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Abstract

Let F be a system of polynomial equations in one or more variables with integer coefficients. We show that
there exists a univariate polynomial D ∈ Z[x] such that F is solvable modulo p if and only if the equation
D(x) ≡ 0 (mod p) has a solution.
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1. Introduction

Let P be a univariate polynomial with integer coefficients. A prime p is said to be a
prime divisor of P if p divides P(n) for some integer n. Denote the set of prime divisors
of P by S(P).

Consider the structure of the sets S(P). One may easily prove, by elementary means,
that S(P) is infinite when P is nonconstant. The Chebotarev density theorem proves that
S(P) in fact has positive density in the set of primes (again when P is nonconstant).
However, no simple description of the set S(P) is known in the general case, though
quadratic reciprocity yields a characterisation in the case deg(P) = 2.

One may further ask what one can say about finite intersections S(P1) ∩ · · · ∩ S(Pn).
Again, Chebotarev’s theorem shows that such sets have positive density. Nagell [3]
has given a more elementary argument proving the infinitude of S(P1) ∩ S(P2). A
somewhat easier proof can be found in [2, Theorem 7].

It turns out that such intersections are again of the form S(D) for some D ∈ Z[x].

THEOREM 1.1. Let A, B ∈ Z[x] be nonconstant. There exists a nonconstant polynomial
D ∈ Z[x] such that S(A) ∩ S(B) = S(D).

Let F be a system of polynomial equations with integer coefficients in finitely many
variables. Ax [1] proved that the set S(F) of primes p such that F is solvable modulo
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p may be written as a finite combination of unions, intersections and complements of
sets of the form S(P) with P ∈ Z[x]. This has been improved by van den Dries [4]: one
may write S(F) as a finite intersection of sets S(P). Combining this with Theorem 1.1
immediately gives the following result.

THEOREM 1.2. Let F1, . . . , Fm ∈ Z[x1, . . . , xn] be arbitrary. There exists a polynomial
D ∈ Z[x] such that for any prime p, the system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(x1, . . . , xn) ≡ 0 (mod p)
F2(x1, . . . , xn) ≡ 0 (mod p)
...
Fm(x1, . . . , xn) ≡ 0 (mod p)

is solvable if and only if p ∈ S(D).

Clearly, if there are some G1, . . . , Gm ∈ Z[x1, . . . , xn] such that F1G1 + · · · + FmGm
is a nonzero constant, then there are only finitely many primes p with F1 ≡ · · · ≡
Fm ≡ 0 (mod p) solvable. By the Nullstellensatz, this is equivalent to the assertion
that the system F1 = · · · = Fm = 0 has no complex solutions. In any other case, there
are infinitely many such p [4, Proposition 2.7] and D in Theorem 1.2 is nonconstant.

It seems that the results above are known to experts. However, it is relatively difficult
to find references for the results, especially if one wishes to find elementary treatments.
A proof of Theorem 1.2 (using algebraic geometric language) may be found in [5]. An
elementary exposition, which falls a little short of Theorem 1.1, is given in [2] (in
particular Theorem 11 there).

The purpose of this note is to give a short, self-contained and elementary proof of
Theorem 1.1. Our approach is not far from the ideas of [2]. The proof is constructive,
allowing one to take deg(D) ≤ deg(A) deg(B). This is optimal in the general case (see
the remarks after the proof).

The result of Theorem 1.2 is considerably more difficult: one needs some version of
the Lang–Weil bound to deduce that ‘generic’ systems with m < n are solvable modulo
p for p large enough, and such results are not easy to prove.

2. Proof of Theorem 1.1

We begin by proving that to obtain Theorem 1.1, it suffices to show that for any
monic A, B ∈ Z[x], there exists D ∈ Z[x] such that S(A) ∩ S(B) and S(D) differ by only
finitely many primes. This follows from the following two lemmas.

LEMMA 2.1. Let P ∈ Z[x] and p be given. There exist polynomials P+, P− ∈ Z[x] such
that S(P+) = S(P) ∪ {p} and S(P−) = S(P) \ {p}.

PROOF. Take P+(x) = pP(x). If P(0) = 0, take P−(x) = px + 1. Otherwise, let P−(x) =
P(pk+1x)/pk, where pk is the largest power of p dividing P(0). One easily checks that
this works. �
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LEMMA 2.2. Let P ∈ Z[x] be given. There exists a monic polynomial Q ∈ Z[x] such
that S(P) and S(Q) differ by only finitely many elements.

PROOF. Let c be the leading coefficient of P. One easily checks that the polynomial
Q(x) = cdeg(P)−1P(x/c) works. �

We make the further reduction that A and B may be assumed to be irreducible.
Assume we have proven Theorem 1.1 for irreducible and monic A, B. Now, by Gauss’s
lemma, write A = A1 · · ·Aa and B = B1 · · ·Bb, where Ai, Bj ∈ Z[x] are irreducible and
monic. Let Di,j ∈ Z[x] be such that S(Ai) ∩ S(Bj) = S(Di,j). Then S(A) ∩ S(B) = S(D),
where D is the product of all the Di,j.

Hence, assume A and B are monic and irreducible. Fix any root α of A. As usual,
denote by Z/pZ the integers modulo p and let Z[α] = {P(α) | P ∈ Z[x]}.

LEMMA 2.3. Let p ∈ S(A) be a prime and let a be an integer such that A(a) = 0. There
exists a homomorphism ϕ : Z[α]→ Z/pZ with ϕ(α) ≡ a (mod p).

PROOF. For β ∈ Z[α], write β = P(α), P ∈ Z[x], and define ϕ(β) ≡ P(a) (mod p). This
is well defined, since if β = P1(α) = P2(α), then P1 − P2 has α as its root and thus is
divisible by the minimal polynomial A, resulting in P1(a) ≡ P2(a) (mod p). Clearly, ϕ
is a homomorphism with ϕ(α) ≡ a (mod p). �

Factorise B inQ(α)[x] into a product E1E2 · · ·Et of irreducibles. By Gauss’s lemma,
we may take the coefficients of Ei to lie in Z[α]. Let β1, . . . , βt be some roots of
E1, . . . , Et. By the primitive element theorem, let G1, . . . , Gt ∈ Z[x, y] be such that
Q(α, βi) = Q(Gi(α, βi)). (One may take Gi(x, y) = x + niy for some suitable ni ∈ Z.) Let
Di be the minimal polynomial of Gi(α, βi) and let

D = D1 · · ·Dt.

We show that S(A) ∩ S(B) and S(D) differ by only finitely many primes, which proves
the theorem. This is done in the following two lemmas.

LEMMA 2.4. We have S(A) ∩ S(B) ⊂ S(D) ∪ T for some finite set T.

PROOF. For each i, define D∗i (x) = Di(Gi(α, x)). Hence, D∗i ∈ Z[α][x] has βi as its root,
so D∗i is divisible by Ei. Write D∗i = EiFi, where the coefficients of Fi are polynomials
in α with rational coefficients. Let c ∈ Z+ be such that cFi ∈ Z[α][x] for all i.

Assume p ∈ S(A) ∩ S(B) does not divide c. Let a, b ∈ Z be such that A(a) ≡ B(b) ≡
0 (mod p), and let ϕ be as in Lemma 2.3. Then modulo p,

0 ≡ ϕ(0) ≡ ϕ(B(b)) ≡ ϕ(E1(b) · · ·Et(b)) ≡ ϕ(E1(b)) · · ·ϕ(Et(b)) (mod p).

Let i be such that ϕ(Ei(b)) ≡ 0 (mod p). Now,

0 ≡ ϕ(Ei(b))ϕ(cFi(b)) ≡ ϕ(cD∗i (b)) ≡ cϕ(Di(Gi(α, b))) ≡ cDi(Gi(a, b)) (mod p),

and hence p ∈ S(Di) ⊂ S(D). �

LEMMA 2.5. We have S(D) ⊂ (S(A) ∩ S(B)) ∪ T for some finite set T.
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PROOF. The argument is relatively standard (see, for example, [2, Theorem 2]).
It suffices to show that for any i and any large enough prime p ∈ S(Di), we have

p ∈ S(A) ∩ S(B). We show that p ∈ S(A) for large p ∈ S(Di). The proof for B is similar.
Let γi = Gi(α, βi). By the choice of Gi, there exists P ∈ Q[x] such that P(γi) = α. Now
A(P(γi)) = 0, so we may write A(P(x)) = Di(x)Q(x) for Q ∈ Q[x]. Let c ∈ Z+ be such
that cQ ∈ Z[x].

Assume that p ∈ S(Di) does not divide c nor the denominator of any coefficient of P.
Let d ∈ Z be such that Di(d) ≡ 0 (mod p). Then cA(P(d)) = Di(d) · cQ(d) ≡ 0 (mod p).
Hence, there is a rational number P(d) = r/s with p � s such that cA(r/s) is an integer
divisible by p. A calculation reveals that cA(rsp−2) is divisible by p, corresponding
to the fact that r/s may be interpreted modulo p as rsp−2 (mod p) (by Fermat’s little
theorem), and therefore p ∈ S(A). �

REMARK 2.6. An easy calculation shows the constructed D has degree deg(A) deg(B).

REMARK 2.7. There are A and B such that any D with S(A) ∩ S(B) = S(D) satisfies
deg(D) ≥ deg(A) deg(B). By the Chebotarev density theorem, the density of S(P) is at
least 1/ deg(P) for any nonconstant P ∈ Z[x]. If A and B are such that S(A) ∩ S(B) has
density 1/ deg(A) deg(B) (take A and B to be, for example, the nth and mth cyclotomic
polynomials for (n, m) = 1), then S(A) ∩ S(B) = S(D) implies deg(D) ≥ deg(A) deg(B).

REMARK 2.8. Combining the results of the previous remarks shows that the density of
S(P1) ∩ · · · ∩ S(Pn) is at least 1/ deg(P1) · · · deg(Pn) for nonconstant Pi. Some equality
cases are given by quadratic or cyclotomic polynomials.

REMARK 2.9. With slightly more care, one can prove the following strengthening of
Theorem 1.1: for any A, B, there exists D such that A(x) ≡ B(y) ≡ 0 (mod m) is solvable
if and only if D(z) ≡ 0 (mod m), where the modulus m is not necessarily a prime.
(One needs the following consequence of Hensel’s lemma: if P ∈ Z[x] is given, for all
but finitely many primes p ∈ S(P), the equation P(x) ≡ 0 (mod pk) is solvable for any
k ∈ Z+.)
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