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The stability of inviscid Beltrami flow between
parallel free-slip impermeable boundaries
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We present a family of exact inviscid three-dimensional Beltrami flows in a horizontally
periodic domain lying between two parallel free-slip boundaries. Significantly, these flows
are not stress free: the horizontal vorticity varies on each boundary. Using direct numerical
simulations (employing horizontal hyperdiffusion only for numerical stability), we find
that the largest-scale member of the family is unstable and breaks down into anisotropic
turbulence, with relatively large horizontal vorticity at and near each boundary, and
associated surface frontal features. We conjecture that all members of the family are
similarly unstable. The free-slip boundaries play an important role in the late stages of
the instability by constraining the deformation of vortex lines near the boundaries. This
study appears to be the first to consider the role of boundary horizontal vorticity in an
inviscid context.
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1. Introduction

In this paper, we develop a novel direct numerical simulation method to solve the
three-dimensional (3-D) incompressible Euler equations in a domain with free-slip
impermeable boundaries, for a special class of Beltrami flows having vorticity proportional
to velocity known as Trkalian flows (Trkal 1919). Importantly, these flows have non-zero
stress – equivalently, non-vanishing horizontal vorticity – on each boundary. As a result,
they cannot be studied using stress-free boundary conditions, which are almost always
adopted in conjunction with free-slip (inviscid) boundary conditions (see van Reeuwijk,
Jonker & Hanjalić 2006; Pimponi et al. 2016; Fantuzzi 2018; Lellep et al. 2021; Marichal
& Papalexandris 2022, for some examples from the recent literature). Special, generalised

† Email addresses for correspondence: david.dritschel@st-andrews.ac.uk, mf248@st-andrews.ac.uk

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 954 A31-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:david.dritschel@st-andrews.ac.uk
mailto:mf248@st-andrews.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.1007&domain=pdf
https://doi.org/10.1017/jfm.2022.1007


D. Dritschel and M. Frey

numerical methods are required to handle the situation studied here, which presents much
greater challenges compared to the often studied stress-free situation.

We examine a specific broad-scale Beltrami flow in a horizontally-periodic domain.
While the flow is steady in theory, instability is triggered by very-low-level numerical
noise. Such instability is generally expected for Euler flows, as none satisfy the Arnol’d
conditions for stability (Rouchon 1991). We find that after a period of time that is long
compared to the eddy turnaround time 4π/|ω|max, where ω is the vector vorticity at the
initial time, the flow breaks down in a way that appears to be independent of numerical
resolution. Thereafter, the vorticity magnitude rises sharply and the flow becomes
turbulent, developing an energy spectrum having a power-law decay in total wavenumber
with slope close to −5/3, as theorised by Kolmogorov (1941) and Onsager (1945). As
the flow decays (here due to horizontal hyperviscous damping), it becomes increasingly
anisotropic due to the faster decay of the interior flow relative to the near-boundary
flow. The boundaries constrain the bending and twisting of vortex lines, leading to this
anisotropy. Notably, we observe intense front formation – near discontinuous variations
of the surface velocity field – reminiscent of actual atmospheric flows (see Hoskins 1974;
Hoskins, Neto & Cho 1984; Clark, Parker & Hanley 2021) despite the absence of buoyancy
or temperature variations in the model studied here.

Beltrami flows occur, for example, in helical flows such as rotating thunderstorms (see
Lilly 1986a,b; Brandes, Davies-Jones & Johnson 1988, and references therein), but also
in magnetohydrodynamics (see Rudraiah 1970; Dritschel 1991; Chen & Yuen 2021). In
the latter, a force-free magnetic field B satisfies ∇ × B = κB, where the scalar κ may
vary in space but is constant along field lines. The analogous hydrodynamical situation is
ω = ∇ × u = κu, where u is the velocity field, and κ is constant along streamlines (both
situations are considered in Dritschel 1991). Below, we consider the simplest special case
where κ is constant throughout space (Trkal 1919). We also discuss briefly the extension
to magnetohydrodynamics.

There is a deep connection between Beltrami flows and the helicity invariant in Euler
flows, first discovered by Moreau (1961) in the hydrodynamical context. This invariant
is associated with the ‘knottedness’ of vortex lines (Moffatt 1969), and has been used to
prove the existence of a wide class of Beltrami flows in R

3 (Enciso & Peralta-Salas 2015).
Helicity is conserved over any material volume bounded by vortex lines, i.e. vortex tubes,
a result that depends only on the form of the vorticity equation (as discussed and extended
in Moffatt 2018).

The numerical study below is conducted in the absence of any external forces and
by casting the Euler equations into vorticity form. The horizontally periodic flow is
confined vertically between parallel plates with free-slip impermeable boundaries. The
only boundary condition that we apply is no normal flow, w = 0, where w is the
vertical velocity component. Importantly, we do not also impose the stress-free condition
∂u/∂z = ∂v/∂z = 0, tantamount to imposing zero horizontal vorticity. The Beltrami flows
considered do not satisfy these conditions, and moreover, permitting non-zero horizontal
vorticity is necessary in other applications, in particular to density-stratified flows where
baroclinic processes generate horizontal vorticity, including on the boundaries, when
density (or temperature) is permitted to vary there (Gill 1982; Vallis 2006).

A survey of the literature indicates that, without exception, past studies of bounded
3-D flows have imposed both no normal flow and stress-free conditions, even when
density variations are included (see e.g. Wen et al. 2020). Numerically, this is convenient
especially for spectral methods, since either a sine or a cosine series in the vertical
coordinate z can be used to satisfy exactly all of the boundary conditions (see below
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Inviscid Beltrami flow between free-slip boundaries

for details). Moreover, such series are compatible with the relation between vorticity and
velocity, ω = ∇ × u, as well as the isochoric and solenoidal conditions ∇ · u = 0 and
∇ · ω = 0. The general inviscid situation where the horizontal vorticity is allowed to vary
on each boundary cannot be treated this simply, as explained in § 3. As far as we are aware,
there is no numerical method available that consistently treats this case in 3-D flows.
With the exception of the vertical velocity component w, one cannot assume Dirichlet
or Neumann boundary conditions, nor indeed any boundary conditions.

Lam & Banerjee (1992) investigated the effect of shear near surfaces using no slip
and free-slip (including stress-free) boundaries. Their pseudo-spectral method employed
Chebyshev polynomials in the direction normal to the surfaces. Similarly, Pan &
Banerjee (1995) applied this approach to study turbulence in a channel flow configuration
with a free-surface (e.g. an air–water interface). In a study of potential singularity
formation starting from anti-parallel vortices, Kerr (1993) introduced a poloidal-toroidal
decomposition of the velocity field and expanded the required functions in Chebyshev
polynomials in the coordinate perpendicular to the symmetry plane to enhance resolution.
His method, however, exploits symmetry to enforce the free-slip condition on the
symmetry plane, by using functions that are either even or odd. This symmetry is not
general, and is not characteristic of the Beltrami flow studied here. Instead of Chebyshev
polynomials, an alternative is to use staggered grids as introduced by Arakawa & Lamb
(1977). In Shen et al. (1999) and Li & Yang (2019), for example, the vertical velocity
component w is shifted by half a cell width from the regular grid points. Staggered grids,
however, are inconsistent when the boundaries contain non-zero horizontal vorticity, since
the latter involves vertical derivatives of the horizontal velocity, and this is located on the
wrong grid. One would ideally like to represent horizontal vorticity on the ‘half’ grid,
but this is consistent only when the horizontal vorticity vanishes on the boundaries like
vertical velocity. A different approach is required, as argued in § 3. Notably, free-slip and
stress-free conditions are commonly used in idealised atmospheric studies, e.g. of squall
lines (Fovell & Tan 2000).

A common expedient used to control the energy cascade and prevent the build up of
energy at the grid scale is to add hyperdiffusion to the evolution equations, since this
permits one to mostly limit the numerical damping to small scales, compared to ordinary
(molecular) diffusion (for a discussion, see Frey, Dritschel & Böing 2022). However, the
presence of free-slip boundaries requires additional boundary conditions for consistency
(Jones & Roberts 2005). While these can be enforced readily in the stress-free situation
discussed above, they cannot in the Beltrami flow problem that we address in this paper, or
in any situation where there is non-zero horizontal vorticity on the boundaries. Invariably,
any attempt to apply hyperdiffusion using a compound 3-D Laplace operator magnifies
numerical errors near the boundaries, eventually causing the energy to blow up at later
times.

To overcome this issue, here we propose a mixed pseudo-spectral approach where
prognostic (evolution) variables are decomposed in a mixed spectral form, consisting of
a part that vanishes at each boundary (represented as a sine series in z), and two other
parts accounting for non-zero boundary values. These other parts are harmonic functions
(solutions of Laplace’s equation) that vanish on the opposite boundary. These functions
arise from a variational problem where one seeks to minimise the squared gradient of
a field interpolating between known boundary values over the domain while enforcing
boundary values. To avoid the problem with hyperdiffusion discussed above, instead
a compound two-dimensional (2-D) Laplace operator is employed. Finally, we use the
less aggressive but effective filter of Hou & Li (2007) as a replacement for the ‘2/3’
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de-aliasing rule. Such a filter is essential to control aliasing errors that may otherwise lead
to code divergence and spurious small-scale features.

The paper is organised as follows. In § 2, we start with the vorticity form of the Euler
equations and derive a class of (steady) Beltrami flows confined between two parallel
free-slip boundaries. Next, in § 3, we provide a detailed description of the new numerical
method developed to be able to study the instability of these Beltrami flows, and indeed
any flow with non-zero horizontal vorticity on the boundaries. For such flows, there are no
symmetries to exploit and great care is required to avoid spurious numerical artefacts. Our
main findings are reported in § 4, where we examine the instability growth, saturation and
decay for a wide range of numerical resolutions. The paper concludes with a summary and
outlook in § 5.

2. A class of Beltrami flows

2.1. Hydrodynamic Beltrami flows
We consider the incompressible Euler equations in vorticity form, ignoring any body
forces,

ωt = ∇ × (u × ω), (2.1)

∇ · u = 0, (2.2)

where u(x, t) = (u, v,w) denotes the velocity field, ω(x, t) = (ξ, η, ζ ) denotes the
vorticity field, and subscripts t, x, y and z denote partial differentiation. Furthermore, we
have ω = ∇ × u, which effectively provides u given ω (see below). It follows that the
vorticity is solenoidal, ∇ · ω = 0, and by (2.1) it remains so for all time.

The domain is horizontally periodic (or may be unbounded), and confined between
parallel free-slip boundaries at z = zmin = −Lz/2 and z = zmax = Lz/2 without loss of
generality. On these boundaries, the vertical velocity must vanish, w = 0. No other
boundary conditions apply. No others are required to recover the velocity field from the
vorticity field, as shown below.

We now assume that the flow is of Beltrami type. Such flows are characterised by
vorticity being everywhere parallel to velocity, so that u × ω = 0 and the flow remains
steady. In general, we may take

ω(x, t) = κ u(x, t) (2.3)

for some scalar field κ that is constant on streamlines (curves tangent to u). Here,
we consider the special case where κ is a non-zero constant (then the flow is known
as a Trkalian flow; see Trkal 1919). Using the relation ω = ∇ × u, it follows that the
flow is determined from the solution to the linear equation ∇ × u = κu, subject to the
homogeneous boundary conditions on the vertical velocity w.

We start by seeking a solution of the form u(x) = Re{û(z) eiϕ}, where Re denotes the
real part, and ϕ = kx + ly is the horizontal phase, while k and l are arbitrary non-negative
wavenumbers (but k2 + l2 > 0). First, we must ensure incompressibility, ∇ · u = 0:

ikû + ilv̂ + ŵ′ = 0, (2.4)

where a prime denotes an ordinary z derivative. Linearity allows us to strip away the phase
dependence eiϕ and ignore the real part, since Re{f̂ eiϕ} = 0 can be satisfied for all ϕ if
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Inviscid Beltrami flow between free-slip boundaries

and only if f̂ = 0. Next, it is useful to consider the vertical component of ∇ × u = κu,
namely vx − uy = κw:

ikv̂ − ilû = κŵ. (2.5)

Combining (2.4) and (2.5), we have

û = i
kŵ′ + lκŵ

k2 + l2
, v̂ = i

lŵ′ − kκŵ
k2 + l2

. (2.6a,b)

Now we consider the x component of ∇ × u = κu, namely wy − vz = κu:

ilŵ − v̂′ = κû. (2.7)

Replacing û and v̂ by their expressions in (2.6a,b), we find after some simplification a
linear, constant-coefficient, second-order equation for ŵ:

ŵ′′ + (κ2 − k2 − l2)ŵ = 0. (2.8)

The same equation follows from the y component of ∇ × u = κu.
Let m = √

κ2 − k2 − l2 denote the vertical wavenumber. Note that m must be real to
satisfy the homogeneous boundary conditions at z = −Lz/2 and Lz/2, and indeed, m =
(2j − 1)π/Lz for any positive integer j. Then the solution is ŵ = A cos mz for arbitrary A,
and the constant is κ = ±√

k2 + l2 + m2.
Taking A = 1 without loss of generality, the horizontal velocity amplitudes from

(2.6a,b) are

û = −i
km sin mz − lκ cos mz

k2 + l2
, v̂ = −i

lm sin mz + kκ cos mz
k2 + l2

. (2.9a,b)

Hence, since Re{−i eiϕ} = sin(kx + ly), the Beltrami flow in physical space is

u(x) =

⎧⎪⎨
⎪⎩
(k2 + l2)−1(km sin mz − lκ cos mz) sin(kx + ly),
(k2 + l2)−1(lm sin mz + kκ cos mz) sin(kx + ly),
cos mz cos(kx + ly).

(2.10)

The corresponding vorticity is ω = κu. Note that any linear superposition of these
solutions having the same value of κ is still a steady Beltrami flow.

One can show that ‖ω‖max = κ
2/

√
k2 + l2, and this occurs at locations where both

cos(kx + ly) = 0 and sin mz = 0, i.e. along horizontal lines in the planes z = nπ/m =
nLz/(2j − 1), for positive integers j, and integers n satisfying |2n| < 2j − 1. Note that m =
(2j − 1)π/Lz has been used, which ensures w = 0 along z = ±Lz/2.

Note that the solution derived above is similar to the viscous decaying Beltrami flow
solution derived by Shapiro (1993). An important difference is that the latter applies only
to fully periodic boundary conditions (including those in z). The form of the solution
also differs as a result. Shapiro (1993) points out that Beltrami flows are inconsistent with
either no-slip or stress-free boundary conditions. But as we show here, Beltrami flows are
consistent with free-slip boundary conditions having non-zero horizontal vorticity (stress).

For a Beltrami flow, the pressure field p (for unit density ρ) satisfies the Bernoulli
relation ∇( p + 1

2 |u|2) = 0 since u × ω = 0. (This follows from the steady form of the
momentum equations after making use of a vector identity.) Without loss of generality,
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we can take the global mean pressure to be zero in an incompressible flow, leading to the
result

p = 1
4

(
m2

k2 + l2
cos(2kx + 2ly)− cos(2mz)

)
. (2.11)

This satisfies pz = 0 on each boundary, as required. In the incompressible 3-D Euler
equations, the pressure is determined from the divergence of the momentum equations,
namely

∇2p = −∇ · ((u · ∇)u) = 2(Jxy(u, v)+ Jyz(v,w)+ Jzx(w, u)), (2.12)

where Jab( f , g) ≡ fagb − fbga is the Jacobian. This leads to the same result for p in (2.11)
when the Beltrami flow solution in (2.10) is used.

Finally, the domain-average kinetic energy K of the Beltrami flow (2.10) is

K = 1
4

(
1 + m2

k2 + l2

)
. (2.13)

The domain-average enstrophy (the mean-square vorticity divided by 2) isΥ = κ
2K. Only

energy K and helicity H (see below) are conserved by the time-dependent Euler equations.
Below, we monitor K, H and Υ in numerical simulations starting from a specific (weakly
perturbed) Beltrami flow.

2.2. Magnetohydrodynamic Beltrami flows
The equations governing inviscid, incompressible magnetohydrodynamics (see e.g.
Chandrasekhar 1981; Dritschel 1991; Tobias 2021) in vorticity form are

ωt = ∇ × (u × ω + j × B), (2.14)

Bt = ∇ × (u × B)+ νB ∇2B, (2.15)

where the new symbols are the magnetic field B, the current density j = ∇ × B, and the
magnetic diffusivity νB. Here, B has been scaled by

√
ρμ, where ρ is the (constant) fluid

density, and μ is the magnetic permeability, so that B has units of velocity. Similarly, j
has been scaled by

√
ρ/μ, so that j = ∇ × B is analogous to ω = ∇ × u. Furthermore,

we have the solenoidal constraint ∇ · B = 0 as well as ∇ · j = 0, which follows from the
definition of j.

Following Dritschel (1991), a class of Beltrami flows may be constructed assuming ω =
κu as before, but additionally B = cu, where c is spatially uniform but depends on time
when νB > 0. By taking the curl of B = cu, it follows that j = cω. Moreover, using ω =
κu, we have j = cκu. But B = cu then implies that all nonlinear terms in (2.14) and (2.15)
vanish. In particular, ωt = 0, so the flow is steady – and is precisely the same as derived
above for the purely hydrodynamic case.

In the induction equation (2.15), note that ∇2B = −∇ × (∇ × B) = −∇ × j =
−cκ ∇ × u = −cκ2u. But the left-hand side of (2.15) reduces to (dc/dt)u since u is
time-independent. Hence, equating both sides, we conclude

dc
dt

= −νBκ
2c, (2.16)

which gives the exponentially decaying solution c(t) = c(0) exp(−νBκ
2t).
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Inviscid Beltrami flow between free-slip boundaries

Notably, the vertical magnetic field, proportional to the vertical velocity, vanishes at
each boundary, consistent with perfectly conducting boundaries. There is no boundary
condition on the horizontal magnetic field; magnetic diffusivity does not constrain the
field to be zero (unlike molecular diffusion acting on velocity).

In conclusion, there is an analogous class of Beltrami solutions when a magnetic field
is present, only the field decays exponentially in time. Investigating the stability of these
solutions is left to future work.

3. Numerical method

We consider a vertically confined flow between two parallel free-slip boundaries, on which
we allow non-zero stress (equivalently, non-zero horizontal vorticity). This is the general
situation that applies in an inviscid flow, and in particular applies in a density-stratified
flow where baroclinic production of vorticity may occur throughout the flow, including
on the boundaries. While we ignore density variations, in order to study the stability of
Beltrami flows, we must allow for stress on the boundaries.

The presence of boundary stress, however, makes a standard pseudo-spectral
numerical method infeasible. We have found that this method, employing standard
3-D hyperdiffusion, leads to unphysical results that exhibit an energy increase after
the occurrence of the instability. The source of this energy increase is the vertical
hyperdiffusion, which enhances near-boundary errors that become dominant as the
large-scale structures cascade and decay into small-scale structures. Another problem with
the pseudo-spectral method is that nearly all fields must be expanded as cosine series
in z − zmin to allow for non-zero boundary values; only the vertical velocity w has zero
boundary values and is naturally expanded as a sine series. As a result, the inversion
of vorticity to find the velocity is not straightforward. From the forms of the vorticity
components, namely

ξ = wy − vz, η = uz − wx, ζ = vx − uy, (3.1a–c)

one can see readily that if u and v are expressed as cosine series in z − zmin, then this
implies that ξ and η should be expressed as sine series – i.e. have zero boundary values.
This is the stress-free situation, but not one that we can exploit in this work, or in general.
Instead, we develop a special vorticity inversion method, which makes use of a field
decomposition (described next) that permits arbitrary boundary values for all fields except
for vertical velocity.

3.1. Field decomposition
The proposed field decomposition consists of two steps. First, a scalar field q(x) in physical
space (suppressing time t) is transformed into semi-spectral space q̂(k, z) ≡ q̂(k, l, z) with
horizontal wavenumbers k and l, and separated into a harmonic part q̂H(k, z), and a vertical
sine series part q̂S(k, z), where

q̂H(k, z) = q̂−(k) ϕ−(k, z)+ q̂+(k) ϕ+(k, z), (3.2)

q̂S(k, z) =
nz−1∑
j=1

q̌(k,m) sin m(z − zmin), (3.3)

with m = πj/Lz. Note that here the wavenumbers k, l and m take all permissible
values, unlike for the base Beltrami flow in § 2. The quantities q̂−(k) = q̂(k, zmin) and
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zmin

zmax

j =
 1

, 
..
.,
 n

z 
−

 1

k = 0, ..., kmax

z/j

k
l

Figure 1. Field representation in mixed spectral space. The l direction is not shown explicitly. The kl-planes
at the free-slip boundaries z = zmin and zmax, highlighted by the thick black lines, are in semi-spectral space;
otherwise, a field is in full spectral space (obtained by a sine transform in z).

q̂+(k) = q̂(k, zmax) are the boundary values of q̂(k, z), while the fixed functions ϕ±
are defined below. The harmonic part in physical space satisfies Laplace’s equation, i.e.
∇2qH = 0. (The use of harmonic functions is justified below.) Equation (3.3) makes use
of a fast Fourier transform to compute the coefficients q̌(k,m) in full (3-D) spectral space.
In the remainder of this paper, we refer to fields in this form as mixed spectral fields, and
label such a field with an overscript as ◦q.

The harmonic functions ϕ± are given by

ϕ−(k, z) = sinh kh(zmax − z)
sinh khL

and ϕ+(k, z) = sinh kh(z − zmin)

sinh khL
, (3.4a,b)

where k2
h = k2 + l2. They are solutions to Laplace’s equation in semi-spectral space,

ϕ′′
± − k2

hϕ± = 0, (3.5)

such that ϕ−(k, zmin) = ϕ+(k, zmax) = 1 and ϕ−(k, zmax) = ϕ+(k, zmin) = 0. Any field in
mixed spectral space can therefore be stored efficiently (cf. figure 1) in a single 3-D array
for computation. The arrays ϕ± are pre-computed and stored during initialisation.

The decomposition using harmonic functions is motivated by the following variational
problem. Find the field qH(x) that has the minimum domain integral of |∇qH|2 and
which matches prescribed boundary values qH(x, y, zmin) = q−(x, y) and qH(x, y, zmax) =
q+(x, y). Arguably, this is the smoothest field qH(x) that interpolates between the
boundary values. The solution to this problem results in Laplace’s equation ∇2qH = 0,
subject to prescribed boundary conditions. This is the solution used above in semi-spectral
space in (3.2). Note that qS = q − qH is the difference between the full field q and
the harmonic part qH interpolating between the boundary values. Thus qS = 0 on the
boundaries. Importantly, qS is not the interior part of the field q.
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Inviscid Beltrami flow between free-slip boundaries

3.2. Vorticity inversion
The evolution of vorticity in (2.1) requires the calculation of the velocity from the vorticity,
a process called ‘inversion’. Using ∇ · u = ux + vy + wz = 0 and (3.1a–c), it follows that
ξy − ηx = ∇2w, providing a Poisson equation for the vertical velocity w. In semi-spectral
space, this is

ŵ′′(k, z)− k2
h ŵ(k, z) = Ŝ(k, z), (3.6)

subject to ŵ(k, zmin) = ŵ(k, zmax) = 0. Note that the source Ŝ = ilξ̂ − ikη̂ may be
non-zero in general on the boundaries (although it happens to be zero for the exact Beltrami
flow). The solution ŵ is found in decomposed form

ŵ′′
H − k2

hŵH = ŜH and ŵ′′
S − k2

hŵS = ŜS, (3.7a,b)

where the solution of the sine series part ŵS is obtained in full spectral space by
multiplication of the source term with the Green’s function,

w̌S(k,m) = − 1
k2 + l2 + m2 ŠS(k,m), (3.8)

for all m > 0 (recall that m = πj/Lz for positive integers j). The solution of the harmonic
part ŵH is performed analytically, and it can be verified that

ŵH(k, z) = Ŝ−(k) θ−(k, z)+ Ŝ+(k) θ+(k, z), (3.9)

where

θ−(k, z) = sinh khL
2kh

[(zmax − z) ϕ+(k, z)− (z − zmin) ϕ−(k, z) cosh khL], (3.10)

θ+(k, z) = sinh khL
2kh

[(z − zmin) ϕ−(k, z)− (zmax − z) ϕ+(k, z) cosh khL]. (3.11)

Note that the functions θ± vanish on both boundaries.
The horizontal velocity components u and v are found by combining the relations vx −

uy = ζ for vertical vorticity and ux + vy = −wz for incompressibility. In semi-spectral
space, this yields

û = i
kŵ′ + lζ̂
k2 + l2

, v̂ = i
lŵ′ − kζ̂
k2 + l2

, (3.12a,b)

for k2 + l2 > 0. No further boundary conditions are required. The z derivative ŵ′ is
calculated analytically using wavenumber multiplication of w̌S and a cosine transform,
and by differentiating the boundary contribution ŵH (using pre-stored arrays for θ ′±, details
omitted).

The horizontally uniform flow for k = l = 0 is instead found directly from the
definitions of the horizontal vorticity components, which reduce to ξ̂ = −v̂z and η̂ = ûz
in this case. Then û and v̂ are found directly by integrating η̂ and −ξ̂ , requiring that the
domain-mean values of û and v̂ vanish without loss of generality. From (3.2) and (3.3), it
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follows that

û = η̂−(0) γ−(z)+ η̂+(0) γ+(z)−
nz−1∑
j=1

η̌(0,m)
m

cos m(z − zmin), (3.13)

where m = πj/Lz as before, and

γ−(z) = L2
z − 3(zmax − z)2

6Lz
, γ+(z) = 3(z − zmin)

2 − L2
z

6Lz
. (3.14a,b)

The analogous expression for v̂ is found by replacing η by −ξ in (3.13).

3.3. Vorticity tendency calculation
As noted in § 2, for a Beltrami flow, the right-hand side of (2.1) vanishes, so the vorticity
remains steady. However, numerical errors lead to vorticity evolution as u loses alignment
with ω. Eventually, this evolution leads to instability – a physical instability that, however,
is triggered by numerical noise, as documented in the next section. Here, we discuss the
numerical method used to update the vorticity field in a general unsteady flow.

In (2.1), we first compute the vector u × ω = (P,Q,R), then compute the components
of the vorticity tendency from

ξt = Ry − Qz, ηt = Pz − Rx, ζt = Qx − Py, (3.15a–c)

where
P = vζ − wη, Q = wξ − uζ, R = uη − vξ. (3.16a–c)

All z derivatives, which occur only in ξt and ηt, are computed in semi-spectral space on
the z grid by centred differences, with linear extrapolation at each boundary. All x and y
derivatives are computed spectrally by wavenumber multiplication in mixed spectral space.
To maintain ∇ · ω = 0 at all times, a solenoidal correction is applied to vorticity at each
time step (see below).

3.4. Dissipation operator
Three-dimensional flows generically exhibit a strong cascade of energy from large to
small scales, particularly as they become turbulent. This cascade cannot be resolved
indefinitely at any finite resolution, and the key task is to remove energy arriving at the
smallest scale without seriously affecting the larger resolved scales. Ordinary molecular
diffusion does this physically (as long as the Kolmogorov length LK is well resolved,
see below), but such diffusion damps an extensive range of scales and is not relevant
when modelling ultra-high Reynolds number flows widely occurring in geophysical and
astrophysical flows. Instead, researchers have often used hyperdiffusion, a dissipation
operator D ∝ ∇2p for integers p > 1, to focus dissipation primarily at the smallest scales.
The expectation is that hyperdiffusion allows a greater range of active scales with much
less damping. Hyperdiffusion is, however, not benign, and has some undesirable features
such as non-monotonicity, particularly for high-order forms with p 	 1 (for further
discussion, see Frey et al. 2022, and references therein).

Here, we use a moderate order, p = 3, which helps to reduce the unrealistic amplification
of energy at small scales (high wavenumbers) when p 	 1. However, with boundary
stress (non-zero horizontal vorticity), the use of the 3-D Laplacian in the hyperdiffusion
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operator D leads to an unphysical energy growth at late times, after the flow destabilises
and breaks down into small-scale turbulence. The problem stems from the z derivative
terms in D, as demonstrated explicitly in a test example in Appendix B, where we show
that hyperdiffusion strongly magnifies numerical errors near the boundaries, eventually
leading to energy growth. Mathematically, the use of such hyperdiffusion imposes extra
boundary conditions that we cannot justify (Jones & Roberts 2005). On the other hand,
no-stress boundary conditions (which are not applicable here) avoid the problem with
hyperdiffusion, as then all fields have either zero odd derivatives or zero even derivatives,
and the extra boundary conditions are satisfied automatically.

To avoid this problem when boundary stress is present, we apply only 2-D
hyperdiffusion, using the compounded horizontal Laplacian operator. In mixed spectral
space, we damp vorticity by subtracting

◦D ◦ ◦
ω (‘

◦D operating on ◦
ω’, here simply by

multiplication) from the right-hand side of (2.1), where

◦D(k, t) = Cωchar(t) (k2
mK(0)/Υ (0))1/3(kh/km)

2p, (3.17)

in which ωchar(t) is a characteristic vorticity (see below), km = max(kmax, lmax) is the
maximum x or y wavenumber (often equal), kh = |k| = √

k2 + l2 as before, K(0) and
Υ (0) are the initial (domain-averaged) kinetic energy and enstrophy,

K(t) = 1
2 〈|u|2〉 and Υ (t) = 1

2 〈|ω|2〉, (3.18a,b)

and C is a dimensionless constant, assumed independent of numerical resolution. (Here
and below, 〈q〉 denotes the domain average of a quantity q.) The specific form of

◦D in
(3.17) is motivated by the need to resolve the Kolmogorov length LK at all resolutions.
This length is defined via

(
L

LK

)4/3

= Re = UL2p−1

ν
, (3.19)

where L is a characteristic scale of the flow, Re is the Reynolds number, U is a
characteristic velocity, p is the hyperdiffusion order, and ν is the hyperviscosity coefficient.
Here, we have adapted the relationship that applies for standard molecular diffusion,
p = 1 (see e.g. Davidson 2015). To arrive at the form of

◦D in (3.17), we assume (1)
U ∼ ωchar(t)L, (2) LK ∼ k−1

m , and (3) L ∼ √K(0)/Υ (0). This gives

ν ∼ ωchar(t) (k2
m K(0)/Υ (0))1/3k−2p

m . (3.20)

Then, since
◦D = νk2p

h , we recover (3.17) after including a dimensionless pre-factor C in ν
above.

The characteristic vorticity ωchar(t) is computed as in Frey et al. (2022) but for 3-D
flows. The time dependence allows the damping to adjust to the flow dynamically, rather
than excessively damp in periods where there is little activity. We first compute the
root-mean-square (r.m.s.) vorticity ωrms(t) = √

2Υ (t). Then, for all grid points where
|ω| > ωrms, we accumulate the sums of |ω| and |ω|2, which we call ωL1 and ωL2,
respectively. Finally, ωchar = ωL2/ωL1. As argued in Frey et al. (2022), this measure
of a characteristic vorticity is designed to handle situations where intense vorticity is
distributed sparsely in the domain, a common situation in a turbulent flow.
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3.5. Filtering
Aliasing errors in pseudo-spectral methods are usually reduced with filters (see Goodman,
Hou & Tadmor 1994). Common filters are the ‘2/3 rule’ and the Hou & Li (2007)
filter. Although filtering introduces an error near the free-slip boundaries like vertical
hyperdiffusion (cf. Appendix B), its effect is weaker and does not cause an energy blow-up,
or even an increase. Since the prognostic variables

◦
ξ , ◦
η and

◦
ζ are in mixed spectral space,

we apply the Hou & Li (2007) filter in two dimensions at zmin and zmax,

F̂(k, zmin) = F̂(k, zmax) = exp{−36[(k/kmax)
36 + (l/lmax)

36]}, (3.21)

and in three dimensions on the sine series part in the interior,

F̌(k,m) = exp{−36[(k/kmax)
36 + (l/lmax)

36 + (m/mmax)
36]}. (3.22)

In the following, we denote the filtering of a field ◦q in mixed spectral space by
◦F ◦ ◦q,

where
◦F ≡ {F̂ , F̌} denotes the complete filter.

3.6. Time stepping
The advection of vorticity from time tn ≡ n
t to tn+1, n ≥ 0, is performed with the
implicit Crank–Nicolson method (or iterative trapezoidal method; see Crank & Nicolson
1947) in mixed spectral space,

◦
ω

n+1 − ◦
ω

n


t
=

◦
S

n+1
ω + ◦

S
n
ω

2
− ◦D ◦ ◦

ω
n+1
, (3.23)

except that the diffusion term is evaluated at tn+1 for greater numerical stability. The first

iteration uses
◦
S

n+1
ω = ◦

S
n
ω since at this stage we do not yet have an estimate for the fields at

tn+1. Each iteration provides an improved estimate for ◦
ω

n+1 and hence
◦
S

n+1
ω after inverting

to find un+1; see § 3.2 and (3.16a–c). Explicitly, we update the vorticity using

◦
ω

n+1 = ◦F ◦ ◦L ◦
{

◦
ωm + 
t

2
◦
S

n+1
ω

}
, (3.24)

where
◦L ≡ 2/(1 +
t

◦D) and ◦
ωm ≡ ◦

ω
n + 1

2 
t
◦
S

n
ω is fixed during the iteration. Here, we

additionally apply the filter operator
◦F to the updated vorticity. We iterate this equation

three times in practice, analogous to a predictor-corrector scheme.
Evolving all three components of the vorticity is redundant on account of the solenoidal

condition ∇ · ω = 0. This condition cannot be maintained exactly due to the finite
differences carried out in z and the use of the filter

◦F above. We therefore correct the
vorticity immediately before calculating the velocity, in a way closely analogous to how we
calculate the horizontal velocity. Specifically, we first compute δ ≡ ∇ · ω in semi-spectral
space as δ̂. (This requires taking a z derivative of ζ̂ by centred differences, using linear
extrapolation of ζ̂ at the boundaries as elsewhere in the numerical code, for consistency.)
Next, we seek corrections to the horizontal components ξ̂ and η̂ only, of the form
ξ̂ → ξ̂ + ikψ̂ and η̂ → η̂ + ilψ̂ (effectively adding the horizontal gradient of a potential
ψ). Requiring that the corrected vorticity satisfy ∇ · ω = 0 then implies ψ̂ = k−2

h δ̂, from
which one obtains the corrected horizontal vorticity components.
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Figure 2. Contour plots (20 iso-levels) of the initial vorticity components ω = (ξ, η, ζ ) in the xz-plane at
y = 0.

In an inviscid fluid with free-slip boundaries, there can be no net flux of vorticity
through the boundaries (see Morton 1984; Terrington, Hourigan & Thompson 2020,
2021, 2022, and references therein), implying that the domain-mean vorticity 〈ω〉 must
remain constant. In fact, the mean vertical vorticity ζ = vx − uy is zero due to horizontal
periodicity. Only the horizontal components ξ = wy − vz and η = uz − wx may have a
non-zero mean, e.g. due to the presence of a mean shear. In the numerical simulations
discussed in the next section, 〈ω〉 remains approximately zero when no correction is made,
but when the flow becomes turbulent and decays, the mean horizontal vorticity drifts
away from zero. To counteract this, we compute and correct the mean horizontal vorticity
every time it is updated in (3.24) above (this can be done efficiently in mixed spectral
space).

4. Results

4.1. Initial conditions
We focus on a broad-scale Beltrami flow with k = l = 2 and m = 1 (see (2.10)) in the
cubic domain [−π/2,π/2]3. Then κ = ±3; here, we choose the positive sign.

The (initial) velocity field is given by

u(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1
4 (sin z − 3 cos z) sin(2x + 2y),
1
4 (sin z + 3 cos z) sin(2x + 2y),

cos z cos(2x + 2y),

(4.1)

and the corresponding (initial) vorticity is ω = 3u, shown in figure 2. Moreover, ‖ω‖max =
9/

√
8 ≈ 3.18198, which corresponds to a characteristic ‘eddy turnaround time’ T =

4π/‖ω‖max ≈ 3.94923. The (domain-mean) kinetic energy is K = 9/32 = 0.28125 in
(2.13), while the enstrophy is Υ = κ

2K = 81/32 = 2.53125, implying |ω|rms = 9/4 =
2.25.

4.2. Choice of hyperviscosity coefficient
An important consideration in simulating the evolution of fluid flows is the appropriate
choice of numerical damping. To avoid an unphysical energy growth or even divergence,
sufficient damping must be used to absorb the energy cascade arriving at the
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Figure 3. Time evolution of the normalised kinetic energy and enstrophy for hyperdiffusion pre-factors
C = 10, 20, 30, 60, 100.

smallest scales. Here, we justify our choice of damping by varying the hyperdiffusion
pre-factor C in (3.17).

To this end, we conducted a series of 323 grid-cell simulations of the initial flow
specified in (4.1), with C ranging from 10 to 100, in increments of 10. In figure 3, we show
the kinetic energy K and enstrophy Υ for a subset of these runs (below, we discuss helicity
H separately). Characteristically, there is an initial period extending to approximately
t = 58 where both quantities remain nearly constant; thereafter, K decreases while Υ
grows rapidly over a short period – this is a manifestation of the flow instability, described
in detail below. At later times, both K and Υ decay.

The lowest damping rates with C = 10 and 20 stand out with a premature decay of
kinetic energy and an erratic evolution of enstrophy (taking C < 2 leads to non-monotonic
energy variation for the 323 simulation, not shown). The remaining damping values exhibit
closely comparable kinetic energy and enstrophy evolution, but the higher damping values
60 and 100 lead to a more rapid decay of enstrophy, as well as a more noticeable decay
of kinetic energy before the flow breaks down into turbulence. Based on these results, we
have taken C = 30 to be the default hyperdiffusion pre-factor.

We have verified that C = 30 works well at all higher resolutions up to 2563, the
maximum that we have been able to compute, as demonstrated in figure 4. In all cases,
K begins to decay around the same time and is accompanied by a sharp growth in Υ .
The time of peak enstrophy occurs progressively earlier with increasing resolution, apart
from 323, which appears to be too coarse to resolve the instability and its breakdown into
turbulence. The peak value of enstrophy grows with resolution, approximately as n1.4

z as
shown in figure 4(b), though the sample size is too small to be confident of this scaling.
The maximum vorticity magnitude, however, appears to scale similarly.
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Figure 4. (a) Time evolutions of the normalised kinetic energy and enstrophy for different grid resolutions
(only times 50–100 are shown). The hyperdiffusion pre-factor is C = 30 in these and all subsequent results.
(b) Peak values (over all time) of enstrophy Υ and maximum vorticity magnitude |ω|max for different grid
resolutions. The power-law fit is made using only the three highest resolutions.

4.3. Onset of the instability
We now focus on the highest resolution simulation using 2563 grid cells. The results are
qualitatively similar to those obtained at lower resolution, but flow features are much more
clearly expressed.

We begin by describing the early stages of the instability development. The justification
for calling it an ‘instability’ is that the field differences, e.g. u(x, t)− u(x, 0), when
normalised say to unity in magnitude, are nearly independent of t before the flow breaks
down into turbulence. We call this normalised difference the ‘eigenmode’, with the
expectation that the same structure would be found from a linear analysis of the equations.
(Unfortunately, such an analysis appears to be exceedingly difficult since the basic flow
depends on x + y and z.)

The eigenmode structure is shown in figure 5 for a y = 0 cross-section, and in figure 6
for a z = 0 cross-section. First, the velocity difference is not proportional to the vorticity
difference, so the flow perturbation is not Beltrami, as required to be unsteady. Second, the
eigenmode structure is of smaller scale than the original flow. For example, in the y = 0
cross-section, a fivefold spiral pattern can be seen, especially in the vorticity components.
In the z = 0 cross-section, horizontal variations appear to have become twice as rapid as
the base flow. Finally, the eigenmode structure is global: there are significant perturbations
distributed throughout the domain, and they exhibit a number of symmetries. Some
evidence for boundary intensification of the horizontal vorticity can be seen in the y = 0
cross-section. At this time, t = 50, the r.m.s. velocity difference |
u|rms is just 0.32 % of
|u|rms, and is barely discernible in the full fields. From t = 53 to 58 (see figure 7), |
u|rms
grows approximately exponentially as expected for a linear instability. A least-squares fit
of ln |
u|rms to a + σ t gives an estimated growth rate σ = 0.583 ± 0.016. (The standard
deviation is estimated using the bootstrap method with 104 resampled datasets with
replacement.)
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Figure 5. Slice plots in the xz-plane at y = 0 of the velocity and vorticity field component differences between
t = 50 and t = 0 normalised by the maximum magnitude of the velocity field difference 
u(t) = u(t)− u(0).
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u(t) = u(t)− u(0).
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Figure 7. Evolution of the r.m.s. of the magnitude of the velocity difference during the instability. The
estimated growth rate of the linear instability is approximately 0.583 ± 0.016.

4.4. Flow evolution characteristics

4.4.1. Vorticity magnitude
Arguably, vorticity ω is the most important dynamical variable in Euler flows, owing to
the fact that vortex lines are transported materially, conservatively, like infinitesimal line
elements. Numerically, it is impossible to achieve this ideal behaviour due to the need for
dissipation to preserve numerical stability, yet vorticity remains an important quantity for
understanding the structure and evolution of the flow.

Figure 8 shows a 3-D view of the vorticity magnitude at various representative times in
the evolution. The initial domain-scale field intensifies and collapses into narrow sheets
and tubes occupying only 20 % of the domain (where |ω| > |ω|rms) by around t = 60;
such sparsely distributed flow structures are generic features of high Reynolds number
3-D turbulence (see e.g. Ishida, Davidson & Kaneda 2006; Davidson 2015, and references
therein). For t < 60 approximately, the most intense structures emerge in the middle part
of the z range, away from the boundaries. At later times, the situation reverses, with
the boundaries and near-boundary regions exhibiting the most intense structures, mainly
taking the form of vortex tubes (the structure of the field does not change appreciably after
t = 70). Notably, the intense boundary vorticity emerges during the decay period when
both the kinetic energy and enstrophy decrease sharply (see figure 4). The boundaries
appear to reduce the decay of vorticity there relative to the interior, likely because they
restrict the freedom for vortex lines to bend, twist and reconnect near the boundaries.
On the other hand, with more freedom to deform, interior vortex lines more frequently
reconnect and hence dissipate, accelerating the decay there.

Alternative views showing 2-D slices of the vorticity magnitude evolution are provided
in figure 9 for y = 0, in figure 10 for z = 0, and in figure 11 for z = π/2 (the top
boundary). Note that in each figure, (a–c) use a linear scale, while (d–f ) use a log
scale to improve the visualisation of the field, which at these times contains highly
localised intense structures. As is evident in all these images, the flow breaks down first by
forming sheets, surfaces of high-intensity vorticity, then these sheets break down into tubes
and other small-scale structures that subsequently dissipate through reconnection and
hyperdiffusion.

In the y = 0 cross-section in figure 9, the flow maintains approximate symmetry in
x until around t = 60, but thereafter rapidly breaks down into small-scale turbulence.
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Figure 8. Iso-surfaces of the vorticity magnitude at selected times. Low field levels are made transparent
to be able to see the high-intensity structures (see colour bars). The highest magnitudes are shown in blue
rather than red as this allows one to better distinguish flow features. Note that the colour map range varies
with each time frame. See supplementary movie 1 available at https://doi.org/10.1017/jfm.2022.1007 for an
animation of the vorticity magnitude evolution. See also supplementary movie 2 for a 360◦ rotating animation
at t = 63.

High-intensity structures are distributed throughout the domain, but there is evidence for
boundary intensification especially in the image for t = 60 (see top boundary region).
The transition to small-scale turbulence is rapid, occurring between only t = 60 and 63.
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Figure 9. Cross-sections of the vorticity magnitude in the xz-plane at y = 0 at selected times. Panels (d–f )
use a log scale.
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Figure 10. Cross-sections of the vorticity magnitude in the xy-plane at z = 0 at selected times. Panels (d–f )
use a log scale.

Thereafter, the flow remains qualitatively similar while decaying in amplitude, albeit more
slowly near the boundaries.
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Figure 11. Cross-sections of the vorticity magnitude at the upper free-slip boundary (z = π/2) at selected
times. Panels (d–f ) use a log scale.

In the (horizontal) z = 0 cross-section, in figures 10(a–c) one can see the progressive
growth of wave-like disturbances and their subsequent overturning or buckling. This
accentuates by t = 60, by which time the maximum vorticity magnitude has grown by a
factor of 5 in only two units of time (note the log scaling used in figures 10d–f ). As the flow
breaks down into turbulence by t = 63, which is about the time of peak enstrophy, there
is a further 50 % growth in vorticity. The flow then decays sharply while approximately
maintaining the complex form seen at t = 70.

At the upper boundary z = π/2 (cf. figure 11), the flow is hardly perturbed at t = 50
compared to flow structure seen in the other cross-sections. Thereafter, the instability
appears to spread to the boundaries, inducing a large-scale wave down the main diagonal
y = −x by t = 55, and a weaker secondary disturbance along y = ±π/2 − x. The
large-scale wave then overturns by t = 58, producing a complex but moderate-scale
pattern, while the secondary disturbances reduce in scale but remain closely parallel to
the lines y = ±π/2 − x (the fine-scale variations could be an artefact of hyperviscosity).
For t ≥ 60, the vorticity field collapses in scale predominantly along fronts (the intense
blue regions seen in these plots). If a linear scale were used, then only the fronts would be
visible in these images (see e.g. the helicity density u · ω below).

4.4.2. Enstrophy production
To better understand the nature of the instability and specifically the vorticity dynamics,
we follow Tsinober, Kit & Dracos (1992), Tsinober, Shtilman & Vaisburd (1997) and
Vincent & Meneguzzi (1994), and quantify the enstrophy production rate υ, considering
how it changes over the course of the instability and its behaviour near the boundaries. The
enstrophy production rate is defined by

υ = υ1 + υ2 + υ3, where υi = λi(ω · ei)
2, (4.2)
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Figure 12. Evolution of the domain-averaged enstrophy production rates in the unstable Beltrami flow
between t = 50 and 70.

and where λ1 ≥ λ2 ≥ λ3 are the (real) eigenvalues of the symmetrised strain matrix
1
2 (∇u + ∇uT), while e1, e2 and e3 are the corresponding normalised eigenvectors.
Physically, the λi are stretching rates along the three principal (orthogonal) directions ei.
The enstrophy production rate is separated into three parts to understand which contributes
most to enstrophy production. Since ∇ · u = 0, it follows that λ1 + λ2 + λ3 = 0, and
moreover that λ1 is always positive and λ3 is always negative. It then follows that υ1 > 0
and υ3 < 0. The middle eigenvalue can have either sign, so υ2 is sign-indefinite.

Previous studies of homogeneous turbulence like Tsinober et al. (1992, 1997), Vincent
& Meneguzzi (1994), Ishida et al. (2006) and Davidson (2015) (and references therein)
have often found alignment of the middle eigenvector e2 with vorticity ω, resulting in
comparable values of υ1 and υ2, despite the fact that λ1 is often much larger than λ2.
This implies that enstrophy growth, or vorticity intensification, is only partly due to vortex
stretching (along e1). The other contribution is the formation of vortex sheets (flattened
structures), which undergo a shear instability and roll up into vortex tubes, evidenced by
comparably large values of υ2 (and compensating negative values of υ3). Indeed, Vincent
& Meneguzzi (1994) argue that this is the principal mechanism of vortex tube production
in homogeneous turbulence.

For the Beltrami flow considered here, figure 12 shows the domain-mean values of
the υi over the period of instability growth, saturation and decay (beyond t = 70, the υi
continue to decay monotonically in magnitude). Our results indicate that, overall, vortex
stretching is the dominant mechanism of enstrophy production in the flow, while flattening
is perhaps half as strong. (Similar results were found by Vincent & Meneguzzi (1994)
for homogeneous turbulence, though they found υ2 ≈ 0.6υ1.) Notably, υ2 and υ3 nearly
cancel each other, though υ3 is marginally larger in magnitude since it results in an overall
production rate υ < υ1.

To investigate the role of the boundaries, we next study the vertical profiles of
the horizontal-mean enstrophy production rates in figure 13. Before the instability is
noticeable, υ2 is negligible compared to υ1 and υ3, which (necessarily) nearly cancel each
other. By this stage, there is very little vorticity growth. The situation changes somewhat
by t = 55 since now υ2 becomes significant and is largely positive. Yet the net enstrophy
production rate υ remains relatively small compared to any of the υi. By t = 58, there is
a strong shift toward the boundaries, where υ2 – corresponding physically to the roll-up
of vortex sheets – dominates. Despite this, in an integral sense (over z), υ1 remains larger
than υ2. This shows that the boundaries dramatically influence the behaviour of vorticity,
consistent with the fact that the boundaries limit the bending of vortex lines, as pointed
out above. The sharp variation of υ2 approaching each boundary (enhanced by the fact
that λ2 and |ω|2 both rise steeply) demonstrates that the near-boundary regions have
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Figure 13. Vertical profiles of the horizontal-mean enstrophy production rates at selected times.

a fundamentally different character to the interior. This is undoubtedly associated with
the free-slip impermeable boundary conditions used, where boundary stress (horizontal
vorticity) is allowed. The boundaries act like a magnet for intense vorticity, and the
near-boundary regions dominate the flow at late times.

4.4.3. Helicity density
Beltrami flows with ω = κu have a helicity density h = u · ω = κ|u|2, which
is everywhere either non-negative (κ > 0) or non-positive (κ < 0). While the
domain-average helicity H = 〈u · ω〉 is conserved in an inviscid flow (see Moreau 1961;
Moffatt 1969, 2018), the helicity density h is not constrained to lie within its initial
range of values: h is not materially conserved. Note that this conservation depends on
ζ remaining zero on the boundaries, which is guaranteed by the form of the evolution
equation (3.15a–c) (see also (3.16a–c)), since w = ζ = 0 on the boundaries initially.
Unlike K and Υ , note that H is not a positive-definite quantity.

The evolution of helicity H, the domain-average of h, is shown in figure 14. Like kinetic
energy K (shown in figure 4a), helicity remains conserved until the flow breaks down into
small-scale turbulence, beginning around t = 60. In fact, H begins to decrease noticeably
a few units of time earlier than K does, likely because h = u · ω is more sensitive to
dissipation than is u · u. This is because h involves a more highly differentiated field,
vorticity, than the kinetic energy density, and vorticity is therefore more directly subject to
dissipation (it has a shallower Fourier spectrum). By the end of the simulation at t = 100,
only 0.258 % of the initial helicity remains, whereas 0.896 % of the initial kinetic energy
remains.

We next investigate the evolution of the helicity density field h. A 3-D view is provided
in figure 15 at the same times used to display the evolution of |ω| in figure 8. At t = 50,
the h field contains only weak disturbances and is positive almost everywhere. By t = 55,
the field has become much more distorted, with the first appearance of negative regions of
h, most prominently on the lower boundary (these are seen in red). The negative regions
grow by t = 58 and amplify, and the volume occupied by high |h| shrinks. This continues
to t = 60, when the high |h| regions occupy only a small fraction of the domain; at this
time, |hmin| ≈ 0.5hmax, and hmax has grown by more than a factor of 100 since t = 50. By
t = 63, |hmin| surpasses hmax, but both values are decaying, and by t = 70, hmax > |hmin|
again.
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Figure 14. Evolution of the helicity H (normalised by its initial value) in the unstable Beltrami flow. The
shaded region between t = 50 and 70 uses data from a simulation restart at t = 50 in order to save data at high
frequency (every 0.5 units of time, as opposed to every 10 units of time). For the exact steady Beltrami flow,
H = H(0) = 27/16.

At the upper boundary z = π/2 (cf. figure 16), the evolution resembles the vorticity
magnitude in figure 11, albeit h has a more diffuse appearance compared to |ω|. At late
times, t ≥ 60, the boundaries exhibit sharp fronts in h and |ω|, and across these fronts,
the horizontal velocity field changes direction rapidly. This is illustrated in the zoomed
yz-plane cross-section in figure 17, corresponding to the frontal feature in |ω| seen near
the left-hand edge of figure 11 at t = 63 around y = 0 (this feature can also be seen in h in
figure 16 but is less pronounced). Figure 17(a) shows vertical vorticity ζ (which remains
zero on the boundaries); the front corresponds to high local ζ . Figure 17(b) shows the
flow in and out of the page; this reverses across the front. To the right of the front, there
is relatively strong flow away from the boundary (downwards here). Apart from being
upside down, the features seen here are strikingly reminiscent of atmospheric fronts, even
though there is no buoyancy or stratification in the present case (see Clark et al. 2021, and
references therein); however, the results may also be relevant to ocean fronts. Note that the
high boundary vorticity associated with the front is entirely horizontal: vortex lines are
everywhere tangent to the boundaries except at null points where ω = 0. The relatively
high horizontal vorticity at and near the boundary generates a strong vertical shear of the
velocity field, quantified next.

4.5. Quantitative measures
Next, we examine various quantitative measures of the flow evolution. First, we discuss
the vertical dependence of the flow to clarify the influence of the boundaries, then we turn
to energy spectra, both 3-D and 2-D surface spectra.

4.5.1. Vertical dependence
The presence of vertical boundaries containing horizontal vorticity (stress) has a large
impact on the flow evolution. In particular, after the flow breaks down and becomes
turbulent (approximately t ≥ 63 in figures 9–11), the boundaries appear to contain the most
intense vortical structures, and these resemble tubes lying adjacent to the boundaries. We
quantify this in figure 18 by showing the vertical profile of the r.m.s. velocity and vorticity
components at various times during the flow evolution. While the horizontal velocity
displays only a modest upturn near the boundaries at late times, the horizontal vorticity is
strongly intensified (the vertical components w and ζ are both zero at the boundaries for
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Figure 15. Iso-surfaces of helicity density u · ω at selected times. A linear scale is used for each plot, but
note that the minimum and maximum values vary.

all time). Moreover, the intensification occurs over a scale comparable to the grid spacing
in z, a result found at all resolutions examined (not shown). This is consistent with the
formation of vortex tubes at the smallest scale resolvable, and the protection afforded by
the boundaries, which reduce the bending and twisting of vortex lines compared to the
flow interior.
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Figure 18. Vertical profiles of (a–g) r.m.s. velocity and (h–n) vorticity.

Notably, the vertical velocity and vorticity components w and ζ vary rapidly near the
boundaries at late times. Large wz implies strong surface convergence and divergence,
consistent with the observed behaviour of atmospheric fronts (see e.g. Clark et al. 2021).
Large ζz implies that vortex lines near the boundaries are, in places, sharply bent away
from the boundaries by the surface flow field. Again, this is consistent with the velocity
field in the vicinity of fronts.

The surface intensification can also be seen in the time evolution of the r.m.s. values
of the velocity and vorticity components at the boundaries and in the interior, shown in
figure 19. Here, we have used the average of the two boundaries, and also an average of
three interior planes z = constant. The interior velocity components largely decay from the
onset of the instability, but the boundary values grow by a factor 3–4 before decaying to
comparable values at late times. Regarding the vorticity components, all grow significantly
(except the boundary vertical vorticity, which remains zero), but the growth of horizontal
vorticity at the boundaries is especially strong. Moreover, these are r.m.s. values; the
maximum local value of |ω| is more than 10 times larger – see figure 4(b).

4.5.2. Energy spectra
The distribution of energy with scale – the energy spectrum – is a widely used descriptor of
turbulent flows. Power-law behaviour in wavenumber ranges may indicate self-similarity
across scales, as postulated by Kolmogorov (1941) and Onsager (1945), as well as a
direct energy cascade process in which nonlinear interactions strongly excite progressively
smaller scales. In physical space, this is manifest by the formation of intense vortical
structures, predominantly sheets and tubes, whose existence, however, is associated
with ‘intermittency’ and a departure from the self-similarity envisioned originally (see
Davidson 2015, and references therein).
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Figure 19. Evolution of the velocity and vorticity r.m.s. values at the boundary (dashed, with quantities
prefaced by ∂ in the legend) and in the interior (solid). The top and bottom boundary values are averaged.
The interior values are averaged over the xy-planes at heights z = −π/4, 0 and π/4. Note that in the shaded
zone, the data are sampled every 0.5 time units, whereas elsewhere else they are sampled every 10 time units.
There is a small discontinuity at t = 70 due to the fact that the simulation was restarted at t = 50 to provide
higher data sampling.

In the present context, the flow is not isotropic and is highly influenced by the boundary.
Spectra are less useful as a result, since statistical properties of the flow vary with z.
We therefore present both the commonly exhibited 3-D energy spectrum and 2-D surface
energy spectra at each boundary, which to our knowledge have never been presented before
for a flow with non-zero boundary vorticity (stress). This is done in figure 20 at two times t
chosen when the kinetic energy K has decayed by factors of e and e2 from its initial value.
At these times, the flow is turbulent and decaying. The 3-D spectrum in figure 20(a) is seen
to steepen in time. At early times, there is a range that is steeper than the classical |K |−5/3

prediction (where K = (k, l,m) is the 3-D wavevector). This may be associated with a
pulse in energy flowing downscale following the breakdown of the flow into turbulence
shortly before. However, we remark that the present resolution is too low to obtain clear
scaling ranges in the data. The 2-D surface spectra in figures 20(b,c), for z = −π/2 and
π/2, respectively, exhibit a scaling much closer to |k|−5/3 (especially in the case of the
upper more active surface). Arguably, the 3-D spectrum is less informative, and perhaps
even inappropriate, given the significant vertical dependence of the flow statistics.

5. Discussion

We have developed a novel numerical approach to simulate nearly inviscid 3-D flows
in a horizontally periodic domain confined between two parallel free-slip impermeable
boundaries. In contrast to common practice in past studies of channel flows, Couette
flows and surfaces with free-slip boundaries, we do not enforce stress-free conditions in
conjunction with free-slip boundaries. Stress-free conditions imply vanishing horizontal
vorticity at the boundaries, which is overly restrictive – particularly in density-stratified
flows where horizontal vorticity is generated by horizontal density variations. The
stress-free assumption is tantamount to requiring the vertical derivatives of the horizontal
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Figure 20. Energy spectra at 1/e (t ≈ 65.5) and 1/e2 (t ≈ 70.0) decay for grid resolution 2563 cells. The
power-law decay is steeper compared to −5/3, as theorised by Kolmogorov (1941). The y axis is cut off
at 10−8.

velocity components to vanish at the boundaries, an assumption that violates the behaviour
of the Beltrami flows studied herein.

Without this assumption, the only boundary condition left is no normal flow at
the boundaries (here, vanishing vertical velocity). This weakened boundary condition,
however, makes the use of a standard pseudo-spectral method with 3-D hyperdiffusion
infeasible, since it magnifies errors near the boundaries and here results in a non-physical
growth in energy after the flow destabilisation and breakdown into turbulence. The method
developed circumvents this problem by applying hyperdiffusion only horizontally, and
by evolving the prognostic variables in, as we say, mixed spectral space where the
boundary-induced flow is represented in semi-spectral space (extended into the domain
using harmonic solutions of Laplace’s equation), and where the remaining interior flow
(which vanishes at both boundaries) is represented in full spectral space but using a sine
series in z compatible with the Dirichlet boundary conditions that apply. An advantage is
that this decomposition allows one to solve the inversion problem for the velocity field
given the vorticity field, while satisfying the one boundary condition for the vertical
velocity.

We have investigated the stability of an exact solution of the Euler equations,
namely a Beltrami flow with vorticity proportional to velocity initially. Such a flow has
non-zero horizontal vorticity (stress) on the upper and lower impermeable boundaries
(the horizontal boundaries are taken to be periodic). Here, we have studied one of the
simplest Beltrami flows in a wide class of such flows, namely a flow with the slowest
non-trivial variation in each coordinate direction. From weak numerical noise, we find
that the flow destabilises in a well-defined way, with the strongest perturbations located
away from the boundaries in the early stages of instability growth. The perturbations
grow approximately exponentially, as expected from a standard linear stability analysis,
and eventually nonlinearity becomes important. Then vorticity grows rapidly through the
formation of vortex sheets, their roll-up into tubes, and the stretching of these tubes, as
quantified by examining the enstrophy production rates along the principal strain axes.
Similar to what is found for homogeneous turbulence by Vincent & Meneguzzi (1994),
we find that enstrophy production by stretching along the principal strain axis is only
approximately twice as large as that occurring along the intermediate strain axis. The
latter is associated with vortex sheet production (flattening), shear instability, and roll-up
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into vortex tubes. This is significant because the principal stretching rate is typically
much larger than the intermediate one. We have also examined the role of the boundaries
by considering the vertical profile of the horizontal-mean enstrophy production rates.
This reveals a fundamental change in behaviour: enstrophy production in the direction
of the intermediate strain axis greatly exceeds that occurring by vortex stretching along
the principal strain axis. The near-boundary regions dominate the flow at late times,
with the highest vorticity magnitudes occurring on the boundaries, where the vorticity
is entirely horizontal (the vertical component remains zero at all times). Vortex lines are
more restricted from deforming near the boundaries, while they are free to deform in all
directions in the interior. We argue that this enhances dissipation in the interior relative to
the boundaries, leading to a dominance of the near-boundary regions. Indeed, our results
suggest studying a simpler fluid model having no interior vorticity at all, but vortex sheets
on the boundaries. Would this model reproduce, for example, the same energy spectra
found here?

In the near future, we will implement the present numerical method in a
hybrid Eulerian–Lagrangian code for simulating inviscid, incompressible, rotating
density-stratified flows, extending the 2-D code developed by Frey et al. (2022). This
hybrid code will make use of space-filling, subgrid-scale ellipsoidal parcels to represent
all dynamical (prognostic) variables, and will avoid the need for hyperdiffusion. Instead,
mixing will be done more naturally by the splitting and merging of parcels at subgrid
scales. This approach enables a much higher effective resolution for the same basic grid
resolution than a pseudo-spectral method (Frey et al. 2022), and moreover guarantees
monotonicity of tracers, an important requirement in realistic applications to atmospheric
and oceanic dynamics.

Another topic worth investigating is the evolution of the magnetised Beltrami flow
derived in § 2.2. A magnetic field can be stabilising since magnetic field lines resist
twisting and stretching due to magnetic tension (see Dritschel, Diamond & Tobias 2018,
and references therein). This tension is reduced as magnetic diffusivity is increased, since
field lines can more easily reconnect and cross-diffuse. The key controlling parameter
appears to be γ = c

√
Rm, where c is the ratio of the magnetic and velocity field

amplitudes, and Rm = U/(κνB) is the magnetic Reynolds number (U is the amplitude
of the velocity field, taken to be unity in this paper). It is anticipated that magnetised
Beltrami flows with γ = O(1) or greater will be stable, but this is left to future work.

There are many potential applications of the numerical approach developed here (and
its hybrid Lagrangian–Eulerian extension mentioned above). One concerns simulating
and studying moist atmospheric convection, specifically cumulus convection, and the role
played by vorticity. This builds on earlier work using Lagrangian cloud parcels (Böing
et al. 2019), but here we plan to represent those parcels by deformable ellipsoids that
mix by splitting and merging. Enabling stress on the lower boundary is essential for
implementing buoyancy fluxes due to inhomogeneous surface heating. Similarly, this
approach may be useful for studying mesoscale and sub-mesoscale turbulence near the
ocean surface, where boundary stress is commonly created by both wind and thermal
forcing. We can also foresee wider applications in magnetohydrodynamics and in plasma
physics (see Tobias 2021).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.1007.
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Appendix A. Code availability and third party libraries

The source code is publicly available on GitHub. To reproduce the results, use version
0.0.6 (see Frey & Dritschel 2022).

The program depends on NetCDF [C version 4.8.1 and Fortran version 4.5.4]. The
visualisation is done with ParaView [version 5.10.1] (Ahrens, Geveci & Law 2005; Ayachit
2015) and Python (version 3.9.13), including NumPy [version 1.22.3] (Harris et al. 2020),
NetCDF4 [version 1.6.0] (Whitaker et al. 2020), Matplotlib [version 3.5.2] (Caswell et al.
2022) and colorcet [version 3.0.0] (Bednar et al. 2021).

Appendix B. Vorticity inversion test examples

Here, we demonstrate the accuracy and convergence of the vorticity inversion procedure
detailed in § 3.2 by means of five examples. The first example is the Beltrami flow itself,
given in (4.1), which we will refer to as ω1 in the remainder of this Appendix. The second
example,

ω2 =
⎛
⎝2π[12π2f (z)+ f ′′(z)] sin 4πx cos 2πy

4π[ f ′′(z)− 12π2f (z)] cos 4πx sin 2πy
−16π2f ′(z) cos 4πx cos 2πy

⎞
⎠ , (B1)

includes a cubic variation f (z) = 2z − z2 − z3 with first and second derivatives denoted by
f ′(z) and f ′′(z), respectively. The corresponding velocity field is

u2 =
⎛
⎝ 4πf ′(z) cos 4πx sin 2πy

−2πf ′(z) sin 4πx cos 2πy
12π2f (z) sin 4πx sin 2πy

⎞
⎠ . (B2)

The last three examples are horizontal shear flows (v = w = 0) with a linear, quadratic
and cubic vertical dependence,

u3 = z − 1/2, u4 = z2 − 1/3 and u5 = z3 − 1/4, (B3a–c)

and therefore ξ = ζ = 0, with y vorticity

η3 = 1 , η4 = 2z and η5 = 3z2. (B4a–c)

Examples 2–5 are studied in the domain x, y ∈ [−1
2 ,

1
2 ], z ∈ [0, 1].

Figure 21 summarises the resolution dependence of the maximum and r.m.s. errors.
For the Beltrami flow as well as examples 3 and 4, where we have at most a quadratic
z-dependence, the inversion yields machine precision errors across all grid resolutions.
Examples 2 and 5, which have a cubic z-dependence, converge at a cubic rate or better
with the grid spacing. Quantitative results are provided in table 1.
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Figure 21. Convergence of the vorticity inversion algorithm for examples 2 and 5. The maximum error (a)
converges at a cubic rate with the mesh spacing 
z, while the r.m.s. error (b) converges slightly faster.

nz ω1 ω2 ω3 ω4 ω5

32 2.28 × 10−15 1.19 × 10−2 2.22 × 10−16 2.22 × 10−16 3.35 × 10−6

64 5.62 × 10−15 1.58 × 10−3 0.00 0.00 4.19 × 10−7

128 7.17 × 10−15 2.03 × 10−4 2.22 × 10−16 2.22 × 10−16 5.24 × 10−8

256 2.75 × 10−14 2.57 × 10−5 0.00 0.00 6.55 × 10−9

32 7.50 × 10−16 9.89 × 10−4 1.13 × 10−16 1.11 × 10−16 6.46 × 10−7

64 9.41 × 10−16 9.05 × 10−5 0.00 0.00 5.72 × 10−8

128 9.07 × 10−16 8.10 × 10−6 1.11 × 10−16 1.14 × 10−16 5.06 × 10−9

256 3.27 × 10−15 7.19 × 10−7 0.00 0.00 4.47 × 10−10

Table 1. Rows 1–4 refer to |uref − u|max; rows 5–8 refer to |uref − u|rms.

Appendix C. Boundary error with vertical dissipation and filtering

We demonstrate briefly the effect of vertical hyperdiffusion and filtering near a boundary
with a one-dimensional example field (or function) q0(z). Here, we consider

q0(z) = (z + π/2)[π2 − (z + π/2)2] (C1)

(other functions yield similar results), on which we apply the vertical hyperdiffusion
operator

Ď(m) = exp{−(m/mmax)
2p}, (C2)

with p = 3 as in the main part of this paper, and the vertical filter (Hou & Li 2007)

F̌(m) = exp{−36(m/mmax)
36} (C3)

in spectral space. The hyperdiffusion damps the highest wavenumber mmax by a factor
e−1, whereas the vertical filter damps the highest wavenumber by a factor e−36, which is
approximately machine precision.
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Figure 22. Errors due to (a) vertical filtering and (b) vertical hyperdiffusion, on a simple test function q0(z)
that vanishes at both boundaries. Two resolutions are shown, as indicated. The error is caused by the implicit
boundary conditions assumed by the filtering and hyperdiffusion operators, boundary conditions that do not
hold for the test function chosen (or in general).

For this purpose, we first transform the function q0(z), which vanishes on both
boundaries, into spectral space using a Fourier (FFT) sine transform. Then we apply either
of the two operators above and transform back into physical space. In figure 22, qf and
qh denote the filtered and (hyper-)diffused functions, respectively. Results are presented
for 128 and 256 grid cells. Hyperdiffusion results in an error near the surface that is
approximately 2.5 times larger than from filtering. The lack of significant error at the
lower boundary is due to the fact that q′

0(z) also vanishes there. The weak vertical filtering
error is undesirable but appears to have no impact on numerical stability. We have not been
able to find a suitable alternative that is free of this artefact in the filtering literature.
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