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Abstract

The problem of determining the temperature, displacement and stress fields
around a single crack in an anisotropic slab is considered. The problem is
reduced to Fredholm integral equations which may be solved numerically.

1. Introduction

It is now widely accepted that the behaviour of some anisotropic materials closely
models the behaviour of certain fibre-reinforced composites (see, for example,
Spencer [10]). This has caused a renewed interest in anisotropic materials in
recent years, and a number of new solutions to boundary-value problems have
been obtained. Specifically, Clements [4, 5] has presented solutions to problems
involving cracks in anisotropic slabs and anisotropic layered materials while
Tauchert and Akoz [13], Ak6z and Tauchert [1], Clements [6], Clements and Toy
[8], Atkinson and Clements [2] and Chang [3] have solved various thermostatic
and thermoelastic problems for anisotropic materials. References to various
other works in this area may be found in the review article by Tauchert [12].

In the present paper the problem of determining the temperature, displacement
and stress fields around a crack in an anisotropic slab is considered. The bounding
planes of the slab are subjected to an arbitrary temperature distribution and
arbitrary tractions. Over the crack the heat flux and the tractions are prescribed.
For these boundary conditions the problem is reduced to a number of Fredholm
integral equations which may be solved numerically. Numerical results are
obtained for a particular transversely isotropic material and the results are used
to make some qualitative comments about the nature of the stress near the crack tip.
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2. Statement of problem and basic equations

Take Cartesian coordinates x;, x,, x; in 2 homogeneous anisotropic elastic slab.
Contained in the slab is a crack in the region x; = 0, | x| <a, —c0 < x; <00 (Fig. 1).
On the faces of the crack the heat flux and the tractions are prescribed. On the
faces of the slab at x, = + & the temperature and tractions are prescribed. It is
required to find the dispiacement and stress fields throughout the slab.
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Fig. 1. Location of the crack in the slab.

In Clements [6] some representations are derived for the temperature T, displace-
ment u;, and stress o;; in an anisotropic material. These representations take the
form

=12 f " A(p) exp (ipz") dp, @.1)
T Jo
w, =2 % f:{E Apo E(p)exp (ip2,) +Cp A(p) p=exp (ipz')} dp, 22)

oy = 32 [ (S Lya ED)ipexp (pza) + (Ny=Bi) AD)exp (o2 Vo, 23)

where Z denotes the real part of a complex number and A(p) and E(p), « = 1,2,3,
are functions to be determined from boundary conditions. Also, in (2.1)—(2.3) the
constants 7 (in 2’ = x;+7x), p, (in z, = X3+ Py Xy), Ay Cp» Lyj and Ny; are
related to the coefficients of heat conduction A, the elastic constants c;;;;, and the
stress-temperature coefficients B;; in a way which is indicated in Clements [6].
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At this point it is appropriate to note that the repeated suffix summation con-
vention (summing from 1 to 3) will be used throughout the paper for Latin
suffices only. Summation over Greek suffices (also from 1 to 3) will always be
indicated explicitly.

The representations (2.1)-(2.3) tend to zero as x,—co. The corresponding
expressions for T, u, and o; which tend to zero as x,—> —oo will also be useful
in the subsequent analysis. They may be derived by following the procedure used
in Clements [6] and take the form

T= —1.% fwA@) exp (—ipz')dp, (2.9
T 0
Uy = %% f :{El Ao E(p)exp(—ipz)~ Cr A(p)p~ exp(—ipz)ydp,  (2.5)

05 =2 f:{z Lyja E(P)ip XD (= ip2,)— (iNyy— Biy) A(p) exp (— ip2 )} dp,
2.6

where, as in (2.1)(2.3), the A(p) and E(p), o = 1,2,3, are unknown functions
which will be determined from the boundary conditions. The constants in (2.4)-
(2.6) are the same as those in (2.1)+(2.3).

For the purposes of the present paper, it is convenient to write the temperature,
displacement and stress as the sum of three fields. Specifically, we write

T=TW4+T® L TO 2.7
up = u +ul® +uf®, (2.8)
o5 = o + 0B + o, 29
where, from (2.1)-2.3),
o=l L”Am(p)exp(fpz') dp, 2.10)

1 0
upl =-2% f , E A EL@)exp(ipz) + C AV (P)p~ exp(ip2)hdp, 211
&

1 © .y
of}) = b 2 fo {.? Ly EX(p)ip exp (ipz,) + (iNy; — Byy) AV (p) exp (ipz')}y dp (2.12)
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and, from (2.4)2.6),

T® = 5‘% f :A‘Z’(P) exp (—ipz')dp, @213
= 2 f (S Auu EQ@)exp (- 2)~ Co AP exp(~ip oy (214)

1 © , . . "
“g) =- 7’;'% fo {EJ Ly EQ (D) ipexp(—ipz,)— (iNy;—By) A®(p) exp (—ipz')} dp.

(2.15)
For T, uf® and of$’ we consider the regions 0 <x,<h and —h < x,<0 separately.
Hence
T® = ;-lr.%f A+(pyexp(ipz')dp for O<x,<h, (2.16)
1]

1 @ . -
4P = 2 [ (S A BB exp 92+ Cu A*Bp exp (2}

for O<x,<h, .17
o = 2 [ (S Ly B0V ipexp 2+ iNy—B) A*(P) exp (02 o
for O<x,<h, (2.18)
T® = ;-lr.% fwA‘(p) exp(~ipz')ydp for —h<x,<0, 2.19)
)

1 -] .
u@® = ;;92 fo {¥ Ay EZ(p)exp(—ipz,)— C, A~(p)p~texp(—ipz')} dp
@
for —h<x,<0, (2:20)

1, (® . . . L
o =——% fo {Z Liyo EG(p) ipexp(—ipzo) — (iNyy—Byy) A~(p) exp (— ip2')} dp
for —h<x,<0. 2.21)

3. Temperature field

On x, =0, | x,| < a the heat flux is prescribed so that the boundary condition in
this region is

or or
—t Ay —=— . N
A2 3x1+ o, S(x) (3.1)
Also, the temperature T is prescribed on the faces x, = + 4 of the slab so that

T=g(x) onxy=h 3.2)

https://doi.org/10.1017/50334270000002058 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000002058

[5] A thermoelastic crack problem 247

and
T=gyx) onx,=-—h 3.3)

where g, and g, are given. We wish to find the temperature field throughout the
slab.

A solution to this problem has been obtained by Clements and Tauchert [7].
The temperature is given by (2.7), (2.10), (2.13), (2.15) and (2.19) with

A*(p) = (Mg + A )72 A(p), 34
A7(p) = (M2 + A, D)7 A(p), (3.5)
AV(p) = Q(p) A(p)+ U(p), (3.6
A®(p) = Q(p) A(p) + ¥ (p), (€X))

where the bar denotes the complex conjugate and the functions Q(p), U(p),
V(p) are given by

0(p) = ~{(+ dg DL exp p(r — D Hl— O+ dg DI D, (3B)

U(p) = [By(p) exp (— ip7h) — By(p) exp (ip7h)] D, (3.9)
V(p) = [~ By(p) exp (ipTh) + By(p) exp (—ip7h)] D (3.10
with
D = {exp [ip(r—7) h]—exp [— ip(r—7) h]} L 3.1
and B(p) and B,(p) may be determined from the equation
;192 f “B((p)exp(ipx)dp = g(x,) fori=1,2. 3.12)
0
The A(p) in (3.4)~(3.7) is given by
A(p) = J s L(pHdi+i far(t) J(pt)dt, (3.13)
0 0
where s(¢) and r(t) are obtained from the Fredholm equations
a ¢ AW du
r(t)+tj0 KO, tyr(u)du =1t _4-112_—F)_* for0<r<a, 3.19
a L ufi(w)du
s(,)_,_,fo KWYu, t)s()du = _.721_—-u_2)5 for 0<t<a, 3.15
where
K200 = [ "S() 1) o1y dp. (3.16)
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In (3.16) Jy denotes the Bessel function of order N, while

S(p) = 2Z[(A2+ A2 7) O(P))- (3.17)
Finally, the fi(#) in (3.14) and (3.15) is defined by

£ = 16+ 1. [ T0G) (uat X+ P(0) Qg+ D Dl exp () p . (3.18)

4. The displacement and stress fields

As indicated in Section 2, the displacement and stress components are written
as the sum of three separate fields #?’ and o{’ for p = 1,2,3. Now uf’ +u{? and,
o’ + 02 are given by (2.11)+2.15) and are continuous throughout the slab.
In O<x;<h uf}) and o{? are given by (2.17) and (2.18) while in —/4<x,<O0 these
quantities are given by (2.20) and (2.21). Hence the requirement that the stress
o;, be continuous across x, = 0 yields

ip [%: {Lisg EZ(D)— Ling EZ(D)}] + [Ny AH(D) + Nip A=(0)] — Bia[ A () — A~(p)] = 0.

.1
Equation (4.1) may be rearranged to yield

% Lipo EZ(p)+p71 A*(p) {Nyg +iBig} = %3 Ly Eg(pP)—p A~ (0){Nip—iBis}. (4.2

Denoting these expressions by F,(p) we obtain

E}(p) = My Fi(p) — Myl Ny +iBin} A*(D) P, 4.3)
Ez(p) = My Fi(p) + My Niy+ 1B} A~(p) 7%, (44)

where
%‘,Lm M,; = &;. 4.5)

The displacement u;, on x, = 0 outside the crack must be continuous and hence,
from (2.17) and (2.20),

24 f :@ {Ake EZ(P) ~ Ao ES(P +Cr A¥ (D) p7* + C A~(p) p~ ] exp (ipxy) dp
=0 for|x|>a. 4.6)
Use of (4.3) and (4.4) in (4.6) yields

1 j: [Hys F(p)+ Ri(p)lexp (ipx)dp = 0 for | x,|>a, “.7
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where
Hy, = Bks_Bks’ By =X Agy My
o

Ry(p) = {~ By Nz +iBr) + Ci} A*(p) p~*
+{—B(Np—iB)+ C3 A-(p)p71. 4.8)

On x, = 0 over the crack the tractions oy, = Py(x,) are prescribed. Hence, from
(2.9)2.21), we obtain

1—17-% fm{Fi(P) P+ (Ligg EX + Ligy ER) ip+(iNip — Bi2) AM(p)
1] [+3
+(—iNp—Bi) AP(p)}exp (ipx,) dp = P(x;) for |x,|<a. 4.9
Also, on x, = + A the tractions are prescribed. Hence
¥ Loy EQ(p)ip exp(ippo 1)+ X Lygo E2Y(p) ip exp (ipPy )
=- [% Liou M,; F(p)ip exp (ipp h) — § Lype Mo f{Njp + B0}
x A*(p) iexp (ippy h) +(iNyz — Bio) AV(p) exp (ipth)
+(—iNp— Bi) A®(p) exp (ip7h) + (iNa— Bip) A*(p) exp (ipTh))
+Gy(p), (4.10)
3 Lo EX(p)ipexp(—ipp  h)+ g] Ly EP(p)ipexp(—ippy,h)
=- [% Ly M,; Fy(p) ip exp(—ippy h)+ %: Lipy Myf(Ni2—iBi2)
A~(p)iexp(—ippyh)+ (iNp—Bi) AV (p)exp(—iprh)
+(—iN,;—Bi) AP(p)exp (- ip7h) +(—iNp—Bio)

x A-(p) exp (— ipTh)] + Gl) @.1)

where
29[ Gulw) exp o) dp = gax, @.12)
29 | "Gup)exp ipx) dp = g @.13)

In (4.12) and (4.13), g, (x,) and g;(x,) are the specified tractions on x, = & and
X, = — h respectively.
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250 D. L. Clements and T. R. Tauchert (8]
It is convenient at this stage to introduce the matrices
R = [Lygaexp(~ippoh)), S = [Lepy exp (iPPo )],
M=[M,l, G=I[G], H=[H) (4.14)
ED =[ED] forI=1,2, F=][F,)
Hence (4.10) and (4.11) may be written
SEV+RE® = —-SMF+G, 4.15)
REW 4+ SE® = _ SiF+ H, (4.16)

where the precise forms for G and H may be readily obtained by comparing (4.10)
and (4.15) and also (4.11) and (4.16). Equations (4.15) and (4.16) may be used to
solve for E®W and E®, We obtain

EWV = QF+ X, 4.17)
E® =QF+Y, 4.18)

where
Q=—(R1S-81R)(R1SM—-M), 4.19)
X=(R1S-S-1R)YR'1G-S1H), (4.20)
Y=(R1S-S1R)YR1H-51G). “4.21)

Substitution of (4.17) and (4.18) into (4.9) gives
2 [ "o+ TP Fiipexppx)dp = 2 for|nl<a,  (422)
in which

i) = wB5)~ [T (L Xa0)+ L Tul P ipexP () o

=2 [ "N ) AV~ (i) AV exp o)y (429)

and
T;(p) = 2% %I Lyzo Qor(P)- (4.24)

Returning to (4.7), we note that the matrix H,, is non-singular (see Stroh [11])
and hence there exists an inverse matrix Uy, such that

U]k Hks = 818‘ (4.25)
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Thus, equation (4.7) can be written as
R fo [Fi(P)+U,; Ri(p)liexp (ipx))dp = 0 for |x,|>a. (4.26)
Now equation (4.22) may be rewritten as

P f:[F,-(p)w,-k Ru(P)+ Ty(p) FF(p)+ Us, R,(0))]

x ipexp (ipxy) dp = F(x;) for|x|<a, 4.27

where

Hx) = P+ R f:[U,-kRk(pHT,-k(p) Ui, R(P)]ipexp (ipxy)dp.  (4.28)

ZF(p) = Fi(p)+Uy; Ri(p)- (4.29)

Then (4.26) and (4.27) yield

Rz fw.%c( p)iexp(ipx;)dp =0 for [x,|>a, (4.30)
o

R fo (Z(p) + Tju(p) Zalp)lip exp (ipx) dp = Fx;) for |x,|<a.  (4.31)
Equation (4.30) will be satisfied if Z(p) is taken in the form
Fp) = fask(t) Ji(pt)ydt+i Joark(t) Jo(pt) dt, (4.32)
0

where s;(¢) and r(t), k = 1,2,3, are real functions to be determined and J, and
J; are Bessel functions of order zero and one respectively. Use of (4.32) in (4.31)
yields

f * peos (px,) dp f “ri) I pry dt + f " T;(p) p cos (pxy) dp J “r ) I pt) dt
0 0 ) 0
= —3Hx)+F—x)] for|x|<a, 4.33)
fw psin(px,)dp f asj(t) Ji(pt)dt+ j °0T,,‘(p) psin(px;)dp fask(t) Ji(pt) dt
) 0 0 )
= —3F(x) - F(—xp) for|x|<a. (4.34)
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Interchanging the order of integration and using standard results for Bessel
functions we obtain

d z d © a
dx, fo G%(t—)_tz%i f "(p)pcos(l’xl)dpf ri(1) Jo(pr) dt

= —3[F(x)+ F(—x)] for 0<x;<a, (4.35)

d 1 d . a
Lay (‘?S(‘)T)‘puf Tu(p)psin(px) dp [ st 1o

X, dx,
= —3}[FxD)—-F(—x)] for0<x;<a. (4.36)
These Abel integral equations may be inverted to yield
a t [t F(u)du
rj(t)+ t j; K}}’c’(u, 1) rk(u)d = ~ _tzth—uz)-;} forO0<t<a, (4.37)
t uS(u)du
(1 =
si(t)+t¢ f K (u, ) 5, (u)du = oo for O<t<a, (4.38)
where standard results for Bessel function have been used to obtain K}’ in the
form
K@) = [ “Tuo) Iow 1np0)p . (439)

Equation (4.37) constitutes three simultaneous Fredholm integral equations for
the r;(¢) while (4.38) constitutes three similar equations for the s,(t). These equations
may be solved numerically and then %, (p) may be found through (4.32). Equations
(4.29), (4.3) and (4.4) then yield E}(p) and E;(p) while (4.29), (4.17) and (4.18)
yield EWV(p) and E®(p). Hence the displacement and stress distributions through-
out the slab may be calculated from (2.7)-(2.21).

5. Numerical results

The stress o;5(x;, 0) near the crack tip at » = g takes the form

where r = x,—a with x; >a and the K; are constants. In this section we use the
analysis of the previous sections to determine the values of the K; for a particular
transversely isotropic material.

For transversely isotropic materials with the x; and x, axes lying in the trans-
verse plane, the non-zero stiffness ¢y, the coefficients of linear thermal expansion
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o5, and the thermal conductivities Ay are

€11 = C2029, Cr13s = C2233> C1313 = Coaes> Craoes
Casss Crz12 = (Cran — Cuize)f2,
gy = Ogpy Oz, Ay = Aggy Aga:
If a rotation of « about the x, axis is followed by a rotation of § about the x;

axis, then the constants referred to the rotated frame are

’ ' r
Ciitd = Qi Bin Cp Ug Cmnpg> Bij = Qi Ajp, :Bmm Aij = Qi Ajp Amn’
where
cosa —sinasind —sinacosd

l[ayl = 0 cos § sin 0

—sine  —cosasinf cosaxcosf

For illustrative purposes we consider the constants for a crystal of zinc. Referred
to symmetry axes with the x; axis normal to the transverse plane the constants are

le = 16.5, 61122 = 3.1, Cn33 = 5, 03333 = 6.2,
Ci1313 = 3.92, 106 Q4 = 60-8, 106%3 = 14.3, Au/Aaa = 1.17-

If the elastic constants are multiplied by 101! then the units for these constants are
dynes/cm?, while the coefficients of thermal expansion are for a temperature
increase of one degree centigrade.

Consider a slab with A/a = 20, Further let @ = 1 and suppose the crack faces and
slab faces x, = + & are traction free. Also suppose the temperature on the slab
faces is zero while over the crack the heat flux is constant so that, in (3.1),

SO = fo,

where f; is a constant. The values of K; for various combinations of the angles «
and 6 are given in Table 1. The quantity K, in the table is X; calculated for « = 0

and 6 = =/2.
TABLE 1
o 0 0 /4 /4 /3 /2
(7] 7f2 /4 0 /4 /6 0
K;/K, 1 1.46 1.19 -1.72 —1.52 0.85
K,/K, 0 0 0 1.35 1.22 0
K;/K, 0 0 —-2.02 0.85 1.12 0
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When « =0 and 6 = #/2, each of the planes x; =0, i=1,2,3, is a plane of
elastic symmetry and it is clear from Table 1 and equation (5.1) that, in this case,
the stress oy, is singular in the plane of the crack but o,, and o3, do not exhibit
singular behaviour.

When o =0 and 6 = #/4, the x; = 0 plane is a plane of elastic symmetry but
the x, = 0 and x3 = 0 planes are not planes of the crack is similar to the above
case when o = 0 and § = #/2.

When o = n/4 and 6 = 0, the x, = 0 plane is a plane of elastic symmetry while
the x; = 0 and x; = O planes are not planes of elastic symmetry. In this case both
oy, and gy, exhibit singular behaviour in the plane of the crack while o, does not
exhibit singular behaviour.

When o = 7/4 and 8 = #/4, or « = /3 and 8 = #/6, none of the planes x; = 0,
i=1,2,3, are planes of elastic symmetry and all the stresses oy, i = 1,2, 3, exhibit
singular behaviour.

When « ==/2 and 8 =0, each of the planes x; =0, i=1,2,3, is a plane of
elastic symmetry and the singular behaviour of the stress in the plane of the crack
is similar to the first case considered above when « = 0 and 6 = #/2.

It is of interest to compare these results with those obtained by Sih [9] for the
thermal stress singularity at the tip of a crack in an isotropic material. Sih’s results
show that a constant heat flux over the crack face gives rise to a singular stress
oy, in the plane of the crack while the stresses oy, and oy remain non-singular.
The results obtained here indicate that this situation also holds true for anisotropic
material provided the x; = O plane is a plane of elastic symmetry. However, if the
x; = 0 plane is not a plane of elastic symmetry, then at least one of the stresses
0y and o, is singular in the plane of the crack.

Finally, we note that the displacements induced by purely mechanical loads
applied to the surfaces of the anisotropic slab with the crack stress-free have been
studied in detail in a previous paper (Clements and Tauchert [7]). An analysis of
temperature-induced displacements can be carried out in a similar fashion using
the present formulation.
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