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Abstract

The class of processes formed as the aggregation of Ornstein–Uhlenbeck processes has
proved useful in modeling time series from a number of areas and includes several
interesting special cases. This paper examines the second-order properties of this class.
Bounds on the one-step prediction error variance are proved and consistency of the
minimum contrast estimation is demonstrated.
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1. Introduction

Observational time series from many areas including economics [40] and high-speed net-
works [36] are formed by the contemporaneous aggregation of a large number of heterogeneous
units. For these time series, the behavior at the unit level can often be adequately described by
a simple model such as an (autoregressive) AR(1) time series or an on–off process. However,
as demonstrated in [22], complex behavior such as long memory may still be observed at the
aggregate level depending on the heterogeneity of unit-level parameters.

The phenomenon of complex behavior arising through the aggregation of simple models
has been used by researchers in two ways. Firstly, some researchers have exploited this idea
in the construction of new models. In particular, Barndorff-Nielsen and coworkers have made
considerable use of sums of Lévy driven Ornstein–Uhlenbeck processes to provide a class of
processes with flexible marginal distributions and covariance functions (see [5], [6], [8], and [9],
among others by this group). These processes have been applied to model data where there
is no obvious aggregation in forming the data such as stochastic volatility and turbulence. In
some instances the aggregation of as few as two processes were necessary to model the data.
Other papers in this line of research include [15], [16], [25], and [37]. Secondly, aggregation
has been used to provide a physical interpretation of an existing complex model. This was first
done in [22], where the fractional (autoregressive integrated moving average) ARIMA(0, d, 0)
model (0 < d < 1

2 ) [23] was ‘disaggregated’ into AR(1) unit-level models. Dacunha-Castelle
and Fermín [17] have since considered ‘disaggregating’ complex models into other types of
unit-level models.

Owing to their popularity in modeling and the richness of the related theory, this paper will
focus on the aggregation of independent Ornstein–Uhlenbeck processes, that is, the process Yt
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Reflection positive processes 151

defined by

Yt := M−1/2
M∑
i=1

X
(i)
t , dX(i)t = −λiX(i)t dt + √

2λi dB(i)t , (1.1)

where M ∈ N, X(i) is the Ornstein–Uhlenbeck process with parameter λi , and B(i)t are
independent copies of a zero mean, uncorrelated increment process. As described in Section 2,
these processes, and their weak limits, will be referred to as reflection positive (RP) processes.
Some basic properties of this series will be seen to follow directly from properties of the
Laplace transform. In Section 3 the time series formed from instantaneous sampling of the
continuous-time process is studied. The one-step prediction error is studied in Section 4 with
particular emphasis on the limit of predictability for a sampled RP process. It is demonstrated
that a tight lower bound on the one-step prediction error variance can be obtained using only
the variance and covariance at lag 2. Finally, in Section 5 weak consistency of the minimum
contrast estimate for the aggregating measure of an RP process is established. Estimation of
the aggregating measure is important in certain applications where the unit-level models can be
interpreted, such as the growth and investment models described in [40]. Moreover, a consistent
estimate of the aggregating measure can be used to provide a consistent estimate of the spectral
density. It is interesting to note that these prediction error and estimation results are not affected
by the presence of long memory.

2. Continuous-time, RP processes

Following [33], a process is said to be RP if its covariance function satisfies

∑
i

∑
j

aiγ (ti + tj )āj ≥ 0, a ∈ C
m, t ∈ R

m.

Let N̄ be the class of finite Borel measures on [0,∞), and let N be the restriction of N̄ to
(0,∞). This condition was shown in [24] to be equivalent to γ (t) having the representation

γ (t) =
∫ ∞

0
e−λ|t |ν(dλ) (2.1)

for some ν ∈ N̄ . Since the covariance function of the aggregate processes (1.1) is given by

γ (t) = M−1
M∑
i=1

exp(−λi |t |) =
∫ ∞

0
e−λ|t |νM(dλ),

where νM is a finite measure supported only onM points, it follows that the aggregate process
has the RP property. Furthermore, as the set of finite measures, which are supported on a finite
number of points, is dense in the space of finite measures (see [10, Theorem 4]), it follows that
all RP processes may be obtained as the weak limit of such an aggregation.

Let Yt and Zt be uncorrelated processes denoting the deterministic component and nonde-
terministic component of Xt , respectively. The nondeterministic component Zt has moving
average representation

Zt =
∫ t

−∞
G(t − s) dBs, (2.2)
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where G ∈ L2[0,∞), Bt is an uncorrelated increment process, and the integral is interpreted
in mean square. Let M denote the set of Borel measures on (0,∞) such that, for any µ ∈ M ,

S(µ) =
(∫ ∞

0

1

λ+ λ′µ(dλ
′)
)
µ(dλ) ∈ N.

Now assume that the moving average kernel G(t) can be represented as the Laplace transform
of some µ ∈ M . A function defined on (0,∞) that can be represented in this form is called
completely monotone. Interchanging the order of integration, it is seen that the covariance
function of Zt is given by

γ (t) =
∫ ∞

0
e−λ|t |

(∫ ∞

0

1

λ+ λ′µ(dλ
′)
)
µ(dλ).

Theorem 2.5 of [26] states that S : M �→ N is bijective, so the nondeterministic component of
any RP process has moving average representation with completely monotone kernel. It now
follows that the deterministic component Yt is a random variable with variance ν({0}) and is
constant as a function of time. Unless otherwise stated, it will be assumed that ν({0}) = 0, so
Y = 0 almost surely.

Of particular importance to modeling is the behavior of the covariance function as t
approaches ∞ and as t approaches 0. The former determines the presence of long memory in
the time series and can be inferred from the measure ν by application of an Abelian theorem
for the Laplace transform. Applying Corollary 1b of [38], it is seen that if

ν(λ) ∼ Aλβ

�(β + 1)
as λ → 0+

for some A > 0 and β > 0, then

γ (t) ∼ At−β as t → ∞.

A Tauberian theorem [38, Theorem 4.3] establishes the converse result, therefore, long memory
for the RP process can by characterized by finiteness of the integral

∫ ∞
0 λ−1ν(dλ) (see also

[26] for a discussion of this point). It should be noted that even if the process does not possess
long memory in the strict sense of the covariance not being in L1, it will still display some
type of power-law decay unless ν is smaller than any polynomial in a neighborhood of 0.
The behavior of the covariance function as t approaches 0 determines, at least in Gaussian
processes, the smoothness of the sample paths. Recalling the results discussed in [1, p. 204], if
γ (0)− γ (t) ∼ At2β then the sample paths are Hölder continuous of orderβ and have Hausdorff
dimension 2 − β. For RP processes, the index β is bounded by 1

2 . This follows since

γ (0)− γ (t) =
∫ ∞

0

1 − e−λt

λt
λtν(dλ) ≥ ct

for some c > 0 depending only on ν. It is possible to infer β directly from ν by applying an
Abelian theorem, so that if

∫ λ

0
xν(dx) ∼ Aλ1−2β

�(2 − 2β)
as λ → ∞

then
γ (0)− γ (t) ∼ At2β as t → 0.
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As noted in the introduction, aggregation can provide a physical interpretation for a number
of complex models. We now give a few examples of models in the literature that possess the
RP property and, hence, that can be represented as an aggregation. The first example is the
class of processes introduced in [4], which are asymptotic stationary solutions to the fractional
differential equation

(Dβn + An−1D
βn−1 + · · · + A0D

β0)Xt = L̇t , βn > · · · > β0 ≥ 0, Ai > 0,

where Dβ is the Riemann–Liouville fractional derivative defined by

Dβf (t) = 1

�(1 − β)

dn

dtn

∫ t

0
(t − τ)n−β−1f (τ) dτ, β ∈ [n− 1, n),

and L̇t is the Lévy noise, that is the derivative of the Lévy process Lt in the distribution sense.
In the simplest case we assume that ELt = 0 and EL2

t < ∞, so that if β0 <
1
2 and βn > 1

2 then
the solution has representation (2.2), whereG is the Green function of a deterministic fractional
differential equation and the integral is interpreted in mean square. The Green function has
Laplace transform

g(p) = (pβn + An−1p
βn−1 + · · · + A0p

β0)−1.

It has been shown in Theorem 1 of [3] that the Green function is a completely monotone function
if and only if βn ≤ 1 and, hence, it has the RP property.

Remark 2.1. At this point it is necessary to correct some statements concerning this class of
processes. Anh et al. [4] proposed using asymptotic solutions to the fractional differential
equations with Lt an increasing Lévy process to model the stochastic volatility. However, in
this case, for the integral defining the solution to exist, it is necessary thatG ∈ L1(0,∞). When
G ∈ L1(0,∞), it follows that the covariance function is in L1[0,∞) and so the process cannot
possess long memory, contrary to the statements in Section 5 of [4]. Note that, for G to be in
L1[0,∞), it is necessary that β0 = 0.

A further difficulty with their proposal is that, for the process to have nonnegative sam-
ple paths, it is necessary that the Green function is nonnegative. As the example given in
Equation (5.6) of [4] was demonstrated to be ill-defined, consider the case given by their
Equation (4.9). In this case n = 1, β0 = 0, and the Green function is

G(t) = tβ1−1Eβ1,β1(−A0t
β1), t > 0,

where Eα,β(x) is the two parameter Mittag–Leffler function

Eα,β(x) =
∞∑
k=0

xk

�(αk + β)
.

If β1 ≤ 1 thenG(t) is completely monotone and, hence, nonnegative. However, if 2 > β1 > 1
then applying Theorem 1.3-4 of [18] it is seen that, for sufficiently large t , G(t) < 0. In
summary, unless we are able to establish the nonnegativity of G(t) directly, we should restrict
the parameters to βn ≤ 1 and β0 = 0 if they are to be used in the modeling of stochastic
volatility.

A related example is the model

Dβ(αI + D)γ Xt = Ḃt , α > 0, β + γ > 1
2 , 0 < β < 1

2 ,
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where I is the identity operator, which was proposed in [20]. The solution is interpreted as
(2.2) with G(t) having the Laplace transform g(p) = p−β(α + p)−γ . From Equation 2.1.2-1
of [34],

G(t) = tβ+γ−1

�(β + γ )
1F1(γ ;β + γ ; −αt),

where 1F1 is Kummer’s confluent hypergeometric function, and from Equation 3.33.1-3 of [34],
it is seen that G is completely monotone for β + γ ≤ 1. Thus, the process is RP under this
additional restriction on the parameters.

Other examples include Lamperti’s transformation of fractional Brownian motion with
H ≤ 1

2 (see [7] and [14]), certain time-reversible Markov chains [28, Subsection 7.4], and
observations of some random fields from a fixed spatial location [2]. Finally, the KMO-
Langevin equation studied in [26] and [32] provides a model which characterizes the class of
RP processes.

3. Discrete time and sampled processes

From a practical perspective, even thoughXt is a continuous-time process, it is only possible
to observe it at discrete points in time. The simplest sampling scheme involves observing Xt
without error at times t = h, 2h, 3h, . . . , where h is the sampling period. Let xt denote the
sampled time series and let {γk}∞0 denote its covariance sequence. While for many processes
the choice of sampling period can dramatically affect subsequent analysis of the time series,
this is not the case for RP processes. It is a direct consequence of a result of [19] that the
covariance function γ (t) of the continuous-time process can be uniquely determined by {γk}∞0 .
Without loss of generality, the subsequent analysis will assume that the sampling period is set
to h = 1. Applying the change of variable u = − log ρ to (2.1), it is seen that {γk}∞0 has the
representation

γk =
∫ 1

0
ρ|k|σ(dρ) for all k ∈ Z, (3.1)

where σ and ν are related by
ν(λ) = −σ(e−λ). (3.2)

Since the support of ν is [0,∞), σ must be continuous at 0. Any time series with covariance
function (3.1) can be represented as the aggregation of an AR(1) time series and, hence, as
a sampled RP process. One example of this is the Cauchy model proposed in [21] (α ≤ 1),
which is just a sampled version of the continuous-time RP process where ν is the distribution of
the Mittag–Leffler process [30]. Another example is the ARIMA(0, d, 0), 0 < d < 1

2 , model
[22], although the measure ν does not have a simple form.

From the decomposition of the continuous-time process, an RP time series may have a
deterministic component which is a random variable of variance σ({1}) and constant over time.
The spectral density of the nondeterministic component may be written as

f (ω; σ) = 1

2π

∫ 1

0

1 − ρ2

1 + ρ2 − 2ρ cos(ω)
σ (dρ) =

∫ 1

0
g(ω; ρ)σ(dρ),

where g(ω; ρ) denotes the spectral density function of a standard AR(1) time series with
parameter ρ. The spectral density can be bounded below by

f (ω; σ) ≥ 1

8π
(γ0 − γ2), (3.3)
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and, for ω in a neighborhood of 0, it is bounded above by

f (ω; σ) ≤ γ0

2π(1 − cos2(ω))
. (3.4)

While this paper focuses on instantaneous sampled processes, there are two other common
sampling schemes. In random sampling the sampling times ti are defined by ti = ti−1 + zi ,
where t0 = 0 and the zi are independent and identically distributed random variables. The
covariance sequence for the observed time series is then

γk =
∫ ∞

0
ϕz(λ)

|k|ν(dλ),

where ϕz is the Laplace transform of the distribution of z. Since ϕz is a completely monotone
function, the covariance sequence has representation (3.1); however, σ and ν are now related
by

ν(λ) = −σ(ϕz(λ)).
The other common approach to sampling is local average sampling, that is, observing

xt = ch

∫ (t+1/2)h

(t−1/2)h
Xs ds

for some constant ch > 0. This sampling scheme is particularly relevant to stochastic volatility
modeling. It is known that when an Ornstein–Uhlenbeck process is sampled by local average
sampling, the observations form an ARMA(1, 1) time series, where the AR parameter is
the same as under instantaneous sampling and the MA parameter is constrained by the AR
parameter. Therefore, under local average sampling, γk has representation (3.1) for some
measure σ but only for |k| ≥ 1. It is interesting to note that both the power-law model of [31]
and the fractional Gaussian noise can be viewed as the result of local average sampling of an
RP process.

4. Prediction error

Proposition 4.1, below, gives two basic properties of the one-step linear prediction error for
a sampled RP process. These properties will be used in this section to determine bounds on
the linear prediction error and in the following section to prove consistency of the minimum
contrast estimate of the aggregating measure.

Proposition 4.1. Let ψ(σ) denote the one-step linear prediction error variance of an RP time
series with measure σ .

(i) ψ(σ) is a convex function of σ .

(ii) If σm is a sequence of measures converging weakly to σ then ψ(σm) → ψ(σ).

Proof. Let y(1)t and y(2)t be two independent RP time series with measures σ1 and σ2,
respectively. For any ξ ∈ [0, 1], define xt = ξ1/2y

(1)
t + (1 − ξ)1/2y

(2)
t . Clearly, the measure
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for xt is ξσ1 + (1 − ξ)σ2. It follows that ψ(ξσ1 + (1 − ξ)σ2) is bounded below by

ψ(ξσ1 + (1 − ξ)σ2) = var(xt+1 − E(xt+1 | xt , . . . ))
≥ var(xt+1 − E(xt+1 | y(1)t , y

(2)
t , . . . ))

≥ ξ var(y(1)t+1 − E(y(1)t+1 | y(1)t , . . . ))

+ (1 − ξ) var(y(2)t+1 − E(y(2)t+1 | y(2)t , . . . ))

≥ ξψ(σ1)+ (1 − ξ)ψ(σ2),

where the first inequality follows as the σ -field generated by (xt , xt−1, . . . ) is a subset of the
σ -field generated by (y(1)t , y

(2)
t , . . . , y

(1)
t−1, . . . ), and the second inequality follows from the

independence of y(1)t and y(2)t . The proof of (i) is complete.
Now consider a sequence of measures σm converging weakly to σ . Using the Kolmogorov

formula to determine ψ(σm), we have

ψ(σm) = 2π exp

(
1

2π

∫ π

−π
log f (ω; σ) dω

)
exp

(
1

2π

∫ π

−π
log

[
f (ω; σm)
f (ω; σ)

]
dω

)
.

We need to show that the second factor converges to 1 as σm converges weakly to σ . Take
any ε > 0. As a family of functions of ρ on [0, 1], parameterized by ω, g(ω; ρ) is bounded
and equicontinuous for all |ω| > ε. Applying Theorem 3.2 of [35] (see Appendix A), we have
f (ω; σm) → f (ω; σ) uniformly on |ω| > ε. From (3.3) and (3.4), f (ω; σ) is bounded from
above and below, hence, we may apply the dominated convergence theorem to obtain

lim
m→∞

∫ π

ε

log

[
f (ω; σ)
f (ω; σm)

]
dω = 0.

From (3.3) and (3.4), there exist finite constants c1, c2 > 0 such that
∣∣∣∣ log

[
f (ω; σm)
f (ω; σ ′)

]∣∣∣∣ ≤ c1| logω| + c2.

Applying the dominated convergence theorem, the integral

∫ ε

0
log

[
f (ω; σ)
f (ω; σm)

]
dω

can be made arbitrarily small by taking sufficiently small ε. The proof of (ii) is complete.

In [13] it was shown that given γ0 and γ1 the time series with the largest prediction error
variance is a Gaussian AR(1) time series. This result implies that, for any finite Borel measure
σ ,ψ(σ) ≤ γ0(1 − (γ1/γ0)

2). Furthermore, this upper bound is tight since an AR(1) time series
has representation (3.1). Proposition 4.2, below, provides a tight lower bound on ψ(σ).

Proposition 4.2. Let Xt be a sampled RP process with measure σ . Then ψ(σ) ≥ γ0 − γ2.

Proof. Suppose that σ is an atomic measure with a finite number of atoms {ρi} with masses
{ξi/(1 − ρ2

i )}. Let yit be an independent AR(1) time series such that

yit+1 = ρiy
i
t + et,i , et,i ∼ N(0, 1).
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The times series defined by xt = ∑
i ξ

1/2
i yit has an RP covariance sequence determined by σ .

From Proposition 4.1(i) we have the inequality ψ(σ) ≥ ∑
i ξi . Noting that

γ0 =
∑
i

ξi(1 − ρ2
i )

−1 and γ2 =
∑
i

ξiρ
2
i (1 − ρ2

i )
−1,

the inequality is proved for finite atomic measures. This can be extended to all Borel measures
on [0, 1] by considering a sequence of finite atomic measures converging weakly to σ with the
same zeroth and second moment and applying Proposition 4.1(ii). This completes the proof.

In an attempt to determine tighter lower bounds we could consider the set of measures for
which γk = ck, k = 0, . . . , m, and then minimize ψ(σ) over this set. Proposition 4.3, below,
gives the general structure of an RP time series with minimum prediction error.

Proposition 4.3. The RP time series satisfying γk = ck, k = 0, 1, . . . , m, and having the
smallest prediction error has a measure which is concentrated on no more than m+ 1 points.

Proof. Let D | c denote the set of measures satisfying the constraints, and let DA | c denote
the subset of measures whose mass is concentrated on a finite number of points. The extreme
points of DA | c are those measures whose mass is concentrated on no more thanm+1 points;
see [27, Theorem 21.1]. As ψ is a convex function and DA | c is a convex set, the minimum of
ψ on DA | c occurs at one of the extreme points. Now let σ ∗ be a measure which minimizes
ψ on D | c, and let σ ∗

n be a sequence of measures in DA | c converging weakly to σ ∗. From
Proposition 4.1(ii), for ε > 0, there exists an N such that, for all n ≥ N , ψ(σ ∗)+ ε ≥ ψ(σ ∗

n ).
Noting that there exists a measure σ̃ concentrated on no more than m + 1 points such that
ψ(σ ∗

n ) ≥ ψ(σ̃ ), and letting ε tend to 0, completes the proof.

This result can be applied to determine a tight lower bound on ψ(σ) using γ0 and γ1. From
Proposition 4.3, the measure which minimizes ψ(σ) subject to the constraint on γ0 and γ1
has its mass concentrated on no more than two points. Minimizing ψ(σ) yields the measure
σ ∗(dρ) = (γ0 − γ1)δ(ρ) dρ + γ1δ(ρ − 1) dρ. The corresponding time series is Xt = Yt +Z,
where Yt is white noise with variance γ0 − γ1 and Z is a random variable with variance
γ1. The prediction error of this time series is obviously γ0 − γ1, and so we have the bound
ψ(σ) ≥ γ0 − γ1. Note that this bound does not improve on the bound in Proposition 4.2 since
γ0 − γ2 ≥ γ0 − γ1 for any RP time series.

5. Minimum contrast estimation

Now consider the problem of estimating the measure ν from a sampled RP process. From
(3.2), this can be achieved by estimating σ in (3.1) and then applying the transformation. As
noted in the introduction, estimation of ν can be important in certain applications where the
unit-level models can be interpreted. As a simple example, consider the employment status of
an individual as being modeled by a continuous-time, homogeneous, two-state {0, 1} Markov
chain. The correlation function for an individual’s employment history is of the form e−λ|t | for
some λ > 0 and, hence, the aggregate employment rate in the economy would have a correlation
function of the form (2.1). Being able to determine the aggregating measure would allow certain
questions to be addressed such as ‘what percentage of the population are unemployed for more
than x weeks in a year?’. While this model ignores certain important features of unemployment,
it does demonstrate the importance of estimating the aggregating measure.
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It is noted that Leipus et al. [29] have recently considered estimation of the aggregating
measure for sums of AR(1) time series where the correlation parameter can take any value in
(−1, 1). Assuming that the measure has a density, they studied the convergence of the density in
the L2 norm and uniform norm. While this is interesting, the assumption of a density excludes
a number of important cases, in particular the simple AR(1), and weak convergence of the
estimated measure may be more relevant.

Let xt be the sampled RP process where the covariance sequence has representation (3.1)
with measure σ ∗. In this section we consider the estimate of σ ∗ obtained from the minimization
of the contrast function

Un(σ) = 1

n

∑
j

In(ωj )

f (ωj ; σ) +
∫ π

−π
log f (ω; σ) dω, (5.1)

over the set of finite Borel measures on [0, 1], where

In(ω) = 1

2πn

∣∣∣∣
n∑
t=1

e−iωtxt

∣∣∣∣
2

and ωj are the Fourier frequencies. In order to prove weak convergence of the sequence of
measures minimizing (5.1), we need to introduce a mild assumption on xt . Let F̂n(ω) and
γ̂
(n)
k denote the empirical spectral distribution function and empirical covariance, respectively,

where

F̂n(ω) = 1

n

∑
ωj<ω

In(ωj ) and γ̂
(n)
k = 1

n

n−|k|∑
t=1

xtxt+|k|.

We introduce the following assumption.

Assumption 5.1. For any ω ∈ (−π, π), F̂n(ω) is a consistent estimate of F(ω) and, for any
k ∈ Z, γ̂ (n)k is a consistent estimate of γk .

This assumption is satisfied by any sampled completely nondeterministic Gaussian RP
process. Sufficient conditions for Assumption 5.1 to hold in non-Gaussian settings can be
found, for example, in [11, Subsection 5.10]. The proofs of the following results parallel
the corresponding results for parametric spectral densities (see [12, Proposition 10.8.2 and
Theorem 10.8.1]).

Proposition 5.1. Let �ξ be the subset of finite Borel measures on [0, 1] such that

∫ 1

0
(1 − ρ2)σ (dρ) ≥ ξ−1 and

∫ 1

0
σ(dρ) ≤ ξ.

Then, under Assumption 5.1,

1

n

∑
j

In(ωj )

f (ωj ; σ) →
∫ π

−π
f (ω; σ ∗)
f (ω; σ) dω a.s.

uniformly on �ξ .
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Proof. Define qm(ω; σ) as the Cesaro mean of the first m Fourier approximations to
f−1(ω; σ). This may be written as

qm(ω; σ) =
∑

|k|<m

(
1 − |k|

m

)
bke

−ikω

=
∫ π

−π
f−1(ω − y; σ)Km(y) dy,

where bk = (2π)−1
∫

eikωf−1(ω; σ) dω and Km is the Fejer kernel. The main part of this
proof involves determining how well f−1(ω; σ) is approximated by qm(ω; σ). For any ε > 0,

|qm(ω; σ)− f−1(ω; σ)|
≤

∫
(−ε,ε)

|f−1(ω − y; σ)− f−1(ω; σ)|Km(y) dy

+
∫
(−ε,ε)c

|f−1(ω − y; σ)− f−1(ω; σ)|Km(y) dy

≤
∫
(−ε,ε)

|f−1(ω − y; σ)− f−1(ω; σ)|Km(y) dy + 16πξ

(
1 −

∫ ε

−ε
Km(y) dy

)
,

where the second inequality follows from (3.3). A modulus of continuity must be determined
for f−1(ω; σ) when |ω| ≥ φ > 0. Again, using (3.3),

|f−1(ω − y; σ)− f−1(ω; σ)|
≤ 64π2ξ2|f (ω − y; σ)− f (ω; σ)|

≤ 64π2ξ2
∫ 1

0

∣∣∣∣ 2ρ(cos(ω)− cos(ω − y))(1 − ρ2)

(1 + ρ2 − 2ρ cos(ω))(1 + ρ2 − 2ρ cos(ω − y))

∣∣∣∣σ(dρ)
≤ C(φ)ξ2|y|,

where C(φ) is a constant depending only on φ. Therefore, for all σ ∈ �ξ , |ω| ≥ φ > 0, and
ε > 0,

|qm(ω; σ)− f−1(ω; σ)| ≤ C(φ)ξ2ε + 16πξ

(
1 −

∫ ε

−ε
Km(y) dy

)
≤ C(φ, ε,m, ξ),

where C(φ, ε,m, ξ) → 0 for all φ > 0 and ξ < ∞ as m → ∞ and ε → 0 at an appropriate
rate. The error incurred by substituting qm(ω; σ) for f−1(ω; σ) in the contrast function is∣∣∣∣ 1

N

∑
j

I (ωj )(f
−1(ωj ; σ)− qm(ωj ; σ))

∣∣∣∣ ≤ C(φ, ε,m, ξ)F̂n(π)+ 16πξ(F̂n(φ)− F̂n(−φ)).
(5.2)

Under Assumption 5.1, F̂n is consistent and so this error can be made arbitrarily small by an
appropriate sequence in (m, ε, φ) → (∞, 0, 0). From the definition and (3.3), it is seen that
|bk| ≤ 8πξ for all σ ∈ �ξ . The empirical covariance γ̂ (n)k is a consistent estimate and so
following the parametric case (see [12, p. 379])

1

N

∑
j

I (ωj )qm(ωj ; σ) →
∑

|k|<m
γk

(
1 − |k|

m

)
bk a.s. (5.3)
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uniformly on �ξ . Finally,∣∣∣∣
∑

|k|<m
γk

(
1 − |k|

m

)
bk −

∫ π

−π
f (ω; σ ∗)
f (ω; σ) dω

∣∣∣∣
≤

∫ π

π

|qm(ω; σ)− f−1(ω; σ)|f (ω; σ ∗) dω

≤ 4
∫ φ

−φ
f (ω; σ ∗) dω + εC(φ)ξ

∫ π

−π
f (ω; σ ∗) dω. (5.4)

Combining (5.2)–(5.4), the proposition is established.

Theorem 5.1. Let σn be the sequence of measures on�ξ which minimize the contrast function.
If σ ∗ ∈ �ξ then σn converges weakly to σ ∗.

Proof. Suppose that σn does not converge weakly to σ ∗. Then, by the Helley–Bray lemma
(see, for example, [39, Section 17.4]), there is a weakly convergent subsequence σnk such that
σnk → σ ′:

|Unk (σnk )− Unk (σ
′)|

≤
∣∣∣∣ 1

nk

∑
j

I (ωj )
f (ωj ; σnk )− f (ωj ; σ ′)
f (ωj ; σnk )f (ωj ; σ ′)

∣∣∣∣ +
∣∣∣∣
∫ π

−π
log

[
f (ω; σnk )
f (ω; σ ′)

]
dω

∣∣∣∣. (5.5)

From Proposition 4.1(ii), if σnk converges weakly to σ ′ then the second term in (5.5) converges
to 0. For any φ > 0, the first term in (5.5) is bounded above by

64π2ξ2 sup
ω 
∈(−φ,φ)

|f (ωj ; σnk )− f (ωj ; σ ′)|F̂nk (π)+ 16πξ(F̂nk (φ)− F̂nk (−φ)). (5.6)

From Theorem A.1 in Appendix A, f (ωj ; σnk ) converges uniformly to f (ωj ; σ ′) on |ω| ≥
φ > 0. Thus, the first term in (5.6) converges to 0 as nk tends to ∞. As φ is arbitrary and F̂ is
consistent, it then follows from Proposition 5.1 that

Unk (σnk ) →
∫ π

−π
f (ω; σ ∗)
f (ω; σ ′)

dω +
∫ π

−π
log f (ω; σ ′) dω a.s.

and, hence, Un(σ ∗) → 2π + ∫ π
−π log f (ω; σ ∗) dω a.s. As

x − 1 − log(x) ≥ 0 for all x > 0

with equality if and only if x = 1, then, for sufficiently large nk , Unk (σ
∗) < Unk (σnk ). A

contradiction is obtained and this completes the proof.

Corollary 5.1. The estimate of the spectral density f (ω; σn), where σn is the measure which
minimizes (5.1), is consistent in L1 for f (ω; σ ∗).

Proof. This result follows immediately from the weak consistency of the estimate of σ ∗ and
the fact that g(ω; ρ) is a symmetric unimodal and equicontinuous function for all |ω| > φ, any
φ > 0, and for all ρ ∈ [0, 1].
Remark 5.1. To apply Theorem 5.1 to the estimation of σ ∗, it is necessary to determine a
ξ such that σ ∗ ∈ �ξ . It is possible to replace ξ by ξn = 2((γ̂ (n)0 − γ̂

(n)
2 )−1 ∨ γ̂ (n)0 ). Weak

consistency will hold for this choice of ξ by application of the Borel–Cantelli lemma.
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Remark 5.2. The minimization of (5.1) is a difficult problem as we are minimizing over a set
of measures. From the proof of Theorem 5.1, it is seen that (5.1) is a continuous function of
σ with respect to the metric of weak convergence. It is also known that any measure can be
approximated in the weak sense by one comprised of a finite number of point masses. Therefore,
(5.1) can be minimized over the set of measures formed from a finite number of point masses.
Standard algorithms can now be applied to minimize (5.1) over this set. The number of point
masses can be increased to check for convergence, at least to a local minima.

Appendix A.

Theorem A.1. (Theorem 3.2 of [35].) Let A be a class of functions on the separable metric
space X possessing the following properties:

(i) A is uniformly bounded, i.e. there exists a constant M such that |f (x)| ≤ M for all
f ∈ A and x ∈ X;

(ii) A is equicontinuous.

If µn, µ ∈ M and n = 1, 2, . . . (M is the class of measures on the Borel subsets of X), then
µn implies µ if and only if, for each family A satisfying (i) and (ii) above, we have

lim
n→∞ sup

f∈A

∣∣∣∣
∫
f dµn −

∫
f dµ

∣∣∣∣ = 0.
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