
J. Fluid Mech. (2025), vol. 1007, A15, doi:10.1017/jfm.2025.23

Inhomogeneity-induced wavenumber diffusion

Michael R. Cox
1

, Hossein A. Kafiabad
2

and Jacques Vanneste
1

1School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,
Edinburgh EH9 3FD, UK
2Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK
Corresponding author: Michael R. Cox, michael.cox@ed.ac.uk

(Received 24 June 2024; revised 6 December 2024; accepted 30 December 2024)

Inertia–gravity waves are scattered by background flows as a result of Doppler shift by a
non-uniform velocity. In the Wentzel–Kramers–Brillouin regime, the scattering process
reduces to a diffusion in spectral space. Other inhomogeneities that the waves encounter,
such as density variations, also cause scattering and spectral diffusion. We generalise the
spectral diffusion equation to account for these inhomogeneities. We apply the result to
a rotating shallow-water system, for which height inhomogeneities arise from velocity
inhomogeneities through geostrophy, and to the Boussinesq system for which buoyancy
inhomogeneities arise similarly. We compare the contributions that height and buoyancy
variations make to the spectral diffusion with the contribution of the Doppler shift. In
both systems, we find regimes where all contributions are significant. We support our
findings with exact solutions of the diffusion equation and with ray tracing simulations in
the shallow-water case.
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1. Introduction
Inertia–gravity waves (IGWs) propagate in the atmosphere and ocean under the restoring
forces of buoyancy and Coriolis effect. As they propagate, they encounter and interact
with a variety of inhomogeneities, including background flows, topography and other
waves. These inhomogeneities refract, reflect and, in the case of background flows, advect
the waves. For example, internal tides – IGWs generated at the semi-diurnal and diurnal
frequencies by astronomical forcing – are advected and refracted by background flows
(e.g. Park & Watts 2006; Rainville & Pinkel 2006; Chavanne et al. 2010; Pan, Haley &
Lermusiaux 2021) and reflected by bottom topography (e.g. Müller & Xu 1992; Buhler &
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Holmes-Cerfon 2011; Kelly et al. 2013; Lahaye, Gula & Roullet 2020; Pan et al. 2021).
The IGWs are also affected by each other (e.g. Eden & Olbers 2014). In the limit of weak,
repeated interactions, wave energy is redistributed in spectral space in a scattering process
which can be described statistically.

Kinetic equations derived from the governing fluid equations provide this statistical
description of scattering by weak, slowly evolving, random inhomogeneities (see
Hasselmann (1966) and Ryzhik, Papanicolaou & Keller (1996) for general formulations).
For example, Hasselmann (1966) and Ardhuin & Herbers (2002) derive a kinetic equation
for surface waves scattered by gently sloping bottom topography; Eden, Pollmann &
Olbers (2019) derive a scattering equation for IGWs interacting with a weak, random,
slowly evolving wave field (see also Eden, Pollmann & Olbers 2020); and Danioux &
Vanneste (2016), Savva & Vanneste (2018) and Savva, Kafiabad & Vanneste (2021) derive
kinetic equations for near-inertial waves, internal tides and IGWs, respectively, scattered
by weak, slowly evolving turbulence. A key feature of scattering is that if the scattering
inhomogeneities evolve sufficiently slowly compared with the waves, wave frequency is
preserved.

This paper concerns the Wentzel–Kramers–Brillouin (WKB) limit of large-scale
inhomogeneities scattering small-scale waves, in which scattering reduces to diffusion in
spectral space. The corresponding induced-diffusion equation can be derived by invoking
conservation of wave action density, which holds in the WKB limit. This was first
done by McComas & Bretherton (1977) in the context of wave–wave interactions using
the ray equations – the characteristic equations for action conservation. (McComas &
Bretherton (1977) note that their derivation also applies to diffusion induced by low-
frequency currents. A flow-induced diffusivity is first discussed in Müller & Olbers (1975)
and expanded on in Müller (1976, 1977). Recently, alternative derivations for the diffusion
equation start with the conservation of wave action and use multi-scale asymptotics.
They have been carried out for weak geostrophic flows scattering (i) IGWs in a three-
dimensional (3-D) Boussinesq system (Kafiabad, Savva & Vanneste 2019, hereafter KSV
2019); (ii) Poincaré waves in a rotating shallow-water system (Dong, Buhler & Smith
2020); and (iii) deep-water surface waves (Villas Bôas & Young 2020). In all these
derivations, the geostrophic flow impacts wave propagation solely through the Doppler
shift term of the wave dispersion relation. McComas & Bretherton (1977) and Savva
(2020) show that induced diffusion is the WKB limit of a scattering integral for wave–
wave and wave–flow interactions, respectively. Yang et al. (2023) investigate the relevance
of diffusion theories in a realistic ocean simulation.

The aims of this paper are twofold: (i) we argue at the level of the dispersion relation
that inhomogeneities other than Doppler shift can be significant in scattering waves in
the WKB regime (§ 2) and (ii) we derive the spectral diffusivity induced by any weak
inhomogeneity (§ 3), thus generalising the original result of McComas & Bretherton
(1977). For, say, waves scattered by bottom topography (e.g. Hasselmann 1966; Müller &
Xu 1992; Ardhuin & Herbers 2002), it is widely appreciated that scattering mechanisms
other than Doppler shift are significant. However, this point has at times been overlooked
in the study of wave scattering by mean flows as we detail below.

In § 2 we use scaling arguments to compare the Doppler shift term of the dispersion
relation with two ofttimes neglected inhomogeneities: height fluctuations in a rotating
shallow-water system and buoyancy gradients in a Boussinesq system. The height
fluctuation effects are neglected in Dong et al. (2020) and the buoyancy fluctuation
term is neglected in previous work of the authors, KSV (2019) and Cox, Kafiabad &
Vanneste (2023, hereafter CKV 2023). For both systems, we find regimes where these
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inhomogeneities can be significant. Doppler shift and vertical flow buoyancy gradients are
accounted for in tidal ray tracing implemented by Chavanne et al. (2010). They find both to
be important and, in their simulations, refraction by these gradients is more significant in
the transfer of wave energy than advection by Doppler shift. (The ray tracing formulation
used by Chavanne et al. (2010) is outlined in Olbers (1981) for IGWs propagating in
geostrophic flows with vertical and horizontal shears.) Doppler shift, refraction through
a background flow, buoyancy gradients and topography are all found to be significant in a
coupled set of tidal equations derived by Pan et al. (2021).

Our analysis throughout this paper applies to weak scattering of waves by
inhomogeneities. In practice, this means that the scattering inhomogeneities induce small
perturbations to the wave frequencies. The wave amplitudes are assumed small enough that
linear wave theory applies and the wave feedback on the background flow is negligible.

In § 3, we impose further statistical assumptions on the inhomogeneities, assume they
are slowly time dependent and follow the perturbation expansion of KSV (2019) to reach a
general diffusion equation for any inhomogeneity. We evaluate the general diffusivity for
our two example systems (the method is similar for both systems and so the Boussinesq
evaluation is relegated to Appendix B.1). We then revise the scaling arguments of the
previous section. For the shallow-water system, we support our analysis with ray tracing
simulations (§ 3.2), finding good agreement with the exact solution for two-dimensional
(2-D) wave action given in Villas Bôas & Young (2020). For the Boussinesq system, we
find the forced equilibrium spectrum of wave energy. We also evaluate the Boussinesq
diffusivity for a typical quasi-geostrophic flow. We find the revised importance estimate
of buoyancy fluctuation to Doppler shift effects obeys negative power laws in horizontal
wavenumber and frequency as explained in Appendix B.2.

In § 4, we evaluate the general diffusivity for scattering by topography of (i) rotating
shallow-water waves (§ 4.1) and (ii) surface waves propagating on a background current
(§ 4.2). This is proof of concept that our general diffusivity has applications outside of
waves scattered by mean flows.

Section 5 is a discussion of our results including possible applications and limitations.
For completeness, we derive wave action conservation for a rotating shallow-water system
with significant height fluctuation effects in Appendix A. Lists of key symbols are included
in Appendix C.

2. Scaling arguments
In this section, we introduce a general inhomogeneity term into the wave dispersion
relation for waves in the WKB regime. This term encompasses Doppler shift by a
background flow but can include additional inhomogeneities. We motivate the inclusion
of two such inhomogeneities: flow-induced height fluctuations in a rotating shallow-
water system and vertical buoyancy gradients in a 3-D Boussinesq system. We find
regimes where the additional inhomogeneities are significant, at points dominant. This
has implications to ray tracing simulations which do not always take into account
inhomogeneities other than Doppler shift and motivates the general diffusion equation
derivation of § 3, because previous diffusion equations of the form first introduced by
McComas & Bretherton (1977) have only considered Doppler shift (by a background flow
or long waves) as the scattering mechanism.

Our starting point is the conservation of wave action a in (x, k) space in the WKB limit
of small-scale waves scattered by large-scale inhomogeneities:

∂t a + ∇kω · ∇xa − ∇xω · ∇ka = 0. (2.1)
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Figure 1. Sketch of flat-bottom shallow-water set-up. In (a,b), the free surface is the solid blue line, the flat
bottom is the solid black line and the dashed black line is the constant mean height H̄ . The wave perturbations
are given by h. The height of the layer in the absence of waves is H which is equal to H̄ in (a), whilst in (b) it
includes geostrophic height corrections �H , given by the dashed-dotted line.

(This is derived for the rotating shallow-water system in Appendix A but holds more
generally.) The absolute frequency of the waves ω is the sum of a homogeneous part,
ω0, and a weak, inhomogeneity-induced part, ω1:

ω(x, k, t)=ω0(k)+ω1(x, k, t), (2.2)

with ω1 �ω0. We call ω0 the bare frequency and assume that it varies sufficiently slowly
in time and space as to be considered constant. The frequency correction ω1 includes the
Doppler shift U · k induced by a background velocity U , and any other inhomogeneities.
We consider two systems where other inhomogeneities inevitably arise in the presence of
Doppler shift.

2.1. Shallow water
We consider Poincaré waves propagating in rotating shallow water with flat bottom and a
background geostrophic flow. The background velocity U = (U, V, 0) and height H are
related through the geostrophic balance

f ez × U = −g∇x�H, (2.3)

where f is the Coriolis frequency, g the gravitational constant and ez the unit vertical
vector. Here we have introduced �H , the geostrophic perturbation to the mean height H̄
such that H = H̄ +�H (see figure 1). The perturbation �H , and hence U , is assumed to
vary slowly in time and space compared with the period and wavelength of the Poincaré
waves. For completeness we verify that the action conservation (2.1) holds in this case in
Appendix A.

Assuming that �H � H̄ , the frequency of waves with wavevector k = (k1, k2) can be
approximated as

ω= (
f 2 + g(H̄ +�H)k2

h

)1/2 + U · k ≈ω0 + g�Hk2
h

2ω0
+ U · k, (2.4)

where kh = (k2
1 + k2

2)
1/2 is the wavenumber and ω0 = ( f 2 + gH̄k2

h)
1/2 is the intrinsic

frequency for constant height H̄ . Thus, there are two contributions to the frequency
inhomogeneity,

ω1 = g�Hk2
h

2ω0︸ ︷︷ ︸
height fluctuation

+ U · k︸ ︷︷ ︸
Doppler shift

, (2.5)

and hence two contributions to the scattering.
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Figure 2. Ratio Rsw (solid lines) defined by (2.8), the estimated relative importance of height fluctuation and
Doppler shift terms in the shallow-water system, plotted for different values of the Burger number Bu against
non-dimensionalised horizontal wavenumber kh/K∗ > 1. Quasi-geostrophic flow is Bu = 1. Burger numbers
Bu = 0.1, 0.25 are associated with the planetary geostrophic regime. Dashed lines are the square of this ratio,
R′

sw (3.29), which gives a more accurate relative importance ratio for the diffusion regime, as shown in § 3.1.

We now compare the relative size of the terms in (2.5) to argue that height fluctuation
effects can be just as important as Doppler shift in ray tracing and induced diffusion.
We introduce the characteristic background flow speed U∗, characteristic horizontal
wavenumber K∗ and the flow Burger number

Bu = gH̄

f 2 K 2∗ . (2.6)

Using the geostrophic balance (2.3) and expressing ω0 in terms of Bu, the height
fluctuation term scales like

g�Hk2
h

2ω0
∼ U∗k2

h

2K∗(1 + Bu(kh/K∗)2)1/2
. (2.7)

Then, the ratio between the height fluctuation and Doppler shift terms is given by

Rsw = height fluctuation
Doppler shift

∼ kh/K∗
2(1 + Bu (kh/K∗)2)1/2

. (2.8)

In figure 2, we plot the ratio Rsw given by (2.8) against non-dimensionalised
wavenumber kh/K∗ for different realistic values of the Burger number: Bu = O(1)
corresponds to the quasi-geostrophic regime and Bu � 1 to the planetary geostrophic
regime. We take the limit of (2.8) for large kh/K∗, a necessary condition for (2.1) to
hold:

Rsw → Bu−1/2/2, kh/K∗ � 1. (2.9)

We see that for Bu = 0.25, Rsw → 1 and the height fluctuation and Doppler shift terms
in (2.5) have the same magnitude. For Bu = 1 corresponding to quasi-geostrophic flow,
Rsw → 0.5. For smaller Bu associated with planetary geostrophy, height fluctuations
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dominate over Doppler shift. For larger Bu, Doppler shift dominates over height
fluctuations.

In § 3.1, we show that a better estimate for the relative importance of height fluctuation
to Doppler shift effects in the diffusion regime is R′

sw = R2
sw, which is also plotted in

figure 2.

2.2. Three-dimensional Boussinesq
Chavanne et al. (2010) compare the effect of refraction through flow buoyancy gradients
with that of Doppler shift on internal tide propagation. Our set-up is similar to theirs –
we consider 3-D IGWs of wavevector k = (k1, k2, k3) propagating in a geostrophic flow
U = (U, V, 0)with buoyancy B. Unlike the tides, our waves are not in hydrostatic balance.

We first consider waves propagating with no background flow buoyancy gradients. The
dispersion relation is

ω=
(

f 2 cos2 θ + N 2 sin2 θ
)1/2 + U · k. (2.10)

The intrinsic frequency is the first term, dependent on θ , the angle between k and the
vertical, and N is the buoyancy frequency. With uniform vertical buoyancy gradients,
N 2 = N̄ 2 = const., the bare frequency coincides with the intrinsic frequency. To obtain
(2.10), a WKB ansatz is substituted into the 3-D Boussinesq equations. We omit the
full derivation, but it follows the same method as Appendix A for the shallow-water
system. (See also derivations of action conservation with vertical buoyancy gradients by
(i) Bretherton (1966) for gravity waves in a shear flow without the effect of rotation and
(ii) Pan et al. (2021) for internal tides in hydrostatic balance.)

We make a rough argument for the inclusion of inhomogeneous vertical buoyancy
gradients associated with the geostrophic flow in (2.10). Horizontal geostrophic balance
and vertical hydrostatic balance lead to the thermal wind balance

f × ∂zU = ∇x,h B. (2.11)

Subscript h indicates a purely horizontal gradient. This means that horizontal flow
buoyancy gradients are induced by vertical shear. If the flow’s vertical shear is nonlinear,
vertical buoyancy gradients are also induced.

In deriving (2.10), the buoyancy frequency N 2 only appears in the equation for wave
buoyancy b which is given, for negligible background flow buoyancy gradients, by

∂t b + U · ∇xb + N 2w= 0. (2.12)

Here, w is the vertical wave velocity and N 2 = N̄ 2. Gradients in U have been neglected
under the WKB ansatz (see e.g. Olbers 1981).

The full wave velocity is u = (u, v, w). Introducing flow buoyancy gradients such that
B = B(x), (2.12) becomes

∂t b + U · ∇xb + uh · ∇x,h B + N 2w= 0, (2.13)

where

N 2 = N̄ 2 + ∂z B (2.14)

and uh = (u, v, 0) is the horizontal wave velocity. This is (A5) of Appendix A of Chavanne
et al. (2010). The vertical buoyancy gradient ∂z B acts as a perturbation to N̄ 2. If horizontal
gradients are neglected, then (2.10) remains the same with variable N 2 defined by (2.14).

Horizontal buoyancy gradients introduce u and v terms into the buoyancy equation.
This changes the nature of the eigenvalue problem for ω. It can be shown, as discussed in
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Chavanne et al. (2010), that the perturbations to the total frequency (2.10) caused by these
u and v terms are imaginary. This corresponds to growing and decaying wave modes which
exchange energy with the background flow. This shear instability is because buoyancy is
a non-conservative force in a baroclinic fluid (Jones 2001). Following Bretherton (1966),
Olbers (1981) and Chavanne et al. (2010), we neglect these horizontal gradients which
amounts to an assumption of large Richardson number and leave exploration of this
instability and its interaction with wavevector diffusion to future work.

Accounting for weak flow-induced vertical buoyancy gradients, we expand the
dispersion relation (2.10) with N 2 given by (2.14) to obtain

ω=
(

f 2 cos2 θ + N̄ 2 sin2 θ
)1/2

︸ ︷︷ ︸
ω0

+ ∂z B sin2 θ

2ω0
+ U · k︸ ︷︷ ︸

ω1

, (2.15)

valid for small ∂z B/N̄ 2. We compare the size of the Doppler shift and buoyancy gradient
terms in ω1. We introduce the background flow aspect ratio α defined by

α = L∗
H∗

= Kv∗
K∗

, (2.16)

for characteristic length scales L∗ = 1/K∗ and H∗ = 1/Kv∗ in the horizontal and vertical,
respectively. Using the thermal wind relation (2.11) and aspect ratio, the buoyancy
fluctuation term scales like

∂z B sin2 θ

2ω0
∼ α2U∗K∗ sin2 θ

2(cos2 θ + (N̄ 2/ f 2) sin2 θ)1/2
. (2.17)

Thus, the ratio RB between the buoyancy fluctuation and Doppler shift terms is roughly

RB = buoyancy fluctuation
Doppler shift

∼ α2 sin θ

2(cos2 θ + (N̄ 2/ f 2) sin2 θ)1/2(k/K∗)
, (2.18)

where k = kh/ sin θ is the wavenumber magnitude. It is instructive to consider RB as a
function of non-dimensionalised frequency and horizontal wavenumber, ω0/ f and kh/K∗:

RB ∼ 1
2

α2

N̄ 2/ f 2 − 1
(ω0/ f )2 − 1

ω0/ f

1
kh/K∗

≈ 1
2

(
α

N̄/ f

)2
(ω0/ f )2 − 1

ω0/ f

1
kh/K∗

. (2.19)

The second expression holds for (N̄/ f )2 � 1, which is true in both the atmosphere
and ocean. At ω0 = f , RB = 0. This is to be expected: buoyancy effects are absent
for vertically propagating inertial waves. The ratio attains a maximum value of RB ∼
α2(2(N̄/ f )(kh/K∗))−1 when ω0 = N̄ . The ratio decays as (kh/K∗)−1. In the WKB regime
we consider, kh/K∗ � 1 and so it appears justified to assume the Doppler shift term
dominates. However, for large values of α or when considering the lower limit of the
WKB regime, this may not be the case.

Figure 3 shows the ratio (2.19) for (N̄/ f )2 � 1 and three values of α/(N̄/ f ), including
α∼ N̄/ f , a realistic regime for geostrophic turbulence. Contours of RB = 0.1, 1 and 10,
corresponding to a negligible, balanced and dominant buoyancy term, respectively, are
given for each value of α. The buoyancy term can be equal to or greater than the Doppler
shift term, namely for high aspect ratio α, higher frequencies and lower wavenumbers.
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Figure 3. Ratio RB as given in (2.19), the relative importance of buoyancy fluctuation and Doppler shift
terms in the full Boussinesq system, against non-dimensionalised frequency ω0/ f and horizontal wavenumber
kh/K∗: (a) α = N̄/(2 f ), (b) α = N̄/ f and (c) α = 3N̄/ f , with (N̄/ f )2 � 1. Contours are shown for RB = 0.1
(dotted black), 1 (solid black) and 10 (dotted white).

3. Diffusion regime
In this section, we impose statistical assumptions on slowly evolving, weak
inhomogeneities to derive a spectral diffusion equation from the action conservation
equation (2.1). We expand the derivation of KSV (2019) to include any total frequency of
the form (2.2) assuming (i) the inhomogeneity is weak enough, that is, ω1 �ω0 (this is the
weak interaction limit of statistical scattering theories such as Hasselmann (1966)); (ii) the
bare frequency varies slowly over x; and (iii) the inhomogeneity can be well modelled by a
statistically homogeneous and stationary field. As in McComas & Bretherton (1977), Dong
et al. (2020) and CKV (2023), we retain time dependence in ω1 but later will simplify to
the time-independent case.

We start with the action conservation equation (2.1) with total frequency (2.2).
Following § A.1 of KSV (2019), we introduce a small bookkeeping parameter ε, making
the substitution ω1 → εω1 to enforce the assumption that the perturbation terms are weak
enough to be dominated by the bare frequency. We define slow time and space scales
T = ε2t , X = ε2x and expand the action a(x, X, k, t, T ) in powers of ε:

a = a(0)(X, k, T )+ εa(1)(x, X, k, t, T )+ · · · . (3.1)

Allowing a(0) to vary only on slow time and space scales immediately satisfies the leading-
order equation. At O(ε),

∂t a
(1) + ci∂xi a

(1) = ∂xiω1∂ki a
(0), (3.2)

where ci is the i th component of

c = ∇kω0, (3.3)

the (leading-order contribution to the) group velocity of the waves. This has the solution

a(1)(x, X, k, t, T )=
∫ t

0
∂x jω1(x − cs, k, t − s) ds ∂k j a

(0). (3.4)

At O(ε2), we average to eliminate a(2) terms and find

∂T a(0) + ci∂Xi a
(0) = 〈∂ki (a

(1)∂xiω1)〉, (3.5)
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where we have used spatial homogeneity. Unlike KSV (2019) and following Villas Bôas
& Young (2020), we do not require ∂xi ∂kiω1 = 0, equivalent to incompressibility for ω1 =
U · k. We substitute (3.4) into (3.5), taking the upper bound of the integral to be t → ∞,
appropriate for slowly evolving inhomogeneities. Then

∂T a(0) + ci∂Xi a
(0) = ∂ki

(
Di j∂k j a

(0)
)
, (3.6)

where

Di j =
∫ ∞

0
〈∂xiω1(x, k, t)∂x jω1(x − cs, k, t − s)〉 ds, (3.7)

with 〈·〉 the ensemble average, are the components of the diffusivity tensor D. Setting the
bookkeeping parameter to 1 gives the diffusion equation:

∂t a + c · ∇xa = ∇k · (D · ∇ka) . (3.8)

Considering the special case of ω1 = U · k, the diffusivity (3.7) reduces to the McComas
& Bretherton (1977) diffusivity:

Di j = kmkn

∫ ∞

0
〈∂xi Um(x, t)∂x j Un(x − cs, t − s)〉 ds. (3.9)

To evaluate the diffusivity, we introduce the correlation function

Λ( y, k, r)= 〈ω1(x, k, t)ω1(x + y, k, t + r)〉, (3.10)

and rewrite (3.7) as

Di j = −1
2

∫ ∞

−∞
∂2Λ

∂yi∂y j
(cs, k, s) ds, (3.11)

where we use Λ( y, k, r)=Λ(− y, k,−r) to extend the limits of integration. Defining the
Fourier-transformed correlation function Λ̂ through its inverse,

Λ(x, k, t)=
∫
Rn+1

Λ̂(K , k, Ω)ei(K ·x−Ωt) dKdΩ, (3.12)

the diffusivity becomes

Di j = π

∫
Rn+1

Ki K j Λ̂(K , k, Ω)δ(K · c −Ω) dKdΩ, (3.13)

where we have used that
∫
R

exp (i(K · c −Ω)s)ds = 2πδ(K · c −Ω). For time-
independent ω1, this reduces to

Di j = π

∫
Rn

Ki K j Λ̂(K , k)δ(K · c) dK . (3.14)

Next, we evaluate this expression for our two example systems and, in the shallow-water
case, support our findings with ray tracing simulations. In the Boussinesq case, we find
the forced equilibrium wave energy spectrum.

3.1. Shallow water
To evaluate the shallow-water diffusivity, we first evaluate the correlation function (3.10),
then find its Fourier transform and substitute into (3.13). We introduce the background
flow stream function ψ such that

U = ∇⊥
x ψ = (−∂x2ψ, ∂x1ψ, 0) and g�H = fψ, (3.15a,b)
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where ∇⊥
x = (−∂x2, ∂x1) is the skew gradient and we use geostrophic balance (2.3).

Substituting this and the frequency (2.5) into (3.10) yields

Λ( y, k, r)= − (
k · ∇⊥

y
)2〈ψ(x, t)ψ(x + y, t + r)〉︸ ︷︷ ︸

Doppler shift

+ f 2k4
h

4ω2
0

〈ψ(x, t)ψ(x + y, t + r)〉︸ ︷︷ ︸
height fluctuation

.

(3.16)
For the Doppler shift term, the skew gradients have been moved through the ensemble
average using integration by parts and the symmetry of x and y arguments. Notably,
there are no cross terms in (3.16) and the height fluctuation and Doppler shift effects are
uncoupled. This is because, using integration by parts under the ensemble average,

cross terms ∝ 〈ψ(x + y, t + r)k · ∇⊥
x ψ(x, t)〉 + 〈ψ(x, t)k · ∇⊥

x ψ(x + y, t + r)〉
∝ −〈ψ(x, t)k · ∇⊥

x ψ(x + y, t + r)〉 + 〈ψ(x, t)k · ∇⊥
x ψ(x + y, t + r)〉

= 0. (3.17)

The Fourier transform of the correlation function (3.16) is

Λ̂(K , k, Ω)= |k × K |2 Eψ(K , Ω) + f 2k4
h

4ω2
0

Eψ(K , Ω), (3.18)

where

Eψ(K , Ω)= 〈ψ̂(−K ,−Ω)ψ̂(K , Ω)〉 (3.19)

is the spectrum of the stream function. Defining the horizontal energy spectrum of the
background flow as

E(K , Ω)= K 2
h Eψ/2, (3.20)

we rewrite (3.18) as

Λ̂(K , k, Ω)= 2k2
h sin2 γ E(K , Ω)+ f 2k4

h

2K 2
hω

2
0

E(K , Ω), (3.21)

where Kh is the horizontal wavenumber of the background flow and γ is the angle between
K and k. Combined with (3.13), we have a diffusivity that accounts for height fluctuation
effects for a time-dependent flow.

As proof of concept, we simplify to a time-independent flow. This (i) allows for
inexpensive ray tracing simulations in § 3.2 and (ii) results in a simpler form for the
diffusivity. Adding time dependence is possible, as done solely for the Doppler shift effect
by Dong et al. (2020) and – for the full 3-D set-up – by CKV (2023). Combining the
time-independent-flow limit of (3.21) with (3.14), we have

Di j = 2πk2
h

∫ ∞

0
dKh

∫ 2π

0
dγ Kh Ki K j sin2 γ E(K )δ(K · c)

+ π f 2k4
h

2ω2
0

∫ ∞

0
dKh

∫ 2π

0
dγ

Ki K j

Kh
E(K )δ(K · c), (3.22)

in polar coordinates K = (Kh, γ ). Here E(K ) is the flow kinetic energy spectrum
marginalised over frequencies. In the local polar basis (ekh , eφ) associated with k, this
diffusivity has one non-zero component:

Dφφ = eφ · D · eφ. (3.23)
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This is because the constant frequency surface in spectral space is the circle ω=ω0(kh)+
O(ε)= const. There is no diffusion of action across this circle because for a time-
independent linear system, wave frequency does not change. This means there are no radial
components of the diffusivity, only (3.23). We see this explicitly by expanding K as

K = Kh cos γ ekh + Kh sin γ eφ. (3.24)

Then, noting δ(K · c)∝ δ(cos γ ) as c = ∇kω0(kh)= cekh shows that any integrand
containing cos γ integrates to zero (providing the energy spectrum E(K ) is well behaved).
This is the case for all components of (3.22) bar (3.23), which, using (3.24), is

Dφφ = 2πk2
h

∫ ∞

0
dKh

∫ 2π

0
dγ K 3

h sin4 γ E(K )δ(Khc cos γ )

+ π f 2k4
h

2ω2
0

∫ ∞

0
dKh

∫ 2π

0
dγ Kh sin2 γ E(K )δ(Khc cos γ ). (3.25)

Assuming flow isotropy such that E(K )= E(Kh), we integrate in γ to get

Dφφ = 4πk2
h

c

∫ ∞

0
K 2

h E(Kh) dKh︸ ︷︷ ︸
Doppler shift

+ π f 2k4
h

cω2
0

∫ ∞

0
E(Kh) dKh︸ ︷︷ ︸

height fluctuation

. (3.26)

With this single component, the diffusion equation (3.8) reduces to

∂t a + c · ∇xa =μ∂φφa, (3.27)

where we define the directional diffusivity

μ= Dφφ/k2
h . (3.28)

To examine the relative importance of each term in (3.26), we consider the ratio between
the two:

R′
sw =

[
Dφφ

]
height fluctuation[

Dφφ

]
Doppler shift

= f 2k2
h

4ω2
0

∫∞
0 E(Kh) dKh∫∞

0 K 2
h E(Kh) dKh

∼ (kh/K∗)2

4(1 + Bu (kh/K∗)2)
. (3.29)

Here, we approximate the integrals by

2π
∫ ∞

0
K 2

h E(Kh) dKh ∼ K∗U 2∗/2 and 2π
∫ ∞

0
E(Kh) dKh ∼ U 2∗/(2K∗) (3.30a,b)

using the characteristic speed and horizontal wavenumber of the flow. The final expression
in (3.29) is the square of the scaling argument estimate Rsw (2.8) which comes from
the wave dispersion relation. This is sensible – the diffusivity (3.7) consists of a square
frequency term. This means that in the diffusion regime, the scaling argument of § 2.1 is
an underestimate for Rsw > 1 and an overestimate for Rsw < 1. In figure 2, the adjustment
from Rsw to R′

sw is shown.

3.2. Shallow-water ray tracing
The 2-D diffusion equation (3.27) has an exact solution as outlined in § 4 of Villas Bôas &
Young (2020). We use this solution and ray tracing – a numerical method to find constant-
wave-action trajectories – to assess the validity of the diffusion approximation and form
of the diffusivity (3.26).
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We start by multiplying the diffusion equation by cos φ and integrating over the entire
(x, y) plane and φ ∈ (−π, π) to get

d
dt

∫∫∫
cos φ a dx dy dφ = −μ

∫∫∫
cos φ a dx dy dφ. (3.31)

Note that without pre-multiplying by cos φ, the left-hand side is zero by action
conservation. Here, the c · ∇xa term disappears under the (x, y) integrals because the
a we consider is ensemble-averaged and we assume statistical spatial homogeneity in
deriving the diffusion equation. Integrating with respect to time yields

ln (〈cos φ〉a)= −μt + ln (〈cos φ0〉a), (3.32)

where 〈·〉a denotes the action-weighted ensemble average and φ0 is the initial angle. This
is an alternative form of (4.3) in Villas Bôas & Young (2020).

We confirm that (3.32) holds by ray tracing: solving the characteristic equations of the
action conservation equation (2.1) numerically to give many constant-action trajectories
and taking an ensemble average. These ray equations are

∂t x = ∇kω and ∂t k = −∇xω. (3.33a,b)

We define non-dimensional quantities

t ′ = t f, k′ = k/K∗, x′ = xK∗ and U ′ = U/U∗ (3.34a–d)

(and ψ ′ =ψK∗/U∗). Substituting the approximate frequency for shallow-water waves
(2.4) into (3.33a,b) gives

∂t ′ x
′ = Bu

(1 + Buk′2
h )

1/2 k′ + RoU ′ + Ro
2 + Buk′2

h

2(1 + Buk′2
h )

3/2ψ
′k′, (3.35a)

∂t ′ k
′ = 0 − Ro∇x′

(
U ′ · k′) − Ro

k′2
h

2(1 + Buk′2
h )

U ′⊥, (3.35b)

︸ ︷︷ ︸
no flow

︸ ︷︷ ︸
Doppler shift

︸ ︷︷ ︸
height fluctuation

where

Ro = U∗K∗
f

(3.36)

is the flow Rossby number and we introduce U⊥ = (V,−U, 0).
The rays propagate in a flow which is a snapshot of a fully evolved 2-D quasi-

geostrophic Navier–Stokes simulation, solved using a pseudo-spectral method and Crank–
Nicholson time-stepping with time step dt = 0.01. The doubly periodic domain x ∈
[0, L] is discretised by 10242 gridpoints. Viscosity is ν = 10−5. The initial wavenumber
distribution of the flow is Gaussian. We prescribe nine values of the Rossby radius of
deformation L D = Bu1/2/K∗ and three values of the initial wavenumber K∗ to give 33

flows. This gives final snapshots with varying Ro and Bu. A typical flow is shown in
figure 4(a).

We perform ray simulations with the inhomogeneity ω1 given by (i) Doppler shift only;
(ii) height fluctuation only; and (iii) both Doppler shift and height fluctuation.

We initialise 502 rays equally distributed across the periodic x domain with a constant
horizontal wavenumber kh ≈ 32.2K∗ (within the WKB regime) and random initial angle.
By giving the rays different initial angles, our rays sample more of the flow and the
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Figure 4. Ray trajectories satisfying the characteristic equations (3.35a, b), propagating in the flow described
in § 3.2 with Ro = 0.03, Bu = 0.32 and K∗ = 3.10. (a) A sample of 10 rays in physical space superimposed on
the flow vorticity field (darker sections indicate higher-magnitude vorticity). (b) A sample of 50 rays in spectral
space initialised on a constant-frequency circle given by the dotted black line. (c) The exact solution (3.32)
approximated by the rays’ ensemble average (solid lines) and the diffusivity (3.26) (dashed lines). Red lines are
calculated solely with the height fluctuation terms in (3.26) and (3.35a,b); green lines are solely Doppler shift
and; blue lines are the entire system with both Doppler and height fluctuation effects. The vertical dashed line
indicates τ , the point at which the gradient calculation for figure 5 begins.

ensemble average approaches the exact solution more rapidly as the number of rays
increases than it would with a constant initial angle. For simplicity, we consider the angle
φ to be the angle of deviation from the ray’s initial angle meaning ln (〈cos φ0〉a)= 0. This
is possible because of the flow’s statistical isotropy. The angle of deviation for each ray is
calculated at each time step, and cos φ is averaged over. We choose action a = 1 for each
ray so that 〈·〉a and the ensemble average are identical. Some of the 33 flows have very
similar Burger or Rossby numbers; we average over these Burger and Rossby numbers
to leave 32 results with distinct Burger and Rossby numbers. We estimate μ, (3.28), the
negative gradient of ln (〈cos φ〉a) against time t with Dφφ computed from (3.26). We
compare this with the simulation gradient.

An example ray tracing simulation is shown in figure 4 in physical and wavevector space.
The Rossby number of the flow is the small parameter in § 3, ε ∼ Ro ∼ O(0.01), and so the
flow is weak and the rays are only slightly deflected from their initial angle of propagation.
In k space, the small Rossby number characterises the thickness of the constant-frequency
ring. The exact solution and simulation approximation of (3.32) are shown in figure 4(c).
This confirms the validity of the diffusion approximation and of the formulas (3.26). As
expected from these formulas, the height fluctuations and Doppler shift make comparable
contributions to the spectral diffusivity.

The Ro and Bu dependence of μ can be seen from (3.26). We define the non-
dimensional directional diffusivity μ̃ as

μ̃= Bu1/2

f Ro2μ∼ (ω0/ f )

Bu1/2(kh/K∗)︸ ︷︷ ︸
Doppler shift

+ (kh/K∗)
4Bu1/2(ω0/ f )︸ ︷︷ ︸
height fluctuation

→ 1︸︷︷︸
D.s.

+ (4Bu)−1

︸ ︷︷ ︸
h.f.

, (3.37)

where the final limit holds for (kh/K∗)2 � 1 and we have used (3.30a,b). The scaling of μ
is chosen so that the Doppler shift component of μ̃ is independent of Bu and Ro. Note that
the ratio between height fluctuation and Doppler shift effects is in agreement with R′

sw,
(3.29). In figure 5, μ̃ is displayed for a range of Burger numbers. The Burger dependence
of (3.37) is confirmed for each contribution and, because three separate Rossby numbers
are used in the plot, so too is the Rossby dependence.
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Bu

10−1

10−1 100

100

101

3

2
1

μ̃

h.f. (⁓ R′
sw)

D.s.

both

Figure 5. Non-dimensional directional diffusivity μ̃, as defined by (3.28) and (3.37), plotted against flow
Burger number Bu. Red lines correspond to the height fluctuation component of the directional diffusivity,
green lines to the Doppler shift component and blue lines to the full directional diffusivity. Crosses indicate the
estimates of μ̃ from the 502-ray simulations and exact solution (3.32), pluses are computed from the diffusivity
expression (3.26) and dotted lines are the power laws predicted by (3.37), fitted to the first of the exact
data points. The nine different Burger numbers cover three sets of Rossby number, labelled 1 (Ro ≈ 0.023),
2 (Ro ≈ 0.030) and 3 (Ro ≈ 0.057). The Doppler shift directional diffusivity μ̃≈ 1 and so the height
fluctuation directional diffusivity corresponds to the ratio between the two, R′

sw (3.29).

The characteristic flow velocity U∗ is chosen such that (3.30a,b) holds exactly and μ̃= 1
is the exact limit of the non-dimensionalised, Doppler shift directional diffusivity. Then
the height fluctuation μ̃ shown in figure 5 coincides with the ratio between the height
fluctuation and Doppler shift effects R′

sw. We see good agreement between the height
fluctuation μ̃ computed exactly and from simulations and thus confirm our estimate of
R′

sw given by (3.29).
In deriving the diffusivity (3.7), we approximate an integral between 0 and t by one

between 0 and ∞ and so there is a delay between the start of the ray simulation to the
point at which the exact solution (3.32) is well approximated. Therefore, our μ estimates in
figure 5 begin a short time τ/ f after the simulations have begun, as indicated in figure 4(c).

We stress that the good agreement in figures 4(c) and 5 between the μ of (3.28)
computed from the diffusivity (3.26) and the μ of (3.32) estimated from the ensemble
average of rays validates the diffusion approximation (3.27) of the action conservation
equation (2.1) with inhomogeneities of the form (2.5).

3.3. Three-dimensional Boussinesq
The method to evaluate the general diffusivity (3.13) for a Boussinesq system with vertical
buoyancy gradients is similar to that for the shallow-water system. We give the result here,
providing a full derivation in Appendix B.1. For a Doppler-shift-induced diffusivity, CKV
(2023) show that it is well justified to assume a slowly evolving flow is time-independent.
The same likely applies to a buoyancy-gradient-induced diffusivity, so we focus on the
time-independent case.
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The two non-zero components of the diffusivities for a Boussinesq system with vertical
buoyancy gradients and dispersion relation (2.15) are

Dkk = 4πk3ω0 sin2 θ

(N̄ 2 − f 2)| cos5 θ |
×
∫ ∞

0

∫ π−θ

θ

K 3 cos2 Θ(cot2 θ − cot2 Θ)1/2 E(K , Θ) dK dΘ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭Doppler shift

+ πk f 2 sin2 θ

ω0(N̄ 2 − f 2)| cos3 θ |
×
∫ ∞

0

∫ π−θ

θ

K 5 cos6 ΘE(K , Θ)

sin2 Θ(cot2 θ − cot2 Θ)1/2
dK dΘ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ buoyancy fluctuation

(3.38)

and

Dφφ = 4πk3ω0 sin4 θ

(N̄ 2 − f 2)| cos5 θ |
×
∫ ∞

0

∫ π−θ

θ

K 3 sin2 Θ(cot2 θ − cot2 Θ)3/2 E(K , Θ) dK dΘ

⎫⎪⎪⎬
⎪⎪⎭Doppler shift

(3.39)

+ πk f 2 sin4 θ

ω0(N̄ 2 − f 2)| cos3 θ |
×
∫ ∞

0

∫ π−θ

θ

K 5 cos4 Θ(cot2 θ− cot2 Θ)1/2 E(K , Θ)dK dΘ

⎫⎪⎪⎬
⎪⎪⎭buoyancy fluctuation,

(3.39)

where we use polar coordinates K = (K , γ, Θ) for the background flow and E is the
flow kinetic energy spectrum, as defined in the shallow-water case (3.19)–(3.20). Here,
γ =Φ − φ is the angle between the horizontal components of K and k, with Φ the
azimuthal angle of K . The Doppler shift and buoyancy fluctuation diffusivities are
uncoupled, as with the inhomogeneities in the shallow-water system. This is true of a
time-dependent background flow also (see Appendix B.1).

Only the kinetic energy spectrum of the flow appears in (3.38)–(3.39) because we
assume thermal wind balance. More generally, the diffusivity will be expressed in terms
of both potential and kinetic energy spectra.

The (cot2 θ − cot2 Θ)−1/2 factor in the integrand of the buoyancy fluctuation term
of Dkk behaves like δ−1/2 a small distance δ from the singularities at Θ = θ, π − θ .
Therefore, it is integrable and does not cause the diffusivity to diverge.

Only the part of the flow spectrum with wavevectors of polar angle Θ ∈ (θ, π − θ)

contributes to the diffusivity integrals. Inertia–gravity wave diffusion is a subregime
of IGW scattering. This triadic interaction occurs between an incident wave k and the
background flow K , resulting in a scattered wave k′ of the same frequency. In wavevector
space, k + K = k′. As the incident wave and scattered wave are of the same frequency, K
connects two points on the cone of constant frequency. Thus, the range of K ’s polar angle
Θ is the range of angles connecting any two points on the cone, i.e. (θ, π − θ). This is
demonstrated in figure 6. Significantly, waves of frequency ω0(θ) will not be scattered by
flow fluctuations with wavevectors outside of these angle bounds, regardless of the flow’s
energy.
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θ

k
k

K

Θ

Figure 6. Schematic of the scattering interaction between an incident wave k and the background flow K
resulting in a scattered wave k′. The two waves have the same frequency ω0(θ) and thus the background flow
connects two points on the constant-frequency cone. For an arbitrary scattering interaction, angle Θ of the
flow’s wavevector is bounded between θ and π − θ , i.e. the angular range of a vector between any two points
on the cone.

These invisible flow regions make it difficult to apply the scaling argument of § 2.2.
The polar angle of the characteristic wavevector of the flow K∗ does not necessarily lie
within (θ, π − θ), in which case RB (2.18) computed at K∗ is not meaningful. Instead,
a dominant wavevector – the characteristic wavevector of the portion of the flow which
scatters the waves – must be used.

We define R′
B as the ratio between the buoyancy fluctuation and Doppler shift

diffusivites for radial and azimuthal components:

R′
B,kk = [Dkk]buoyancy fluctuation

[Dkk]Doppler shift
and R′

B,φφ = [Dφφ]buoyancy fluctuation

[Dφφ]Doppler shift
. (3.40a,b)

Both ratios scale like (kh/K∗)−2 through the diffusivity prefactors’ k dependence.
The frequency behaviour is more complicated, requiring the diffusivity integrals to be
evaluated. In Appendix B.2, we show that R′

B,kk → 0 for ω0/ f → 1 and for larger
frequencies and high aspect ratios α (2.16), R′

B,kk ∼ (ω0/ f )−2. This means that for waves
in the WKB regime with high aspect ratios and frequencies, vertical buoyancy gradients
can be neglected.

We compute the ratio of diffusivity components for a typical quasi-geostrophic flow and
find good agreement with the −2 power laws. The geostrophic energy spectrum used is
extracted from a snapshot of the full Boussinesq simulation described in CKV (2023) and
is pictured in figure 7. For this spectrum, N/ f = 32.0 and the aspect ratio, (2.16), α ≈ 16.0.

Both ratios of diffusivities are shown in figure 8, computed with the energy spectrum
of figure 7. In figure 9, for the radial diffusivity ratio, we plot cross-sections of constant
frequency and horizontal wavenumber and find good agreement with the −2 power laws.

The values of RB ,kk and RB ,φφ are, for the WKB regime of kh/K∗ � 1, � 0.1. Thus,
at least for the waves in CKV (2023), we predict that a weak vertical buoyancy gradient
induces negligible spectral diffusion in the WKB regime.

Figure 8, a comparison of diffusivity magnitudes, is markedly different from the
comparison of dispersion relation terms (figure 3). Although both predict a decrease in
the buoyancy fluctuation effect as horizontal wavenumber increases, the scaling argument
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Figure 7. The geostrophic flow component E , smoothed and scaled by a maximum value EM , of the full
Boussinesq simulation in CKV (2023). The horizontal and vertical flow wavenumbers (Kh, Kv) are scaled by
the characteristic wavevector (Kh, Kv)= (K∗, αK∗) – with α the aspect ratio of the flow (2.16) – marked by a
white cross, at which the geostrophic energy is maximum.
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Figure 8. Radial and azimuthal ratios (a) R′
B,kk and (b) R′

B,φφ as given in (3.40a,b), the ratio of buoyancy
fluctuation and Doppler shift diffusivities for a snapshot of the full Boussinesq simulation of CKV (2023),
against non-dimensionalised frequency ω0/ f and horizontal wavenumber kh/K∗. Contours are shown for
RB

′ = 0.01 (dashed black), 0.1 (solid black) and 1 (dashed white).

of § 2.2 predicts that the effect dominates for higher frequencies. The (ω0/ f )−2 power
law predicted from diffusivities and confirmed for an example spectrum in figure 9
contradicts this. We attribute this conflicting prediction to the large part of the flow
spectrum not contributing to the diffusivity at higher wave frequencies. This makes the
scaling arguments of § 2.2 unreliable and calls for the exact evaluation of the diffusivities
(3.38)–(3.39).

3.4. Forced equilibrium spectrum
We solve the diffusion equation (3.8) exactly in the time-independent case corresponding
to the equilibrium spectrum obtained under constant forcing. Our aim is to assess how the
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Figure 9. Cross-sections of radial ratio R′
B,kk (3.40a), as shown in figure 8, for constant (a) ω0/ f and

(b) kh/K∗. The (ω0/ f/ cos2 θ)−2 prediction of Appendix B.2 is, for small θ , an (ω0/ f )−2 power law.

k±2 power-law spectra obtained by KSV (2019) when diffusion is solely caused by Doppler
shift are modified when accounting for vertical buoyancy gradients. As in KSV (2019), we
focus on radial diffusion, assuming wave statistics independent of φ such that ∂φa = 0. To
concisely contrast this work to theirs, we consider only the forced, equilibrium solution
to (3.8). We consider the energy density for ease of interpretation, defined as e(k; θ)=
2πk2 sin θωa(k; θ), such that e dk dθ is the energy contained in the box [k, k + dk] and
[θ, θ + dθ ]. Thus, ignoring unimportant prefactors on the right-hand side, (3.8) becomes

∂k

(
k2Dkk∂k

e

k2

)
= −δ(k − k∗). (3.41)

The forcing in a circle at k = k∗ can be generalised via integration. The minus sign ensures
a positive energy spectrum. Defining

Q = k3[Dkk]Doppler shift and P = k[Dkk]buoyancy fluctuation (3.42)

as the k-independent parts of the Doppler shift and buoyancy fluctuation diffusivities, this
simplifies to

Q∂k

((
k5 + βk3

)
∂k

e

k2

)
= −δ(k − k∗), (3.43)

where β = P/Q. This equation has the piece-wise solution found, for example, by partial
fractions:

e(k)=
⎧⎨
⎩ A

(
1 − k2

β
ln
(

1 + β

k2

))
+ Bk2 for 0< k < k∗,

C
(

1 − k2

β
ln
(

1 + β

k2

))
+ Dk2 for k > k∗.

(3.44)

We require e(k) is bounded as k → ∞ which means D = 0. We require zero energy at
k = 0; therefore A = 0. Continuity at k = k∗ gives B = C(1/k2∗ − ln (1 + β/k2∗)/β). The

jump condition [Q(k5 + βk3)∂k
e
k2 ]k+∗

k−∗
= −1 gives C = 1/(2βQ). Thus,

e(k)= 1
2βQ

⎧⎨
⎩

k2

k2∗

(
1 − k2∗

β
ln
(

1 + β

k2∗

))
for 0< k < k∗,

1 − k2

β
ln
(

1 + β

k2

)
for k > k∗.

(3.45)
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Figure 10. Forced equilibrium spectra (3.45)–(3.47) against non-dimensionalised wavenumber for two
different values of β/k2∗ = P/(Qk2∗) (3.42), the k/k∗-independent ratio of buoyancy-induced and Doppler-
shift-induced diffusivities. (a) Ratio β/k2∗ = 1 corresponds to a diffusivity with equal contributions from
buoyancy fluctuations and Doppler shift and (b) ratio β/k2∗ = 100 corresponds to a buoyancy-fluctuation-
dominated diffusivity. Diffusion by both effects is given in blue (3.45), whilst red and green lines are spectra
derived from only the buoyancy and Doppler shift terms, respectively, given by (3.47) and (3.46).

Note that Q → 0 is an artificial singularity introduced by the choice of factorisation and
forcing in (3.43). The Doppler shift limit of β → 0 is

e(k)= 1
4Qk2∗

{
(k/k∗)2 for 0< k < k∗,
(k∗/k)2 for k > k∗,

(3.46)

which is exactly (4.1) of KSV (2019). The buoyancy fluctuation limit of β → ∞ is

e(k)= 1
2P

{
(k/k∗)2 for 0< k < k∗,
1 for k > k∗.

(3.47)

In figure 10, (3.45)–(3.47) are displayed for two values of β/k2∗.
The finite energy at k → ∞ of (3.47) is unphysical. However, this solution is unstable

in the sense that a vanishingly small Doppler shift contribution will result in e(k)→ 0
as k → ∞. This is because the limit of (3.45) as k → ∞, β = o(k) is e(k)→ 1/(4Qk2),
i.e. the Doppler shift limit (3.46) for k > k∗. This can be seen in figure 10(b). If a buoyancy
fluctuation is present, so too is the Doppler shift term by the thermal wind balance (2.11)
which means that the k > k∗ limit of (3.47) never occurs and the energy spectrum will
always decay for large k under Doppler shift.

Figure 10 shows how buoyancy fluctuations affect the spectrum amplitude, mainly
for k < k∗. For a Doppler-shift-dominated diffusivity (β → 0), this amplitude change is
negligible. For k > k∗, buoyancy fluctuations shallow the Doppler-shift-induced energy
spectrum of KSV (2019) for a small range of intermediate wavenumbers.

The scaling argument of § 2.2 and the ratio of radial diffusivity (3.38) predict the
buoyancy-induced diffusivity decays to zero for large k/K∗ and thus the effect of vertical
buoyancy gradients is small. Our findings in this section compound this prediction
because (i) a small buoyancy-induced diffusivity has negligible impact on the wave energy
spectrum for any wavenumber and (ii) any buoyancy-induced diffusivity has negligible
impact on the wave energy spectrum for large kh/K∗.
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h

H̄H

�H1

�H2

Figure 11. Shallow-water set-up with bottom topography, a modified version of figure 1(b). The free surface is
the solid blue line, the bottom is the solid black line and the horizontal dashed black lines enclose the constant
mean height H̄ . The wave perturbations are given by h and the fluctuation in height due to geostrophy, the
dashed-dotted line, is given by �H1. The topographic variation in height is �H2, which is a negative quantity
at the labelled location in this figure.

4. Diffusion induced by bottom topography
In this section, we evaluate the general diffusivity of § 3 for two systems. We extend
the rotating shallow-water diffusivity in § 3.1 to include bottom topography (§ 4.1) and
evaluate the general diffusivity for surface gravity waves scattered by bottom topography
and a background current (§ 4.2). These diffusivities are evidence that the general diffusion
framework can be applied to systems beyond those already discussed and we leave further
exploration (ray tracing, comparison to observation etc.) to future work.

4.1. Rotating shallow-water system
We relax the assumption of a flat bottom made in §§ 2.1, 3.1 and 3.2 by writing

�H =�H1 +�H2, (4.1)

where�H1 is induced by geostrophy and satisfies (2.3) and�H2 is the fluctuation to mean
height due to bottom topography. This is shown in figure 11.

As with the height fluctuation induced by geostrophy, we assume topography varies
over longer length scales than the waves so that the WKB assumption holds and action is
conserved (the WKB analysis of Appendix A does not rely on the flat-bottom assumption).
The amplitude of topographic variation is small relative to the mean height so that the
weak interaction assumption of statistical scattering is satisfied. The perturbation (2.5) to
the bare frequency has an additional term induced by topography:

ω1 = g�H1k2
h

2ω0︸ ︷︷ ︸
geostrophic height fluctuation

+ g�H2k2
h

2ω0︸ ︷︷ ︸
topography

+ U · k︸ ︷︷ ︸
Doppler shift

. (4.2)

If the background flow and topography are uncorrelated, the diffusivity (3.26) has an
additional term:

Dφφ = 4πk2
h

c

∫ ∞

0
K 2

h E(Kh) dKh︸ ︷︷ ︸
Doppler shift

+ π f 2k4
h

cω2
0

∫ ∞

0
E(Kh) dKh︸ ︷︷ ︸

geostrophic height fluctuation

+ πg2k4
h

2cω2
0

∫ ∞

0
K 2

hB(Kh) dKh︸ ︷︷ ︸
topography

,

(4.3)
where B is the bottom topography spectrum:

B(K )= 〈�̂H2(−K )�̂H2(K )〉 (4.4)
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which we assume to be horizontally isotropic such that B(K )=B(Kh). The topography
term in (4.3) is derived by replacing E(Kh) in the height fluctuation term of (3.26) with
(gKh/ f )2B(Kh)/2, which comes from expressing E(Kh) as a function of �H1 using
geostrophic balance (2.3), then swapping �H1 for �H2.

Should the background flow and topography be correlated, the diffusivity will contain
geostrophic height fluctuation–topography and Doppler shift–topography cross terms.

4.2. Surface waves
Bretherton & Garrett (1968) prove that wave action is conserved for a wide class of
physical systems. One of the examples they consider is surface gravity waves propagating
on a mean flow with negligible rotation effects. In this case, the absolute frequency of the
waves is

ω= (gkh tanh (Hkh))
1/2 + U · k (4.5)

with U = (U, V, 0) the background surface velocity. As in figure 11, H is the wave-
free height of the water column including both topographic variations �H2 and other
variations in the mean height �H1. Unlike in previous sections, we do not necessarily
attribute these variations to geostrophy.

Providing the fluctuations to mean height H̄ are small,

ω1 ≈ kh(gkh −ω2
0)�H

2ω0
+ U · k. (4.6)

For small-amplitude, horizontally isotropic height variations which vary over longer length
and time scales than the waves, the azimuthal diffusivity is

Dφφ = 4πk2
h

c

∫ ∞

0
K 2

h E(Kh) dKh︸ ︷︷ ︸
Doppler shift

+ πk2
h(gkh −ω2

0)
2

2cω2
0

∫ ∞

0
K 2

hH(Kh) dKh︸ ︷︷ ︸
height fluctuations

, (4.7)

which we find by comparing the surface wave dispersion relation (4.5) with that of
shallow-water waves (4.2) and switching g2k4

hB(Kh) for k2
h(gkh −ω2

0)
2H(Kh) in the

topography-induced diffusivity of the rotating shallow-water system (4.3). Here, H is the
spectrum of fluctuations in total water depth. The diffusivity (4.7) is valid for a background
velocity U not correlated with topography or other height-fluctuation effects.

The expressions given in this section are for diffusivities induced by an approximately
time-independent ω1 which is clearly valid for bottom topography. Tolman (1990)
considers surface waves propagating through temporally and spatially varying tidal
currents which induce variations in depth. We refer the interested reader to CKV (2023)
for work on the time-dependent case.

It should be possible to show that the topography-induced diffusivity in (4.7) is a
limiting case of kinetic equations for Bragg scattering of surface gravity waves by
bathymetry such as those derived by Hasselmann (1966) and Ardhuin & Herbers (2002).
We leave this proof to future work.

5. Discussion
Scattering by turbulent flow leads to the diffusion of IGW energy in spectral space. In
previous work on the topic (McComas & Bretherton 1977; Kafiabad et al. 2019; Savva
2020; Dong et al. 2020; Cox, Kafiabad & Vanneste 2023) the mechanism for spectral wave
diffusion is a Doppler shift term in the waves’ dispersion relation. In this paper, we argue
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at the level of the dispersion relation that other mechanisms can cause significant wave
diffusion. We provide two main examples: a fluctuation in the mean height of a rotating
shallow-water system due to the background geostrophic flow and an effective variation in
buoyancy frequency for the 3-D Boussinesq system, caused by vertical background flow
buoyancy gradients. There is precedent for this – Chavanne et al. (2010) find refraction
by vertical buoyancy gradients to be more significant than the Doppler shift effect in the
context of internal tides.

We generalise the derivation of Kafiabad et al. (2019) to give a diffusion equation valid
for any slowly evolving, weak inhomogeneities that the waves encounter. For our two
examples, we evaluate the corresponding diffusivity.

In the Boussinesq case, we confirm the buoyancy-fluctuation effect can be significant.
However, we find this effect is greatly reduced as waves diffuse to higher wavenumbers.
We also find a reduction for higher-frequency waves and background flows with large
aspect ratios between horizontal and vertical motions, as is the case in the ocean.

We solve the steady-state diffusion equation and find that the resulting energy spectrum
agrees with this conclusion – as the waves move further into the WKB regime, the ratio
between buoyancy fluctuation and Doppler shift effects decays to zero.

Scaling predictions from the Boussinesq dispersion relation of the relative importance
of Doppler shift and vertical buoyancy gradients differ, with respect to wave frequency,
from those found from the complete computation of the diffusivities. This is because large
parts of the flow energy spectrum which do not meet the relevant resonance condition
cannot contribute to scattering the waves.

In the shallow-water system, we find that for small Burger numbers the height-
fluctuation diffusivity is comparable to or larger than the Doppler-shift diffusivity. This is
supported by ray simulations which (i) validate the diffusion approximation of the action
conservation equation and (ii) confirm the relative magnitude of the height fluctuation and
Doppler shift effects. The Burger number does not have to be vanishingly small for the
height fluctuation effect to be significant – at Bu = O(1), the two effects differ only by a
factor of 1/4.

Remarkably, the Doppler shift effect is decoupled from the other diffusion mechanisms
in the shallow-water and Boussinesq diffusion equations. This occurs despite the Doppler
shift being related to these other effects through the geostrophic and thermal wind
balances. Uncorrelated effects will also be uncoupled from the Doppler shift. For example,
shallow-water waves and surface gravity waves scattered by topography, for which the
corresponding diffusivities are evaluated in § 4.

Our work is relevant to internal tides which, alongside near-inertial waves, dominate
the IGW energy spectrum (Ferrari & Wunsch 2009). Previous work uses ray tracing
to model internal tide energy distributions and finds good agreement with observation
despite marginal scale separation between the tides and background eddies (Park & Watts
2006; Rainville & Pinkel 2006; Chavanne et al. 2010). Furthermore, if internal tides
propagate through a barotropic background flow, they form a set of uncoupled shallow-
water equations (e.g. Savva & Vanneste 2018). Beyond this, it is clear that our approach
applies for any waves propagating through large-scale inhomogeneities.

A possible application of the formula we obtain for the spectral diffusivity is to
the representation of the impact of unresolved turbulence on IGWs parameterised in
atmosphere and ocean models. In ray tracing modules such as MS-GWaM (Bölöni et al.
2021; Kim et al. 2021), the diffusion could be included by means of additional white-noise
terms in the wavevector ray equation, leading to a stochastic parameterisation grounded in
the physics of wave–flow interactions.
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The diffusion regime is characterised by the weak-interaction assumption of statistical
scattering and the WKB approximation. For diffusion induced by Doppler shift, the weak
interaction assumption is equivalent to a weak-flow approximation: the group speed of the
waves is much greater than the characteristic background flow speed, c � U∗. Depending
on the wave type, this may not hold consistently throughout the evolution. Conditions
which ensure that c � U∗ for IGWs in the Boussinesq system are discussed in Appendix
A of Cox et al. (2023). Dong, Buhler & Smith (2023) demonstrate the breakdown of the
weak-flow assumption in this context.
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Appendix A. Action conservation for a shallow-water system of variable height
The conservation equation for wave action density (2.1) can be derived for the shallow-
water model because it is an example of a non-canonical Hamiltonian system, as discussed
in Vanneste & Shepherd (1999).

We apply the WKB analysis of, for example, Achatz (2022) in the context of atmospheric
IGWs, to a rotating shallow-water system. The shallow-water equations for a horizontal
fluid layer with velocity u and height h are the momentum equation

∂t u + u · ∇x u + f ez × u = −g∇xh (A1)

and the conservation of mass

∂t h + ∇x · (hu)= 0. (A2)

In line with the notation in figure 1, we separate the fluid into a background flow
component and a wave component:(

u
h

)
→
(

U
H

)
+
(

u
h

)
, (A3)

where lowercase symbols now indicate wave variables and uppercase the background
flow. We apply a WKB ansatz to the wave part:(

u
h

)
=
(

u′(X, T )
h′(X, T )

)
eiΘ(X,T )/ε. (A4)

Here, we introduce the slow time and space scales (X, T )= ε(x, t), ε� 1. The
background flow (U(X, T ), H(X, T ))T and wave amplitudes, hereafter denoted by

φ = (u′, h′)T, (A5)

evolve on these slow scales, whereas the wave phase Θ/ε evolves O(1/ε) quicker. (Note
that ε is the ratio between the wavelength and characteristic flow length scale and does
not necessarily coincide with the ε of § 3. Likewise, the slow time and space scales here
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are not the same as those defined in § 3 because they are linear, not quadratic, in the small
parameter. Upright Θ is used to distinguish the wave phase from the background flow
polar angle, Θ .) We introduce the local wavevector and frequency

k = (k1, k2)
T = ∇XΘ and ω= −∂TΘ, (A6a,b)

and expand the wave amplitudes in ε:

φ(X, T )= φ0 + εφ1 + O(ε2)=
(

u′
0

h′
0

)
+ ε

(
u′

1
h′

1

)
+ O(ε2). (A7)

In what follows, we drop the primes on the amplitudes u′
0, h′

0 etc. We look at terms linear
in the wave phase.

At O(1) in ε, momentum and mass conservation (A1)–(A2) become the right and left
eigenvector problem

i Bμφ0 = iωinφ0 and φ
†
0μBμ = φ

†
0μωin, (A8a,b)

where

B =
⎛
⎝ 0 i f/H k1

−i f/H 0 k2
k1 k2 0

⎞
⎠ and μ =

⎛
⎝H 0 0

0 H 0
0 0 g

⎞
⎠ . (A9a,b)

The form of the left eigenvector in (A8a,b) is because B and μ are Hermitian. Here, the
intrinsic frequency ωin is the frequency of the waves moving with the background flow:

ωin =ω− U · k. (A10)

The eigenvalues are

ωin = 0,±( f 2 + gHk2
h)

1/2. (A11)

The zero eigenvalue corresponds to the background flow mode and the non-zero
eigenvalues are waves propagating with the same frequency in opposite directions.

We consider the effect that the inhomogeneities have on wave amplitude and thus energy
distribution. We choose the positive wave eigenvalue without loss of generality which has
the corresponding eigenvector

φ0 = a

(Hk2
h)

1/2ωin

⎛
⎝ i f k2 + k1ωin

−i f k1 + k2ωin
Hk2

h

⎞
⎠ , (A12)

where a is an (X, k, T )-dependent complex amplitude parameterising the eigenspace of
Bμ. The a-independent part of the eigenvector is non-unique in that it can be rotated by
a complex phase ei θ . The eigenvector (A12) is normalised such that the square amplitude
|a|2 corresponds to the energy density, E(X, k, T ):

1
2
φ

†
0μφ0 = H |u0|2 + g|h0|2

2︸ ︷︷ ︸
E

= |a|2. (A13)

We seek an evolution equation for the energy density E .
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At O(ε), the momentum and mass conservation equations (A1)–(A2) become

DUφ0 +
⎛
⎝ 0 0 ∂X1

0 0 ∂X2
∂X1 ∂X2 0

⎞
⎠μφ0 +

⎛
⎝∂X1U ∂X2U 0
∂X1 V ∂X2 V 0

0 0 ∇X · U

⎞
⎠ φ0 + i(Bμ −ωin)φ1 = 0,

(A14)
where

DU = ∂T + U · ∇X (A15)

is the advective derivative with U . We pre-multiply by the left eigenvector φ
†
0μ to remove

the φ1 term leaving

φ
†
0μDUφ0

︸ ︷︷ ︸
1

+ φ
†
0μ

⎛
⎝ 0 0 ∂X1

0 0 ∂X2
∂X1 ∂X2 0

⎞
⎠μφ0

︸ ︷︷ ︸
2

+ φ
†
0μ

⎛
⎝∂X1U ∂X2U 0
∂X1 V ∂X2 V 0

0 0 ∇X · U

⎞
⎠ φ0

︸ ︷︷ ︸
3

= 0.

(A16)
We add the complex conjugate, divide by 2 and evaluate each term. Expanding term 1 and
rearranging gives

1
2
( 1 + c.c.)= 1

2

(
DU (H |u0|2 + g|h2

0|)− |u0|2DU H
)

= 1
2
DU E − 1

2
|u0|2DU H,

(A17)
where we use the normalisation (A13) for the second equality. Using the product rule, term
2 becomes

1
2
( 2 + c.c.)= ∇X · (gH(u∗

0h0 + u0h∗
0)/2)= ∇X · (cin E), (A18)

where we use the explicit form of the eigenvector (A12) to find

1
2
(u∗

0h0 + u0h∗
0)= kE/ωin = cin E/(gH). (A19)

Here, we have introduced

cin = (∇kωin)X,T = gH k
ωin

, (A20)

the group velocity associated with the waves’ intrinsic frequency. This differs from c of
(3.3), the group velocity associated with the waves’ bare frequency ω0. Subscript X, T
indicates that these variables are kept constant whilst taking the partial derivative, despite
both being implicitly dependent on k.

The final term is
1
2

(
3 + c.c.

)= (H |u0|2 + g|h0|2)∇X · U − H(|u0|2∂X2 V + |v0|2∂X1U )

+ 1
2

H(v0u∗
0 + v∗

0u0)(∂X1 V + ∂X2U ) (A21)

= E

(
2∇X · U − ω2

in − gHk2
2

ω2
in

∂X2 V − ω2
in − gHk2

1

ω2
in

∂X1U

+gHk1k2

ω2
in

(∂X1 V + ∂X2U )

)
(A22)
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= E (ωin∇X · U + k · (cin · ∇X U)) /ωin, (A23)

where we use the normalisation (A13) and

|u2
0| = E

ω2
in − gHk2

2

Hω2
in

, |v2
0 | = E

ω2
in − gHk2

1

Hω2
in

and v0u∗
0 + v∗

0u0 = E
2gk1k2

ω2
in

,

(A24a,b,c)
derived from the eigenvector (A12). All together, (A16) becomes

0 =DU (E)− 1
2
|u0|2DU H + ∇X · (cin E)+ E (ωin∇X · U + k · (cin · ∇X U)) /ωin

(A25)

=ωin
(
∂T A + ∇X · (cg A)

)+ A
(
∂T + cg · ∇X

)
ωin − 1

2
|u0|2DU H + Ak · (cin · ∇X U) ,

(A26)
where

cg = cin + U (A27)

is the total group velocity and

A = E/ωin (A28)

is wave action – the energy density normalised by the intrinsic frequency.
We introduce

Ω(X, k(X, T ), T )=ω(X, T ), (A29)

the total frequency with explicit k dependence. The eikonal equations are derived from
cross-derivatives of (A6a,b):

(∂T + cg · ∇X)ω≡ ∂TΩ = k · ∂T U + (∂Hωin)k∂T H (A30)

and

(∂T + cg · ∇X)k ≡ −∇XΩ = −k · (∇X U)− (∂Hωin)k∇X H. (A31)

To find derivatives of Ω , we have used the total frequency ω, defined through (A10)–
(A11). Note that (∂Hωin)k is the partial derivative of ωin with respect to H with k fixed.
Then, using (A30)–(A31),(
∂T + cg · ∇X

)
ωin = (

∂T + cg · ∇X
)
ω− U · (∂T + cg · ∇X

)
k − k · (∂T + cg · ∇X

)
U

(A32)
= (∂Hωin)k∂T H + (∂Hωin)kU · ∇X H

+ k · (U · ∇X U)− k · (cg · ∇X U) (A33)
= (∂Hωin)kDU H − k · (cin · ∇X U). (A34)

Substituting this result into (A26) yields

ωin
(
∂T A + ∇X · (cg A)

)+ A(∂Hωin)kDU H − 1
2
|u0|2DU H = 0. (A35)

If the background flow is non-divergent flow, as is the case for the geostrophic flow we
consider, then DU H = 0 and, letting our book-keeping parameter ε = 1,

∂t A + ∇x · (cg A)= 0. (A36)
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Otherwise, we have that

∂t A + ∇x · (cg A)− f 2

ω2
in

A∇x · U = 0, (A37)

where we use the square components (A24a–c) and

∂t H + U · ∇x H = −H∇x · U, (A38)

which holds because the flow is a solution of the rotating shallow-water equations
(A1)–(A2).

For rotation effects to be significant in the dispersion relation of the shallow-water
waves, 1 ∼ Bu(kh/K∗)2 where Bu is the flow Burger number as defined by (2.6). Then,
f 2/ω2

in = O(1). By the WKB ansatz, kh/K∗ � 1 and so Bu � 1. This is the planetary
geostrophic regime whereby the scale of wave motion is much greater than the Rossby
radius of deformation and the background flow is in geostrophic balance (see e.g. Vallis
2017). Thus, the flow is non-divergent and (A37) reduces to (A36). If rotation effects are
neglected, we have gravity waves and f 2/ω2

in � 1. Therefore, in the WKB regime, the
divergence term in (A37) can always be neglected.

A consistent derivation for waves propagating with significant rotation f in a quasi-
geostrophic flow Bu ∼ O(1) is not possible. We defer to Bretherton (1971): ‘. . .when the
physical situation is inappropriate, no amount of juggling will give a consistent, slowly
varying wavetrain’.

The conservation law (A36) is for wave action A(x, t) defined by (A28). It is coupled
to the eikonal equation for k, (A31). For a conservation law that spans all of (x, k) space,
we index each solution of (A31) and (A36) with the 2-D parameter � such that

∂t A� + ∇x · (cg� A�)= 0 and (∂t + cg� · ∇x)k� = −∇xΩ�, (A39a,b)

and introduce the wave action density,

a(x, k, t)=
∫

A�(x, t)δ(k − k�)d�, (A40)

a superposition of the individual solutions to the coupled equations. By taking the
time derivative of (A40) and applying the coupled equations (A39a,b), the conservation
equation for wave action (2.1) with total frequency (2.4) is obtained. The steps between
(A39a,b)–(A40) and (2.1) are standard and do not rely on the specific form of the
dispersion relation and are omitted here for brevity. See, for example, § 10.3.8 of Achatz
(2022). We emphasise that the height H(x, t) is taken to vary on the same physical and
temporal scales as the flow throughout this derivation.

Appendix B. Boussinesq diffusivities

B.1. Obtaining diffusivity expressions
In this appendix, we evaluate the general diffusivity (3.13) for the Boussinesq system with
vertical buoyancy gradients.

We first substitute ω1, defined in (2.15) with B = f ∂zψ by the thermal wind balance
(2.11), into the correlation function (3.10). Due to the 2-D nature of geostrophic flow, the
Doppler shift term is the same here as it is in (3.16), the shallow-water case, with the skew
gradient 2-D as before. The cross terms also cancel by a similar argument to (3.17). Then,
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Λ( y, k, r)= − (k · ∇⊥
x )

2〈ψ(x, t)ψ(x + y, t + r)〉︸ ︷︷ ︸
Doppler shift

+ f 2 sin4 θ

4ω2
0

∂zzzz〈ψ(x, t)ψ(x + y, t + r)〉︸ ︷︷ ︸
buoyancy fluctuation

. (B1)

The vertical derivative in the buoyancy fluctuation term has been moved outside the
ensemble average using integration by parts and the symmetry of x and y arguments.
In Fourier space, this becomes

Λ̂(K , k, Ω)= |kh × K h|2 Eψ(K , Ω) + f 2 sin4 θK 4
v

4ω2
0

Eψ(K , Ω). (B2)

Here, Kv is the flow’s vertical wavenumber and K h its horizontal wavevector (distinct
from Kh = |K h |, the horizontal wavenumber). Switching to polar coordinates K =
(K , γ, Θ), γ as before the angle between the horizontal wavevectors K h and kh ,

Λ̂(K , k, Ω)= 2k2 sin2 θ sin2 γ E(K , Ω) + f 2 sin4 θK 2 cos4 Θ

2ω2
0 sin2 Θ

E(K , Ω). (B3)

We have used the same definitions of Eψ and E as in the shallow-water case, but note
that E = K 2

h Eψ/2 = K 2 sin2 ΘEψ/2. Combined with (3.13), we have a diffusivity that
accounts for buoyancy gradients in a time-dependent flow.

We simplify to a time-independent flow and substitute (B3) into (3.14):

Di j =2πk2 sin2 θ

∫ ∞

0
dK

∫ π

0
dΘ

∫ π

−π
dγ Ki K j K 2 sinΘ sin2 γ E(K )δ(K · c)

+ π f 2 sin4 θ

2ω2
0

∫ ∞

0
dK

∫ π

0
dΘ

∫ π

−π
dγ

Ki K j K 4 cos4 ΘE(K )δ(K · c)

sinΘ
. (B4)

As in KSV (2019) and CKV (2023), we expand K in the local spherical basis (ek, eθ , eφ)
associated with k such that

K = K sinΘ
(
(sin θ cos γ + cotΘ cos θ)ek + (cos θ cos γ − cotΘ sin θ)eθ + sin γ eφ

)
.

(B5)

We consider D in spherical components, i.e. Dθθ = eθ · D · eθ , Dθk = eθ · D · ek etc. We
see that D · c = 0 because upon moving c inside the integral, each integrand contains
a factor of K · c, the argument of the delta function. As K · c = cK · eθ because c =
∇kω0(θ), this means that Dθθ , Dθφ = Dφθ and Dθk = Dkθ are all zero.

As in CKV (2023), we use parity arguments to show that Dφk = Dkφ = 0. The parity
of Ki K j with respect to γ is determined by the parity of pairwise products of ek · K and
eφ · K . The parity of the delta function is even because of the parity of K · eθ . Thus, only
Dkk and Dφφ have even integrands in γ and only these components are non-zero. We
assume the energy spectrum is horizontally isotropic such that E(K )= E(K , Θ). This
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enables integration with respect to γ using, for example, a substitution of ξ = cos γ . Thus,

Di j =4πk2 sin2 θ

c| cos θ |
∫ ∞

0
dK

∫ π−θ

θ

dΘ Ki K j (ξ∗)K (1 − ξ2∗ )1/2 E(K , Θ)

+ π f 2 sin4 θ

ω2
0c| cos θ |

∫ ∞

0
dK

∫ π−θ

θ

dΘ
Ki K j (ξ∗)K 3 cos4 ΘE(K , Θ)

sin2 Θ(1 − ξ2∗ )1/2
, (B6)

where ξ∗ = cotΘ/ cot θ . Note that only values of Θ for which | cotΘ/ cot θ |< 1
contribute to the integral, which reduces the integration range to (θ, π − θ). This is
discussed in § 3.3.

We evaluate (ek · K )2 and (eφ · K )2 at cos γ = ξ∗:

(ek · K )2|ξ∗ = K 2 sin2 Θ(sin θξ∗ + cotΘ cos θ)2 and (eφ · K )2|ξ∗ = K 2 sin2 Θ(1 − ξ2∗ ),
(B7)

and use c = (∂θω0)/k = (N̄ 2 − f 2) sin θ cos θ/(kω0) to give the two non-zero
components of D, (3.38)–(3.39). Reassuringly, the Doppler shift terms in both these
components agree with (A13) in KSV (2019), up to a (2π)3 factor due to differing Fourier
convention, and typographical errors in both the lower limits of the integrals. One of these
errors is corrected in (2.11) of CKV (2023), but the lower limit of the K integral is still
incorrect.

B.2. Frequency dependence of the radial diffusivity ratio
We explain the (ω0/ f )−2 power law of ratio R′

B,kk (3.40a) and its behaviour as θ → 0.
Substituting the radial diffusivity components (3.38) into (3.40a):

R′
B,kk

= sin4 θ

4(ω0/ f )2k2
h

∫∞
0

∫ π−θ
θ

K 5 cos6 ΘE(K , Θ)(1 − cot2 Θ/ cot2 θ)−1/2 sin−2 ΘdK dΘ∫∞
0

∫ π−θ
θ

K 3 cos2 ΘE(K , Θ)(1 − cot2 Θ/ cot2 θ)1/2dK dΘ
.

(B8)

As ω0/ f → 1 and θ → 0, the prefactor goes to zero and the integrals tend to spectrum-
dependent constants. Thus, the ratio R′

B,kk tends to zero.
Transforming to variables (Kh, ξ∗)= (K/ sinΘ, cotΘ/ cot θ), we have that

R′
B,kk = cos4 θ

4(ω0/ f )2k2
h

∫∞
0 K 4

h dKh
∫ 1
−1 ξ∗

6 Ẽ(Kh, Kv = ξ∗Kh cot θ)(1 − ξ∗2)−1/2dξ∗∫∞
0 K 2

h dKh
∫ 1
−1 ξ∗

2 Ẽ(Kh, Kv = ξ∗Kh cot θ)(1 − ξ∗2)1/2 dξ∗
.

(B9)
Here, we introduce the cylindrical energy spectrum

Ẽ(Kh, Kv)= 2πKh E(K ). (B10)

For an energy spectrum which is vertically homogeneous across the integration domain in
spectral space, Ẽ(Kh, Kv)≈ Ẽ(Kh) and both integrals can be evaluated with respect to
ξ∗. Then,

R′
B,kk = 5 cos4 θ

8(ω0/ f )2k2
h

∫∞
0 K 4

h Ẽ(Kh) dKh∫∞
0 K 2

h Ẽ(Kh) dKh
≈ 5 cos4 θ

8(ω0/ f )2(kh/K∗)2
. (B11)

For small θ , this gives a (ω0/ f )−2 power law.
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ω Absolute wave frequency
ω0 Frequency in the absence of inhomogeneities, called the bare frequency, def. (2.2)
ω1 Inhomogeneity-induced part of ω, def. (2.2)
H Wave-independent height of the rotating shallow-water layer (see figure 1)
�H Fluctuations to mean height H̄ induced by geostrophy (see figure 1 b, def. (2.3))

h/∗ subscripts Denote the horizontal component/characteristic value of a quantity
Bu, Ro Background flow Burger and Rossby numbers, def. (2.6) and (3.36)

L D Rossby radius of deformation Bu1/2/K∗
L∗, H∗, α Background flow characteristic horizontal and vertical length scales, and ratio L∗/H∗ ,

def. (2.16)
Rsw Relative importance of RSW height fluctuation and Doppler shift in ω1 (see figure 2, def.

(2.8))
R′

sw R2
sw , revised relative importance (see figure 2, def. (3.29))

RB Relative importance of buoyancy fluctuation to Doppler shift (see figure 3, def.
(2.18)–(2.19))

R′
B Revised relative importance of buoyancy fluctuation and Doppler shift def. (3.40a,b)

c Leading-order contribution to group velocity of the waves, def. (3.3), with magnitude c
D Diffusion tensor with components Di j as given in (3.7)
Λ Correlation function of ω1, def. (3.10)
γ Angle between the horizontal components of K and k

Eψ Stream function power spectrum, i.e. Fourier transform of 〈ψ(x, t)ψ(x + y, t + r)〉,
def. (3.19)

E(K , Ω) Background flow kinetic energy spectrum, def. (3.20)
E(K ) E(K , Ω) marginalised over frequencies (E(Kh) or E(K , Θ) if horizontally isotropic)
μ, μ̃ Directional diffusivity and non-dimensional counterpart, def. (3.28) and (3.37)
k∗ Forcing wavenumber of waves in § 3.4

Q, P k-independent parts of Boussinesq Doppler shift and buoyancy fluctuation diffusivities,
def. (3.42)

β P/Q
�H2 Topographic variation in height, see (4.1)
B(K ) Topography spectrum, def. (4.4)
H(K ) Spectrum of fluctuations in total water depth, Fourier transform of

〈�H(x, t)�H(x + y, t + r)〉
Table 1. Key symbols in the main text.

The spectrum can be considered vertically homogeneous, even for small θ , because
of the large aspect ratio of the flow, α (2.16). This approximation improves as either θ
or α grows, the former because the integration domain over Θ shrinks. For the flow of
CKV (2023), we find (B11) to be a good estimate of R′

B,kk for cot θ � α, the aspect ratio
of the flow (2.16), i.e. the point at which the integration domain (θ, π − θ) coincides
with the characteristic wavevector of the flow. At this point, θ is not large enough for the
spectrum to appear homogeneous in the vertical and we attribute this better-than-expected
approximation to the prefactor of (B9) varying more quickly than the ratio of integrals
with θ .

Appendix C. Key symbols
This appendix consists of two tables of symbol definitions. Table 1 contains key symbols
found in the main body of the paper. Table 2 contains key symbols found only in the
preceding appendices. In general, wave variables with flow-associated counterparts are
lowercase versions of the flow variables, e.g. wavevector k and flow wavevector K with
spherical components (k, θ, φ) and (K , Θ, Φ), respectively.
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Θ/ε Wave phase (see (A4))
φ Vector of wave amplitudes (u′, h′)T, def. (A5)

B,μ Hermitian matrices, def. (A9a,b), which multiply to give eigenvector problem (A8a,b)
ωin Intrinsic frequency, def. (A10)

a Complex amplitude parameterising eigenspace of Bμ, see (A12)
E Energy density, def. (A13)
DU Advective derivative with U , def. (A15)
cin Group velocity associated with the waves’ intrinsic frequency, def. (A20)

(∇kωin)X,T Subscript indicates X, T are kept constant despite both being implicitly dependent on k
cg Total group velocity, def. (A27)
A Wave action, def. (A28)
Ω Total frequency with explicit k dependence, def. (A29)
� Two-dimensional parameter indexing solutions of (A30) and (A31)
ξ cos γ
ξ∗ cos γ = cotΘ/ cot θ
Ẽ Cylindrical background flow energy spectrum, def. (B10)

Table 2. Key symbols appearing only in the appendices.
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