is a measure of the width of the layer close to x = 0 within which resistivity
becomes important; the scaling of δin with the other parameters in the standard tear-
ing mode may be found in e.g. Coppi et al. (1976) and Boldyrev & Loureiro (2018)
but is not needed here. For Δ′δin � 1, the growth rate γ decreases with k, while at
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Δ′δin � 1, γ increases with k. The maximum growth rate occurs where these two
expressions meet (Coppi et al. 1976): choosing n = 1 in (1.3),

γmaxa

vAy
∼ S−1/2, kmaxa ∼ S−1/4. (1.4)

In many situations, including the aforementioned case of turbulence, the assump-
tion that u0 = 0 is not realistic. One example is that, once a CS is reconnecting,
powerful Alfvénic outflows are driven along the sheet: the effect of these self-
generated longitudinal flows on the onset of reconnection has been analysed in
Tolman, Loureiro & Uzdensky (2018). Here, we study a different problem, that of
a pre-existing transverse flow shear across the CS. Since the magnetic field is frozen
into the plasma flow far from the narrow resistive layer, such shear flows often
have a dramatic effect on the instability. Following Boldyrev & Loureiro (2018), we
assume for simplicity that the shear flow profile is proportional to the magnetic field
profile given in (1.1):

u0y(x) = αb0y(x) = αvAy f (x/a). (1.5)

For the tearing mode, we are interested in the range 0 < |α| < 1: for |α|� 1, the
tearing mode is stable and we have instead the ideal Kelvin–Helmholtz instability,
with a large maximum growth rate γK H ∼ (1 − α2)1/2αvAy/a, attained around ka ∼ 1.
Previous analytic work (Hofman 1975; Chen & Morrison 1989; Boldyrev & Loureiro
2018) incorporating flow shear has been largely focused on the weakly unstable
Δ′δin � 1 case, and found that the shear flow suppresses the instability and alters
the scaling of the growth rate with resistivity. Specifically, Chen & Morrison (1989)
found that (with the viscosity ν = 0)

γ a

vAy
= 1√

2π
Δ′1/2

[
α
(
1 − α2

)]1/2
S−1/2, Δ′δin � 1. (1.6)

How shear flow affects the opposite limit, when Δ′δin � 1, is still unknown. It was
recently argued by Boldyrev & Loureiro (2018) that for Δ′δin � 1 the shear flow
cannot affect the growth rate. As a consequence, the maximum of the growth rate
(attained when Δ′δin ∼ 1) would be unaffected by shear flow, despite shear flow
dramatically affecting the Δ′δin � 1 scalings. Here, we will find with both scal-
ing arguments and numerical simulations that there is a shear-modified regime for
Δ′δin � 1, provided that α is larger than a critical value, and thus that the maximum
growth rate can also be suppressed by shear flow.

Finally, we note that we have recently also analysed the collisionless tearing insta-
bility with flow shear (Mallet et al. 2025), which ironically turns out to be easier to
attack analytically. Because of the separation between the ion and electron scales in
the collisionless problem, we were able to find an analytic solution. Irrespective of
Δ′δin, the growth rate is slow compared to the shear across the ion layer, but fast
compared to the shear across the electron layer, and matching the solutions in both
regions gives the numerically-observed growth rates. In the resistive case studied
here, the growth rate is only small compared to the shear across the resistive inner
layer of width δin for Δ′δin � 1. For Δ′δin � 1 case, the growth rate and the shear
across δin are comparable, and there is no small parameter with which to expand
the equations. The current work is therefore less rigorous and based essentially on
a scaling argument, rather than an analytic solution. Nevertheless, we show that our
argument correctly describes the numerical simulations.
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2. Basic equations

For our analysis, we use the resistive reduced MHD equations in two dimensions,

∂∇2
⊥Φ

∂t
+ {

Φ, ∇2Φ
}− {

Ψ, ∇2
⊥Ψ

}= 0, (2.1)

∂Ψ

∂t
+ {Φ, Ψ } − η∇2

⊥Ψ = 0, (2.2)

where the Poisson bracket { f, g} = ẑ · (∇⊥ f × ∇⊥g). We assume that the viscosity
ν = 0, which is not a good assumption for many natural and laboratory plasmas of
interest. We will include the important effects of viscosity in a future work. From
the flux and stream functions Ψ and Φ, we obtain the perpendicular (to ẑ) magnetic
field (in velocity units) b⊥ = ẑ × ∇⊥Ψ and the perpendicular velocity u⊥ = ẑ × ∇⊥Φ.
We linearize the equations around the equilibrium

Φ0 = αΨ0, b0y = vAy f (x/a) = ∂xΨ0, (2.3)

which is the same as mentioned previously ((1.1) and (1.5)), and assume fluctuations
of the form

δΦ = Φ(x) exp(iky + γ t), (2.4)

δΨ = Ψ (x) exp(iky + γ t), (2.5)
obtaining

(
γ + iαkvAy f

) (
Φ ′′ − k2Φ

)− iαkvAy f ′′Φ − ikvAy f

(
Ψ ′′ − k2Ψ − f ′′

f
Ψ

)
= 0,

(2.6)(
γ + iαkvAy f

)
Ψ − ikvAy f Φ − ηΨ ′′ = 0,

(2.7)

where we have assumed ka � 1 and a � δin and thus we may neglect terms
proportional to ηk2, and we denote x -derivatives as ∂x A = A′.

3. Outer region

Far from the layer, where x ∼ a � δin, we may neglect all the terms involving the
resistivity η. If we also assume γ � kvAy (which will be confirmed later), we may
also neglect the growth terms, and obtain

α

(
Φ ′′ − k2Φ − f ′′

f
Φ

)
=
(

Ψ ′′ − k2Ψ − f ′′

f
Ψ

)
. (3.1)

αΨ = Φ, (3.2)

Inserting the latter in the former, we obtain(
1 − α2

)
f
[
Ψ ′′ − k2Ψ − ( f ′′/ f )Ψ

]= 0, (3.3)

which is just the constant 1 − α2 times the equivalent equation for the tearing mode
with no equilibrium flow shear: thus, the solution for Ψ is unchanged in the outer
region. The solution for Φ, however, is very different, and is given by (3.2).
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As x → 0, ∂x � k and f ≈ x/a, and of the outer equation all we are left with is

Ψ ′′ = 0, (3.4)

whence

Ψ → Ψ∞

(
1 + 1

2
Δ′|x |

)
, x → 0, (3.5)

defining

Δ′ = [Ψ ′]+0
−0

Ψ (0)
, (3.6)

the discontinuity in the outer solution’s magnetic field across the inner region Note
that our approach so far has closely followed the classic analysis of Furth et al.
(1963), and by including transverse flow shear, Chen & Morrison (1989).

4. Inner region

In the inner region, of width δin � a (which will be determined later), the
microphysical terms become important. Broadly speaking, in the following we will
use the scaling-theory approach of Boldyrev & Loureiro (2018), later introducing
modifications to take into account the Δ′δin � 1 case. Here,

x � a, f ≈ x/a, and ∂2/∂x2 � k2, f ′′/ f. (4.1)

Defining

δ = γ a

kvAy
, δη =

(
ηa

kvAy

)1/3

, (4.2)

we obtain the inner region equations

(δ + iαx)Φ ′′ − i xΨ ′′ = 0, (4.3)

(δ + iαx)Ψ − i xΦ = δ3
ηΨ

′′. (4.4)

To match the inner solution with the outer solution, we integrate (4.3) to obtain

δ

∫ ∞

−∞

Φ ′′

x
dx = iΨ ′|+− − iαΦ ′|+−, (4.5)

where the integral is to be understood to be over the inner solution from x � −δin

to x � δin, and the jump in a quantity over the inner layer is denoted |+−. To evaluate
the RHS, we can use the asymptotic behaviour of the velocity in the outer region,
(3.2), as well as the definition of Δ′ (3.6), to obtain

δ

∫ ∞

−∞

Φ ′′

x
dx = i

(
1 − α2

)
Δ′Ψ∞. (4.6)

We now normalize (4.3) and (4.4) by the (as yet undetermined) δin, writing

ξ = x

δin
, λ = δ

δin
, (4.7)
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and denoting ∂ξ A = A′. We obtain

(λ + iαξ)Φ ′′ − iξΨ ′′ = 0, (4.8)

(λ + iαξ)Ψ − iξΦ = δ3
η

δ3
in

Ψ ′′. (4.9)

In the rescaled variables, the matching condition (4.6) reads

λ

∫ ∞

−∞

Φ ′′

ξ
dξ = i

(
1 − α2

)
Δ′δinΨ∞. (4.10)

Substituting (4.8) into (4.9), we have

(λ + iαξ)Ψ − iξΦ = −i
δ3

η

δ3
in

(λ + iαξ)
Φ ′′

ξ
. (4.11)

Dividing by ξ , differentiating twice, and then using (4.8) again and dividing by
1 − α2,

2λ

1 − α2

Ψ − ξΨ ′

ξ 3
+
(

2λα

1 − α2
− iλ2

ξ
(
1 − α2

) − iξ

)
Φ ′′

ξ
= − i

1 − α2

δ3
η

δ3
in

(
(λ + iαξ)

Φ ′′

ξ 2

)′′
.

(4.12)

For the shear flow to amount to more than a small correction to the growth rates,
we require the growth rate to be small compared to the shear rate across the inner
layer, γ � αkvAyδin/a. This assumption may be conveniently written as

λ � α. (4.13)

The tearing mode without shear has λ � 1 for Δ′δin � 1 (Furth et al. 1963), but
λ ∼ 1 for Δ′δin � 1 (Coppi et al. 1976). Boldyrev & Loureiro (2018) note that if
λ � α, the shear flow cannot affect the structure of the inner layer, and conclude
that the growth rate should be unchanged for Δ′δin � 1. However, given that at most
λ ∼ 1, it is worth reexamining the behaviour for α close to unity.

5. Scaling theory

We can now choose the inner lengthscale as

δin = δη

(
α

1 − α2

)1/3

=
(

αηa(
1 − α2

)
kvAy

)1/3

. (5.1)

Inserting this choice and dividing by α makes the coefficient on the RHS of (4.12)
unity,

2λ

1 − α2

Ψ − ξΨ ′

ξ 3
+
(

2λα

1 − α2
− iλ2

ξ
(
1 − α2

) − iξ

)
Φ ′′

ξ
= −i

([
λ

αξ
+ i

]
Φ ′′

ξ

)′′
. (5.2)

By comparing terms, we obtain the scaling for ξ � 1

Φ ′′

ξ
∼ iλ

1 − α2

Ψ

ξ 4
, (5.3)
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where we have assumed not only λ � α, but also that λ/(1 − α2) is at most order
unity. We will confirm this later. To match to the outer solution using (4.10), we
need an estimate for the size of Ψ inside the inner layer. The outer solution at
x = ±δin is

Ψouter(δin) = Ψ∞

(
1 + 1

2
Δ′δin

)
, (5.4)

and the resistive terms ‘smooth’ the singularity on this scale: thus, we estimate

Ψ ∼
{

Ψ∞, Δ′δin � 1,

Δ′δinΨ∞, Δ′δin � 1.
(5.5)

The former assumption is the famous ‘constant-Ψ ’ approximation of Furth et al.
(1963). As in the standard tearing mode without shear (Coppi et al. 1976), the
character of the solution depends on Δ′δin, and using (5.1) and (1.3), we find that

Δ′δin ∼ 1
(ka)n+1/3

(
αηa2(

1 − α2
)
vAy

)1/3

, (5.6)

a decreasing function of ka. The matching integral is over an interval in ξ of order
unity, and so

λ

∫ ∞

−∞

Φ ′′

ξ
dξ ∼ iλ2

1 − α2
Ψ. (5.7)

Inserting our estimate for Ψ and comparing to the matching condition (4.10), we
obtain

λ2 ∼
{

Δ′δin

(
1 − α2

)2
, Δ′δin � 1(

1 − α2
)2

, Δ′δin � 1.
(5.8)

Note that the two scalings match at Δ′δin ∼ 1. Since we have assumed that λ � α,
the latter scaling is only valid for

1 − α2 � α, (5.9)

or α quite close to 1 (see § 6). Inserting (5.1), in terms of δ,

δ ∼
{

Δ′1/2α1/2
(
1 − α2

)1/2
δ3/2

η , Δ′δin � 1,

α1/3
(
1 − α2

)2/3
δη, Δ′δin � 1,

(5.10)

or, in terms of more physical variables,

γ a

vAy
∼
{

α1/2
(
1 − α2

)1/2
(Δ′a)1/2(ka)1/2S−1/2, Δ′δin � 1,

α1/3
(
1 − α2

)2/3
(ka)2/3S−1/3, Δ′δin � 1,

(5.11)

The scaling for Δ′δin � 1 is the same as the growth rate obtained by Chen &
Morrison (1989), up to a prefactor of order unity. The dependence of the scaling on
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α for Δ′δin � 1 is new: Chen & Morrison (1989) and Boldyrev & Loureiro (2018)
both conclude (correctly) that once λ ∼ 1, the scaling with S should be unaffected
by flow shear: we have shown here that the growth rate is suppressed as 1 − α2 → 0.

For Δ′δin � 1, the growth rate depends on the k-dependence of Δ′a, with Δ′a ∝
(ka)−n for ka � 1, a property of the equilibrium profiles:

Δ′δin � 1 : γ a

vAy
∼
{

α1/2
(
1 − α2

)1/2
S−1/2, n = 1,

α1/2
(
1 − α2

)1/2
S−1/2(ka)−1/2, n = 2.

(5.12)

These are identical up to a constant prefactor to the results of Chen & Morrison
(1989). Interestingly, the growth rate does not depend on ka for the n = 1 case.
Equating the two growth rate expressions for Δ′δin � 1 and Δ′δin � 1, the transition
between the two occurs at a wavevector

ktr a ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
α

1 − α2

)1/4

S−1/4, n = 1,

(
α

1 − α2

)1/7

S−1/7, n = 2,

(5.13)

For 1 − α2 � 1, the transitional wavenumber increases with α. This is the opposite
behaviour predicted by Chen & Morrison (1989), who predicted that the tearing
mode stabilized as α → 1 via the constant-Ψ mode ((5.11) for Δ′δin � 1) becoming
valid at increasingly small k. In our analysis, because the Δ′δin � 1 growth rate also
depends on α, ktr increases with α and the nonconstant-Ψ tearing mode becomes
valid at progressively larger k. At the transitional wavenumber, the growth rate is

γtr a

vAy
∼
{

α1/2
(
1 − α2

)1/2
S−1/2, n = 1,

α3/7
(
1 − α2

)4/7
S−3/7, n = 2.

(5.14)

This is also the maximum growth rate of the instability. Finally, the width of the
inner layer is given by (5.1),

δin

a
∼
(

α

1 − α2

)1/3

(ka)−1/3S−1/3, (5.15)

irrespective of Δ′.

6. Transition to the ‘no-flow’ scalings

For the shear to be important and able to affect the scalings, the shear across
the inner layer must be comparable to or greater than the growth rate, cf. (4.13).
At and below the transitional wavenumber between the small- and large-Δ′ scalings,
λ ∼ 1 − α2: thus, for the shear to be still important there, we must have

1 − α2 � Cα, (6.1)

where C is some constant that we have not determined. A diagram representing the
λ-α plane is shown in figure 1, where we have chosen C = 1 for illustrative purposes.
For very small λ, even a small shear is significant and the shear-modified constant-Ψ

https://doi.org/10.1017/S0022377825100858 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100858


Journal of Plasma Physics 9

FIGURE 1. Different parameter regimes in the λ-α plane. As k decreases from a large value, λ
initially increases, until it hits one of the thick black lines corresponding to the nonconstant-Ψ
scalings for Δ′δin � 1 in (5.8). For large enough k (small enough λ), the mode always starts
in the shear-modified constant-Ψ regime (shaded region), provided α 
= 0. For relatively small
α (e.g. the red line at α = 0.25), the assumption λ � α is violated along the dotted line, and
the no-flow constant-Ψ scalings become applicable, with the growth rate achieving a maximum
at the transition into the no-flow nonconstant-Ψ scalings once λ ∼ 1. For larger α (e.g. the red
line along α = 0.8), the maximum growth rate is attained in the shear-modified regime, with the
shear-modified nonconstant-Ψ scalings along the curved thick line. As α → 1 from below, the
mode is completely stabilized.

scalings ((5.11), Δ′δin � 1) apply. The parameter Δ′δin (5.6) is a decreasing function
of k. Using (5.8), as k decreases, initially λ increases moving vertically upwards on
figure 1. Once the transitional wavenumber (5.13) is reached, λ remains constant as
the nonconstant-Ψ regime has been reached.

For relatively small α, e.g. the red line at α = 0.25, at some point λ > α and there
is a transition across the dashed line into the ‘no-flow’ constant-Ψ instability (Furth
et al. 1963), with the prefactor of the scaling possibly modified slightly by the small
shear (Chen & Morrison 1989). As k decreases, λ increases until λ ∼ 1 along the
thick line, where the mode becomes the no-flow nonconstant-Ψ mode (Coppi et al.
1976). This is the situation shown in figure 5 of Boldyrev & Loureiro (2018): the
maximum growth rate is essentially unaffected by the shear flow.

However, for relatively large α, e.g. the red line at α = 0.8, the mode stays in the
shear-modified constant-Ψ mode until λ ∼ 1 − α2, at which point the mode obeys
the shear-modified nonconstant-Ψ scalings, ((5.11), Δ′δin � 1). In this case, the max-
imum of the growth rate is affected by the shear, and is given by (5.14). Thus, the
growth rate (correctly) vanishes as α → 1. We stress that we are not predicting the
exact location of the boundary between these two behaviours, which depends on the
undetermined prefactors in the growth rates and in the exact expressions for Δ′. It
is safest to assume that the maximum growth rate only occurs in the shear-modified
regime when 1 − α2 � 1.
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FIGURE 2. Growth rate of the tearing mode, γ versus wavenumber k for different α, from α = 0
(red) to α = √

1 − 0.01 = 0.995 (blue). Also marked are power laws in k corresponding to the
nonconstant-Ψ tearing mode (ka)2/3, the no-flow constant-Ψ tearing mode (ka)−6/5, and the
shear-modified constant-Ψ tearing mode (ka)−1/2. For these data, S = 1012.

Finally, we also mention that for α > 1, there is no tearing mode, but instead the
Kelvin–Helmholtz instability is active: the growth rate of this instability is extremely
fast compared to the tearing mode.

7. Numerical tests

We have written an eigenvalue code to solve (2.6)–(2.7). To test the predictions
above, we set a = 1, vAy = 1, and vary S = η−1, k, and α. We use the profile

f (x) = −2 tanh(x)sech2(x), (7.1)

For ka � 1, Δ′a ∼ 15/(ka)2; i.e. n = 2. This is useful for testing because in this case,
the maximum growth rate is attained only at the transitional wavenumber, rather
than for all k > ktr as would be the case for the more usual f (x) = tanh(x) profile,
for which n = 1.

Figure 2 shows the growth rate as a function of k for different α. In detail, the
curves shown correspond to

α = 0, 0.1, 0.2, . . . , 0.6, α =√
1 − q, (7.2)

q = 10−3/10, 10−4/10, . . . , 10−2, (7.3)

with the small-α end spaced evenly in α and the large-α end spaced logarithmically
in 1 − α2, up to 1 − α2 = 0.01. In other words, α increases from α = 0 (reddest) to
α = √

1 − 0.01 = 0.995 (bluest). As can be seen by comparing to the power laws
marked, the predicted scalings with k agree quite well with the numerical solution.
For small α, the growth rate obeys the no-flow scalings, (1.2) (Furth et al. 1963;
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FIGURE 3. Top left: γ for ka = 0.1, in the constant-Ψ region. Top right: γ for ka = 10−3, in the
nonconstant-Ψ region. Bottom left: maximum growth rate γmax . Bottom right: the wavenumber
kmax at which γmax is attained.

FIGURE 4. Tearing mode scalings for 1 − α2 = 0.01. Left: γmax as a function of S. Right: kmax
as a function of S.

Coppi et al. 1976), while at larger α, at small k the growth rate transitions towards
the shear-modified constant-Ψ scaling ((5.11) for Δ′δin � 1). For 1 − α2 � 1, the
growth rates also decrease with increasing α, as predicted, and the wavenumber
corresponding to the maximum growth rate moves to larger k, as predicted by (5.13).

To test our predictions for how the growth rate scales with α, we have plotted
growth rates at fixed k versus α in figure 3. For sufficiently large α � 0.6, the scalings
agree very well with the predictions.

We also check the dependence of γ on S for large shear, 1 − α2 = 0.01, by scan-
ning from S = 108 to S = 1016. Figure 4 shows the expected scaling of the maximum
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FIGURE 5. The scaling of δin as a function of k (left) and α (right). On the left, the colours
represent α, with the smallest α = 0 in red and the largest α ≈ 0.995 in blue: the same colour
scale as in figure 2. On the right, the different lines correspond to different wavenumbers, with
the dotted line the predicted scaling.

growth rate γmax ∝ S−3/7 and also the expected scaling of kmax ∝ S−1/7, unchanged
from the no-flow case.

Finally, we have also checked the scaling of the inner region. We define δin numer-
ically as the width at which Ψ ′′ drops to 1/4 of its maximum value. The dependence
on both k and α, shown in figure 5, agree quite well with the predicted scalings,
with δin ∝ k−1/3 for significant shear and/or large Δ′δin and δin ∝ k−4/5 for small flow
shear and Δ′δin � 1. The exception is around the maximum of the growth rate,
which could be caused by a mismatch in numerical prefactors between the small-
and large- Δ′ scalings, which we cannot predict with this scaling theory.

8. Conclusions

In this work, we have developed a scaling theory for the resistive tearing mode
with flow shear along the current sheet, u0y = αb0y , where 0 < |α| < 1 (see (1.5)).
Previous work by Chen & Morrison (1989) only studied the effect of shear on the
growth rate in the weakly unstable ‘constant-Ψ ’ case where Δ′δin � 1. We have
extended this to the non-constant-Ψ case where Δ′δin � 1, but where 1 − α2 � 1,
showing that the instability in this regime is also affected by the flow shear. We are
then able to estimate the maximum growth rate of the instability over all k,

γtr a

vAy
∼
{

α1/2
(
1 − α2

)1/2
S−1/2, n = 1,

α3/7
(
1 − α2

)4/7
S−3/7, n = 2.

(8.1)

where n depends on the specific equilibrium profile. There are two main conclusions.
First, the shear does not affect the scaling of the maximum growth rate with S (com-
pare with (1.4), the maximum growth rate for n = 1 with no shear), in agreement
with earlier work (Chen & Morrison 1989; Boldyrev & Loureiro 2018). Second,
the growth rate of the tearing mode vanishes as α → 1: while this is also predicted
by Chen & Morrison (1989), the way in which this occurs is different. The ear-
lier work by Chen & Morrison (1989) and Boldyrev & Loureiro (2018) assumed
that for Δ′δin � 1 the shear could not affect the growth rate, and thus the scaling
of the maximum growth rate with α was not correctly described. We have shown
that for α sufficiently close to 1, the growth rate for Δ′δin � 1 actually decreases
as γ ∝ (1 − α2)2/3, slightly more strongly suppressed than the scaling for Δ′δin � 1,
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γ ∝ (1 − α2)1/2. This means that as α → 1, the wavenumber corresponding to the
maximum of the growth rate is an increasing function of α (see (5.13)), unlike in the
earlier theory of Chen & Morrison (1989), who predicted the opposite. We have val-
idated our scaling theory with numerical simulations, finding good agreement with
all of our predictions.

What does our theory mean for turbulence theories that involve disruption of
turbulent structures by the tearing instability at small scales (Mallet et al. 2017;
Loureiro & Boldyrev 2017a)? Before commenting on this, it is worth pointing out
that resistive MHD is inapplicable to many situations of interest: one well-observed
example of plasma turbulence in nature, the solar wind (Chen 2016), involves a
plasma that is nearly collisionless. The tearing mode is then affected by the dispersive
behaviour entering at the ion gyroradius, and reconnection is due not to resistivity
but to electron-scale physics (e.g. electron inertia). We have examined the effects of
flow shear on the collisionless tearing mode in Mallet et al. (2025), finding γtr ∝
1 − α2. Collisional MHD may be appropriate for modelling reconnection in the
higher-density regions of the low solar atmosphere (Wargnier et al. 2022; Kahil
et al. 2022), in which case the shear modification of the resistive tearing growth rate
described here could be important.

Supposing that resistive MHD is an applicable model to our (natural or numeri-
cally simulated) plasma of interest, we have shown that the scaling of the growth rate
with S is unchanged by the shear. Then, provided that α is not too close to unity in
the turbulent structures, there is little modification needed to theories of reconnect-
ing turbulence (Mallet et al. 2017; Loureiro & Boldyrev 2017a): the α-dependence
of the growth rate amounts to a coefficient of order unity. However, in imbal-
anced turbulence, where δz+ � δz− (or vice versa), where δz± = δu ± δb, we have
1 − α2 ∼ δz−/δz+ � 1, so that α is very close to 1. This could then change the scale
at which onset of reconnection occurs by an appreciable factor. Very briefly, one
expects tearing-mediated turbulence when γtrτnl ∼ 1. In the simplest model of imbal-
anced turbulence, the nonlinear cascade time is given by τ+

nl ∼ δz−/L , in which case
γtrτnl ∝ (1 − α2)−1/2, and the imbalance makes the transition to tearing-mediated tur-
bulence easier to achieve. However, there is currently no widely accepted theory of
imbalanced MHD turbulence (see Schekochihin 2021 for a review): we do not know
how the length L and width a of the turbulence-produced current sheets depend on
each other, nor even if the simple τnl given here is the relevant timescale. Moreover,
as mentioned previously, many examples of turbulence in nature involve collision-
less plasmas for which MHD is inapplicable. Nevertheless, it would be interesting to
look at the onset of reconnection in imbalanced MHD turbulence, especially given
that in the balanced-turbulence case theoretical expectations (Mallet et al. 2017;
Loureiro & Boldyrev 2017a) have been borne out by numerical simulations (Dong
et al. 2022). We therefore plan to investigate how the modification of the collision-
less and collisional tearing modes with shear affect the turbulent cascade in future
work.
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