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Abstract
It is well known that the height profile of a critical conditioned Galton–Watson tree with finite offspring
variance converges, after a suitable normalisation, to the local time of a standard Brownian excursion. In
this work, we study the distance profile, defined as the profile of all distances between pairs of vertices.
We show that after a proper rescaling the distance profile converges to a continuous random function
that can be described as the density of distances between random points in the Brownian continuum
random tree. We show that this limiting function a.s. is Hölder continuous of any order α < 1, and that
it is a.e. differentiable. We note that it cannot be differentiable at 0, but leave as open questions whether
it is Lipschitz, and whether it is continuously differentiable on the half-line (0,∞). The distance profile
is naturally defined also for unrooted trees contrary to the height profile that is designed for rooted trees.
This is used in our proof, and we prove the corresponding convergence result for the distance profile of
random unrooted simply generated trees. As a minor purpose of the present work, we also formalize the
notion of unrooted simply generated trees and include some simple results relating them to rooted simply
generated trees, which might be of independent interest.
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1. Introduction
Consider a random simply generated tree. (For definitions of this and other concepts in the
introduction, see Sections 2–3.) Under some technical conditions, amounting to the tree being
equivalent to a critical conditioned Galton–Watson tree with finite offspring variance, the (height)
profile of the tree converges in distribution, as a random function in C[0,∞). Moreover, the lim-
iting random function can be identified with the local time of a standard Brownian excursion; this
was conjectured by Aldous [3] and proved by Drmota and Gittenberger [18] (under a stronger
assumption), see also Drmota [17, Section 4.2], and in general by Kersting [34] in a paper that
unfortunately remains unpublished. See further Pitman [47] for related results and a proof in a
special case. See also Kersting [34] for extensions when the offspring variance is infinite, a case
not considered in the present paper.

Remark 1.1. To be precise, [17] and [18] assume that the offspring distribution for the condi-
tioned Galton–Watson tree has a finite exponential moment. As said in [17, footnote on page
127], the analysis can be extended, but it seems that the proof of tightness in [17], which is based
on estimating fourth moments, requires a finite fourth moment of the offspring distribution.
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Note also that Drmota [17, ‘a shortcut’ pp. 123–125] besides the proof from [18] also gives an
alternative proof that combines tightness (taken from the first proof) and the convergence of the
contour process to a Brownian excursion shown by Aldous [4], and thus avoids some intricate
calculations in the first proof. We will use this method of proof below.

Using notation introduced below, the result can be stated as follows.

Theorem 1.2. (Drmota and Gittenberger [18], Kersting [34]). Let Ln be the (height) profile of a
conditioned Galton–Watson tree of order n, with an offspring distribution that has mean 1 and
finite variance σ 2. Then, as n→ ∞,

n−1/2Ln(xn1/2)
d−→ σ

2
Le

(σ
2
x
)
, (1)

in the space C[0,∞], where Le is a random function that can be identified with the local time of a
standard Brownian excursion e; this means that for every bounded measurable f : [0,∞)→R,∫ ∞

0
f (x)Le(x) dx=

∫ 1

0
f
(
e(t)

)
dt. (2)

Remark 1.3. This result is often stated with convergence (1) in the space C[0,∞); the version
stated here with C[0,∞] is somewhat stronger but follows easily. (Note that the maximum is a
continuous functional on C[0,∞] but not on C[0,∞).) See further Section 2.4.

The profile discussed above is the profile of the distances from the vertices to the root. Consider
now instead the distance profile, defined as the profile of all distances between pairs of points.
(Again, see Section 2 for details.) One of ourmain results is the following analogue of Theorem 1.2.

Theorem 1.4. Let �n be the distance profile of a conditioned Galton–Watson tree of order n, with
an offspring distribution that has mean 1 and finite variance σ 2 > 0. Then, as n→ ∞,

n−3/2�n
(
xn1/2

) d−→ σ

2
�e

(σ
2
x
)
, (3)

in the space C[0,∞], where �e(x) is a continuous random function that can be described as the
density of distances between random points in the Brownian continuum random tree [2–4]; equiva-
lently, for a standard Brownian excursion e, we have for every bounded measurable f : [0,∞)→R,∫ ∞

0
f (x)�e(x) dx= 2

∫∫
0<s<t<1

f
(
e(s)+ e(t)− 2 min

u∈[s,t]
e(u)

)
ds dt. (4)

The random distance profile�n was earlier studied in [16], where the estimate (123) below was
shown.

Remark 1.5. It is easy to see that the random function�e really is random and not deterministic,
e.g. as a consequence of Theorem 13.1. However, we do not know its distribution, although the
expectation E�e(x) is given in Lemma 15.11. In particular, the following problem is open. (See
[17, Section 4.2.1] for such results, in several different forms, for Le.)

Problem 1.6. Find a description of the (one-dimensional) distribution of�e(x) for fixed x> 0.

We have so far discussed rooted trees. However, the distance profile is defined also for unrooted
trees, and we will find it convenient to use unrooted trees in parts of the proof. This leads us to
consider random unrooted simply generated trees.

Simply generated families of rooted trees were introduced by Meir and Moon [42], leading to
the notion of simply generated random rooted trees, see e.g. Drmota [17]. This class of random
rooted trees is one of the most popular classes of random trees, and these trees have been fre-
quently studied in many different contexts by many authors. Simply generated random unrooted
trees have been much less studied, but they have occurred, e.g. in a work on non-crossing trees
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by Kortchemski and Marzouk [38] (see also Marckert and Panholzer [41]). Nevertheless, we have
not found a general treatment of them, so a minor purpose of the present paper is to do this in
some detail, both for use in the paper and for future reference. We thus include (Sections 5–8) a
general discussion of random unrooted simply generated trees, with some simple results relating
them to rooted simply generated trees, allowing the transfer of many results for rooted simply
generated trees to the unrooted case. Moreover, as part of the proof of Theorem 1.4, we prove the
corresponding result (Theorem 11.2) for random unrooted simply generated trees.

As a preparation for the unrooted case, we also give (Section 4) some results (partly from
Kortchemski and Marzouk [38]) on modified rooted simply generated trees (Galton–Watson
trees), where the root has different weights (offspring distribution) than all other vertices.

The central parts of the proof of Theorem 1.4 are given in Sections 10–12, where we use both
rooted and unrooted trees. As a preparation, in Section 9, we extend Theorem 1.2 to condi-
tioned modified Galton–Watson trees. We later also extend Theorem 1.4 to conditioned modified
Galton–Watson trees (Theorem 12.1).

We end the paper with some comments and further results related to our main results. In
Section 13, we discuss a simple application to the Wiener index of unrooted simply generated
trees. Section 14 contains some important moment estimations of the distance profile for
conditioned Galton–Watson trees as well as for its continuous counterpart �e. In Section 15,
we establish Hölder continuity properties of the continuous random function Le and �e. It is
known that Le is a.s. Hölder continuous of order α (abbreviated to Hölder(α)) for α < 1

2 , but not
for α � 1

2 . We show that �e is smoother; it is a.s. Hölder(α) for α < 1, and it is a.e. differentiable
(Theorem 15.5). We do not know whether it is Lipschitz, or even continuously differentiable on
[0,∞), but we show that it is does not a.s. have a two-sided derivative at 0 (Theorem 15.10), and
we state some open problems.

Finally, some further remarks are given in Section 16.

2. Some notation
Trees are finite except when explicitly said to be infinite. Trees may be rooted or unrooted; in a
rooted tree, the root is denoted o. The rooted trees may be ordered or not. The unrooted trees will
always be labelled; we do not consider unrooted unlabelled trees in the present paper.

If T is a tree, then its number of vertices is denoted by |T|; this is called the order or the size
of T. (Unlike some authors, we do not distinguish between order and size.) The notation v ∈ T
means that v is a vertex in T.

The degree of a vertex v ∈ T is denoted d(v). In a rooted tree, we also define the outdegree d+(v)
as the number of children of v; thus,

d+(v)=
{
d(v)− 1, v �= o,
d(v), v= o.

(5)

A leaf in an unrooted tree is a vertex vwith d(v)= 1. In a rooted tree, we instead require d+(v)= 0;
this may make a difference only for the root.

A fringe subtree in a rooted tree is a subtree consisting of some vertex v and all its descendants.
We regard v as the root of the fringe tree. The branches of a rooted tree are the fringe trees rooted
at the children of the root. The number of branches thus equals the degree d(o) of the root.

Let Tn be the set of all ordered rooted trees of order n, and let T := ⋃∞
1 Tn. Note that Tn

is a finite set; we may identify the vertices of an ordered rooted tree by finite strings of positive
integers, such that the root is the empty string and the children of v are vi, i= 1, . . . , d(v). (Thus,
an ordered rooted tree is regarded as a subtree of the infinite Ulam–Harris tree.) In fact, it is well
known that |Tn| = 1

n
(2n−2
n−1

)
, the Catalan number Cn−1.
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Let Ln be the set of all unrooted trees of order n, with the labels 1, . . . , n; thus Ln is the set
of all trees on [n] := {1, . . . , n}. Ln is evidently finite and by Cayley’s formula |Ln| = nn−2. Let
L := ⋃∞

1 Ln.
A probability sequence is the same as a probability distribution on N0 := {0, 1, 2, . . .}, i.e., a

sequence p= (pk)∞0 with pk � 0 and
∑∞

k=0 pk = 1. The mean μ(p) and variance σ 2(p) of a prob-
ability sequence are defined to be the mean and variance of a random variable with distribution
p, i.e.,

μ(p) :=
∞∑
k=0

kpk, σ 2(p) :=
∞∑
k=0

k2pk −μ(p)2. (6)

We use d−→ and
p−→ for convergence in distribution and in probability, respectively, for a

sequence of random variables in some metric space; see e.g. [11]. Also, d= means convergence in
distribution.

The total variation distance between two random variables X and Y in a metric space (or rather
between their distributions) is defined by

dTV(X, Y) := sup
A

∣∣P(X ∈A)− P(Y ∈A)
∣∣, (7)

taking the supremum over all measurable subsets A. It is well known that in a complete separable
metric space, there exists a coupling of X and Y (i.e., a joint distribution with the given marginal
distributions) such that

P(X �= Y)= dTV(X, Y), (8)

and this is best possible.
Op(1) denotes a sequence of real-valued random variables (Xn)n that is stochastically bounded,

i.e., for every ε > 0, there exists C such that P(|Xn|> C)� ε. This is equivalent to (Xn)n being
tight. For tightness in more general metric spaces, see e.g. [11].

Let f be a real-valued function defined on an interval I ⊆R. The modulus of continuity of f is
the function [0,∞)→ [0,∞] defined by, for δ � 0,

ω(δ; f )=ω(δ; f ; I) := sup
(|f (s)− f (t)| : s, t ∈ I, |s− t|� δ). (9)

If x and y are real numbers, x∧ y := min{x, y} and x∨ y := max{x, y}.
C denotes unspecified constants that may vary from one occurrence to the next. They may

depend on parameters such as weight sequences or offspring distributions, but they never depend
on the size of the trees. Sometimes we write, e.g., Cr to emphasize that the constant depends on
the parameter r.

Unspecified limits are as n→ ∞.

2.1. Profiles
For two vertices v and w in a tree T, let d(x, y)= dT(x, y) denote the distance between v and w,
i.e., the number of edges in the unique path joining v and w. In particular, in a rooted tree, d(v, o)
is the distance to the root, often called the depth (or sometimes height) of v.1

For a rooted tree T, the height of T is H(T) := maxv∈T d(v, o), i.e., the maximum depth. The
diameter of a tree T, rooted or not, is diam(T) := maxv,w∈T d(v,w).

The profile of a rooted tree is the function L= LT :R→ [0,∞) defined by

L(i) := ∣∣{v ∈ T : d(v, o)= i}∣∣, (10)

1We use different fonts to distinguish the distance d from the degree d; note also that the distance has two arguments and
the degree only one.
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for integers i, extended by linear interpolation to all real x. (We are mainly interested in x� 0, and
trivially L(x)= 0 for x�−1, but it will be convenient to allow negative x.) The linear interpolation
can be written as

L(x) :=
∞∑
i=0

L(i)τ (x− i), (11)

where τ is the triangular function τ (x) := (1− |x|)∨ 0.
Note that L(0)= 1, and that L is a continuous function with compact support [− 1,H(T)+ 1].

Furthermore, since
∫
τ (x) dx= 1,∫ ∞

−1
L(x) dx=

∞∑
i=0

L(i)= |T|, (12)

where we integrate from −1 because of the linear interpolation; we have
∫ ∞
0 L(x) dx=∑∞

i=0 L(i)− 1
2 = |T| − 1

2 .
The width of T is defined as

W(T) := max
i∈N0

L(i)=max
x∈R

L(x). (13)

Similarly, in any tree T, rooted or unrooted, we define the distance profile as the function �=
�T : [0,∞)→ [0,∞) defined by

�(i) := ∣∣{(v,w) ∈ T : d(v,w)= i}∣∣ (14)
for integers i, again extended by linear interpolaton to all real x� 0. For definiteness, we count
ordered pairs in (14), and we include the case v=w, so�(0)= |T|.� is a continuous function on
[0,∞) with support [− 1, diam(T)+ 1]. We have, similarly to (12),∫ ∞

−1
�(t) dt =

∞∑
i=0

�(i)= |T|2. (15)

If T is an unrooted tree, let T(v) denote the rooted tree obtained by declaring v as the root, for
v ∈ T. Then, as a consequence of (10) and (14),

�T(x)=
∑
v∈T

LT(v)(x). (16)

Hence, the distance profile can be regarded as the sum (or, after normalisation, average) of the
profiles for all possible choices of a root.

Remark 2.1. Alternatively, one might extend L to a step function by L(x) := L(�x�), and similarly
for �. The asymptotic results are the same (and equivalent by simple arguments), with L and �
elements of D[0,∞] instead of C[0,∞] and limit theorems taking place in that space. This has
some advantages, but for technical reasons (e.g. simpler tightness criteria), we prefer to work in
the space C[0,∞] of continuous functions.

Remark 2.2. Another version of � would count unordered pairs of distinct vertices. The two
versions are obviously equivalent and our results hold for the alternative version too, mutatis
mutandis.

2.2. Brownian excursion and its local time
The standard Brownian excursion e is a random continuous function [0, 1]→ [0,∞) such that
e(0)= e(1)= 0 and e(t)> 0 for t ∈ (0, 1). Informally, e can be regarded as a Brownian motion
conditioned on these properties; this can be formalised as an appropriate limit [23]. There are
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several other, quite different but equivalent, definitions, see e.g. [49, XII.(2.13)], [13, Example
II.1d)], and [17, Section 4.1.3].

The local time Le of e is a continuous random function that is defined (almost surely) as a
functional of e satisfying ∫ ∞

0
f (x)Le(x) dx=

∫ 1

0
f
(
e(t)

)
dt, (17)

for every bounded (or non-negative) measurable function f : [0,∞)→R. In particular, (17)
yields, for any x� 0 and ε > 0,∫ x+ε

x
Le(y) dy=

∫ 1

0
1{e(t) ∈ [x, x+ ε)} dt (18)

and thus

Le(x)= lim
ε→0

1
ε

∫ 1

0
1{e(t) ∈ [x, x+ ε)} dt. (19)

Hence, Le(x) can be regarded as the occupation density of e at the value x.
Note that the existence (almost surely) of a function Le(x) satisfying (17)–(19) is far from obvi-

ous; this is part of the general theory of local times for semimartingales, see e.g. [49, Chapter VI].
The existence also follows from (some of) the proofs of Theorem 1.2.

2.3. Brownian continuum random tree
Given a continuous function g : [0, 1]→ [0,∞) with g(0)= g(1)= 0, one can define a pseudo-
metric d on [0, 1] by

d(s, t)= d(s, t; g) := g(s)+ g(t)− 2 min
u∈[s,t]

g(u), 0� s� t� 1. (20)

By identifying points with distance 0, we obtain a metric space Tg , which is a compact real tree,
see e.g. Le Gall [39, Theorem 2.2]. We denote the natural quotient map [0, 1]→ Tg by ρg , and
let Tg be rooted at ρg(0). The Brownian continuum random tree defined by Aldous[2–4] can be
defined as the random real tree Te constructed in this way from the random Brownian excursion
e, see [39, Section 2.3]. (Aldous [2–4] used another definition, and another scaling corresponding
to T2e.) Note that using (20), (4) can be written∫ ∞

0
f (x)�e(x) dx=

∫∫
s,t∈[0,1]

f
(
d(s, t; e)

)
ds dt, (21)

for any bounded (or non-negative) measurable function f . This means that�e is the density of the
distance in Te between two random points, chosen independently with the probability measure on
Te induced by the uniform measure on [0, 1]. This justifies the equivalence of the two definitions
of�e stated in Theorem 1.4. As for the local time Le, the existence (almost surely) of a continuous
function�e satisfying (21) is far from trivial; this will be a consequence of our proof.

An important feature of the Brownian continuum random tree is its re-rooting invariance
property. More precisely, fix s ∈ [0, 1] and set

e[s](t)=
{
d(s, s+ t; e), 0� t< 1− s
d(s, s+ t − 1; e), 1− s� t� 1.

(22)

Note that e[s] is a random continuous function [0, 1]→ [0,∞) such that e[s](0)= e[s](1)= 0 and
a.s. e[s](t)> 0 for t ∈ (0, 1); clearly, e[0] = e. By Duquesne and Le Gall [21, Lemma 2.2], the com-
pact real tree Te[s] is then canonically identified with the Te tree re-rooted at the vertex ρe(s).
Marckert and Mokkadem [40, Proposition 4.9] (see also Duquesne and Le Gall [22, Theorem
2.2]) have shown that for every fixed s ∈ [0, 1],
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e[s] d= e and Te[s] = Te, (23)

in distribution. Thus, the re-rooted tree Te[s] is a version of the Brownian continuum random tree.

Remark 2.3. Indeed, Aldous [3, (20)] already observed that the Brownian continuum random
tree is invariant under uniform re-rooting and that this property corresponds to the invariance
of the law of the Brownian excursion under the path transformation (22) if s=U is uniformly
random on [0, 1] and independent of e.

As a consequence of the previous re-rooting invariance property, we deduce the following
explicit expression for the continuous function �e. For every fixed s ∈ [0, 1], let Le[s] denote the
local time of e[s], which is perfectly defined thanks to (23). It follows from (20), (21) and (22) that

∫ ∞

0
f (x)�e(x) dx=

∫ 1

0

∫ 1

0
f
(
e[s](t)

)
ds dt =

∫ 1

0

∫ ∞

0
f (x)Le[s] (x) dx ds,

for any bounded (or non-negative) measurable function f , or equivalently,

�e(x)=
∫ 1

0
Le[s] (x) ds, x� 0. (24)

In accordance with the discrete analogue of �e in (16), the identity (24) shows that �e can be
regarded as the average of the profiles for all possible choices of a root in Te.

2.4. The function spaces C[0,∞) and C[0,∞]
Recall that C[0,∞) is the space of continuous functions on [0,∞) and that convergence in
C[0,∞) means uniform convergence on each compact interval [0, b]. As said in Remark 1.3, we
prefer to state our results in the space C[0,∞] of functions that are continuous on the extended
half-line [0,∞]. These are the functions f in C[0,∞) such that the limit f (∞) := limx→∞ f (x)
exists; in our case, this is a triviality since all random functions on both sides of (1) and (3), and in
similar later statements, have compact support, and thus trivially extend continuously to [0,∞]
with f (∞)= 0. The important difference between C[0,∞) and C[0,∞] is instead the topology:
convergence in C[0,∞] means uniform convergence on [0,∞] (or, equivalently, on [0,∞)).

In particular, the supremum is a continuous functional on C[0,∞], but not on C[0,∞) (where
it also may be infinite). Thus, convergence of the width (after rescaling), follows immediately
from Theorem 1.2 (see also the proof of Theorem 9.2); if this was stated with convergence in
C[0,∞), a small extra argument would be needed (more or less equivalent to showing convergence
in C[0,∞]).

In the random setting, the difference between the two topologies can be expressed as in the
following lemma. See also [27, Proposition 2.4], for the similar case of the spaces D[0,∞] and
D[0,∞).

Lemma 2.4. Let Xn(t) and X(t) be random functions in C[0,∞]. Then Xn(t)
d−→ X(t) in C[0,∞]

if and only if

(i) Xn(t)
d−→ X(t) in C[0,∞), and

(ii) Xn(t)
p−→ Xn(∞), as t → ∞, uniformly in n; i.e., for every ε > 0,

sup
n�1

P
(

sup
u<t<∞

|Xn(t)− Xn(∞)|> ε) → 0, as u→ ∞. (25)

Proof. A straightforward exercise.
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In our cases, such as (1) and (3), the condition (25) is easily verified from convergence (or
just tightness) of the normalised height Hn/

√
n, which can be used to bound the support of the

left-hand sides. Hence, convergence in C[0,∞) and C[0,∞] is essentially equivalent.
Note that C[0,∞] is a separable Banach space, and that it is isomorphic to C[0, 1] by a change

of variable; thus, general results for C[0, 1] may be transferred. Note also that all functions that we
are interested in lie in the (Banach) subspace C0[0,∞) := {f ∈ C[0,∞] : f (∞)= 0}. Hence, the
results may just as well be stated as convergence in distribution in C0[0,∞).

3. Rooted simply generated trees
As a background, we recall first the definition of random rooted simply generated trees and the
almost equivalent conditioned Galton–Watson trees, see e.g. [17] or [30] for further details, and
[6] for more on Galton–Watson processes.

3.1. Simply generated trees
Let φ = (φk)∞0 be a given sequence of non-negative weights, with φ0 > 0 and φk > 0 for at least one
k� 2. (The latter conditions exclude only trivial cases when the random tree T φ

n defined below
either does not exist or is a deterministic path.)

For any rooted ordered tree T ∈T, define the weight of T as

φ(T) :=
∏
v∈T

φd+(v). (26)

For a given n, we define the random rooted simply generated tree T φ
n of order n as a random

tree in Tn with probability proportional to its weight; i.e.,

P(T φ
n = T) := φ(T)∑

T′∈Tn
φ(T′)

, T ∈Tn. (27)

We consider only n such that at least one tree T with φ(T)> 0 exists.
A weight sequence φ′ = (φ′

k)
∞
0 with

φ′
k = abkφk, k� 0, (28)

for some a, b> 0 is said to be equivalent to (φk)∞0 . It is easily seen that equivalent weight sequences

define the same random tree T φ
n , i.e., T φ

′
n

d= T φ
n .

3.2. Galton–Watson trees
Given a probability sequence p= (pk)∞0 , theGalton–Watson tree T p is the family tree of a Galton–
Watson process with offspring distribution p. Thismeans that T p is a random ordered rooted tree,
which is constructed as follows: Start with a root and give it a random number of children with the
distribution p. Give each new vertex a random number of children with the same distribution and
independent of previous choices, and continue as long as there are new vertices. In general, T p

may be an infinite tree. We will mainly consider the critical case when the expectation μ(p)= 1,
and then it is well known that T p is finite a.s. (We exclude the trivial case when p1 = 1.)

The size |T p| of a Galton–Watson tree is random. Given n� 1, the conditioned Galton–Watson
tree T p

n is defined as T p conditioned on |T p| = n. (We consider only n such that this happens with
positive probability.) Consequently, T p

n is a random ordered rooted tree of size n. It is easily seen
that a conditioned Galton–Watson tree T p

n equals (in distribution) the simply generated tree with
the weight sequence p, and thus we use the same notation T p

n for both.
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A (conditioned) Galton–Watson tree is critical if its offspring distribution p hasmeanμ(p)= 1.
We will in the present paper mainly consider conditioned Galton–Watson trees that are crit-
ical and have a finite variance σ 2(p); this condition is rather mild, as is seen in the following
subsection.

3.3. Equivalence

A random simply generated tree T φ
n with a weight sequence (φk)∞0 that is a probability sequence

equals, as just said, the conditioned Galton–Watson tree T φ
n . Much more generally, any weight

sequence φ such that its generating function

�(z) :=
∞∑
k=0

φkzk (29)

has positive radius of convergence is equivalent to some probability weight sequence; hence, T φ
n

can be regarded as a conditioned Galton–Watson tree in this case too. Moreover, in many cases,
we can choose an equivalent probability weight sequence that has mean 1 and finite variance; see
e.g. [30, Section 4].

We will use this to switch between simply generated trees and conditioned Galton–Watson
trees without comment in the sequel; we will use the name that seems best and most natural in
different contexts.

3.4. Simply generated forests
The Galton–Watson process above starts with one individual. More generally, we may start with
m individuals, which we may assume are numbered 1, . . . ,m; this yields a Galton–Watson forest
consisting ofm independent copies of T p. Conditioning on the total size being n�m, we obtain a
conditioned Galton–Watson forest T p

n,m, which thus consists ofm random trees T p
n,m; 1, . . . , T

p
n,m;m

with |T p
n,m; 1| + · · · + |T p

n,m;m| = n. Conditioned on the sizes |T p
n,m; 1|, . . . , |T p

n,m;m|, the trees are
independent conditioned Galton–Watson trees with the given sizes.

More generally, given any weight sequence φ, a random simply generated forest T φ
n,m is a ran-

dom forest withm rooted trees and total size n, chosen with probability proportional to its weight,
defined as in (26). Again, conditioned on their sizes, the trees are independent simply generated
trees.

Thus, the distribution of the sizes of the trees in the forest is of major importance. Consider the
Galton–Watson case, and let T p

n,m; (1), . . . , T
p
n,m; (m) denote the trees arranged in decreasing order:

|T p
n,m; (1)|� · · ·� |T p

n,m; (m)|. (Ties are resolved randomly, say; this applies tacitly to all similar situ-
ations.) We have the following general result, which was proved by Marzouk [38, Lemma 5.7(iii)]
under an additional regularity hypothesis.

Lemma 3.1. Let m� 1 be fixed, and consider the conditioned Galton–Watson forest T p
n,m as

n→ ∞. Then

|T p
n,m; (i)| =

{
n−Op(1), i= 1
Op(1), i= 2, . . . ,m.

(30)

Proof. Suppose first that μ(p)= 1. Suppose also, for simplicity, that pm > 0. Consider the con-
ditioned Galton–Watson tree T p

n+1 and condition on the event Em that the root degree is m.
Conditioned on Em, there arem branches, which form a conditioned Galton–Watson forest T p

n,m.
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As n→ ∞, the random tree T p
n+1 converges in distribution to an infinite random tree T̂

(the size-biased Galton–Watson tree defined by Kesten [35]), see [30, Theorem 7.1]. Moreover,
P(Em)→mpm > 0 by [30, Theorem 7.10]. Hence, T p

n+1 conditioned on Em converges in dis-
tribution to T̂ conditioned on Em. In other words, the forest T p

n,m converges in distribution
to the branches of T̂ conditioned on having exactly m branches; denote this random limit by
(T1, . . . , Tm). By the Skorohod coupling theorem [32, Theorem 4.30], we may (for simplicity)
assume that this convergence is a.s. The convergence here is in the local topology used in [30],
which means [30, Lemma 6.2] that for any fixed �� 1, if T[�] denotes the tree T truncated at
height �, then a.s., for sufficiently large n, T p,[�]

n,m; i = T [�]
i .

The infinite tree T̂ has exactly one infinite branch; thus, there exists a (random) j�m such that
Tj is infinite but Ti is finite for i �= j. Truncating the trees at an � chosen larger than the heights
H(Ti) for all i �= j, we see that for large n, T p

n,m; i = Ti. Thus, |T p
n,m; i| =O(1) for i �= j, and necessarily

the remaining branch T p
n,m; j has size n−O(1). Hence, for large enough n, T p

n,m; (1) = T p
n,m; j.

Consequently, T p
n,m; (2), . . . , T

p
n,m; (m) converge a.s., and thus in distribution, to the m− 1 finite

branches of T̂ , arranged in decreasing order and conditioned on Em. In particular, their sizes
converge in distribution and are thus Op(1).

We assumed for simplicity pm > 0. In general, we may select a rooted tree T with �m leaves,
such that pd+(v) > 0 for every v ∈ T. Fix m leaves v1, . . . , vm in T, and consider the conditioned
Galton–Watson tree T p

n+|T|−m conditioned on the event ET that it consists of T with subtrees
added at v1, . . . , vm. Then these subtrees form a conditioned Galton–Watson forest T p

n,m, and we
can argue as above, conditioning T̂ on ET .

This completes the proof when μ(p)= 1. If μ(p)> 1, there always exists an equivalent proba-
bility weight p̃ with μ(p̃)= 1, and the result follows. If μ(p)< 1, the same may hold, and if it does
not hold, then there is a similar infinite limit tree T̂ [30, Theorem 7.1]; in this case, T̂ has one
vertex of infinite degree, but the proof above holds with minor modifications.

Remark 3.2. The proof shows that in the caseμ(p)= 1, the small trees T p
n,m; (2), . . . , T

p
n,m; (m) in the

forest converge in distribution tom− 1 independent copies of the unconditioned Galton–Watson
tree T p, arranged in decreasing order. More generally, the small trees converge in distribution to
independent Galton–Watson trees for a probability distribution equivalent to p. (This too was
shown in [38, Lemma 5.7(iii)] under stronger assumptions.)

Remark 3.3. In the standard case μ(p)= 1, σ 2(p)<∞, it is also easy to show Lemma 3.1 using
the fact P(|T p| = n)∼ cn−3/2, for some c> 0, which is a well-known consequence of the local
limit theorem, cf. (36)–(37).

Problem 3.4. A simply generated forest T φ
n,m is covered by Lemma 3.1 when the generating

function (29) has positive radius of convergence, since then it is equivalent to a conditioned
Galton–Watson forest. We conjecture that Lemma 3.1 holds for simply generated forests also
in the case when the generating function has radius of convergence 0, but we leave this as an open
problem.

4. Modified simply generated trees
One frequently meets random trees where the root has a special distribution, see, for example [38,
41]. Thus, let φ and φ0 be two weight sequences, where φ is as above, and φ0 = (φ0k )

∞
0 satisfies

φ0k � 0, with strict inequality for at least one k. We modify (26) and now define the weight of a tree
T ∈T as

φ∗(T) := φ0d+(o)
∏
v �=o

φd+(v). (31)
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The random modified simply generated tree T φ,φ0
n is defined as in (27), using the modified

weight (31).
We say that a pair (φ′, φ0′) is equivalent to (φ, φ0) if (28) holds and similarly

φ0′k = a0bkφ0k , k� 0. (32)

It is important that the same b is used in (28) and (32), while a and a0 may be different. It is easy
to see that equivalent pairs of weight sequences define the same modified simply generated tree.

Similarly, given two probability sequences p= (pk)∞0 and p0 = (p0k)
∞
0 , we define the modified

Galton–Watson tree T p,p0 and conditioned modified Galton–Watson tree T p,p0
n as in Section 3.2,

but now giving children to the root with distribution p0, and to everyone else with distribution p.
Again, as indicated by our notation, we have an equality: the conditioned modified Galton–

Watson tree T p,p0
n equals the modified simply generated tree with weight sequences p and p0.

Conversely, if two weight sequences φ and φ0 both have positive radius of convergence, then it
is possible (by taking b small enough) to find equivalent weight sequences φ′ and φ0′ that are
probability sequences, and thus T φ,φ0

n = T φ
′,φ0′

n can be interpreted as a conditioned modified
Galton–Watson tree.

Lemma 4.1. Consider a modified simply generated tree T φ,φ0
n and denote its branches by

T1, . . . , Td(o).

(i) Conditioned on the root degree d(o), the branches form a simply generated forest T φ

n−1,d(o).
(ii) Conditioned on the root degree d(o) and the sizes |Ti| of the branches, the branches are

independent simply generated trees T φ
|Ti|.

Proof. Exercise.

Note that Lemma 4.1 applies also to the simply generated tree T φ
n (by taking φ0 = φ). Thus,

conditioned on the root degree the branches have the same distribution for T φ
n and T φ,φ0

n .
Hence, the distribution of the root degree is of central importance. The following lemma is
partly shown by [38, Proposition 5.6] in greater generality (the stable case), although we add the
estimate (35).

Lemma 4.2. (mainly Kortchemski and Marzouk [38]) Suppose that p is a probability sequence with
mean μ(p)= 1 and variance σ 2(p) ∈ (0,∞) and that p0 is a probability sequence with finite mean
μ(p0). Then the root degree d(o) in the conditioned modified Galton–Watson tree T p,p0

n converges
in distribution to a random variable D̃ with distribution

P(D̃= k)= kp0k∑∞
j=1 jp0j

= kp0k
μ(p0)

. (33)

In other words, for every fixed k� 0,

P(d(o)= k)→ P(D̃= k), as n→ ∞. (34)

Moreover, if n is large enough, we have uniformly

P(d(o)= k)� 2P(D̃= k), k� 1. (35)

As a consequence, ED̃<∞ if and only if σ 2(p0)<∞.

Proof. This uses well-known standard arguments, but we give a full proof for completeness; see
also [38]. Let D be the root degree in the modified Galton–Watson tree T p,p0 . If D= k, then
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the rest of the tree consists of k independent copies of T p. Thus, the conditional probability
P
(|T p,p0 | = n |D= k

)
equals the probability that a Galton–Watson process started with k indi-

viduals has in total n− 1 individuals; hence, by a formula by Dwass [24], see e.g. [30, Section 15]
and the further references there,

P
(|T p,p0 | = n |D= k

) = k
n− 1

P
(
Sn−1 = n− k− 1

)
, (36)

where Sn−1 denotes the sum of n− 1 independent random variables with distribution p.
Suppose for simplicity that the distribution p is aperiodic, i.e., not supported on any subgroup

dN. (The general case follows similarly using standard modifications.) It then follows by the local
limit theorem, see e.g. [36, Theorem 1.4.2] or [46, Theorem VII.1], that, as n→ ∞,

P
(
Sn−1 = n− k− 1

) = 1√
2πσ 2n

(
e−k2/(2nσ 2) + o(1)

)
, (37)

uniformly in k. Consequently, combining (36) and (37) with P(D= k)= p0k,

P
(|T p,p0 | = n and D= k

) = kp0k
n− 1

P
(
Sn−1 = n− k− 1

)
= c

kp0k
n3/2

(
e−k2/(2nσ 2) + o(1)

)
, (38)

uniformly in k, where c := (2πσ 2)−1/2.
Summing over k we find as n→ ∞, using

∑
kp0k <∞ and monotone convergence,

P
(|T p,p0 | = n

) = c
n3/2

( ∞∑
k=1

kp0ke
−k2/(2nσ 2) + o(1)

)
∼ c

n3/2
∞∑
k=1

kp0k. (39)

Thus, combining (38) and (39), for any fixed k� 1, as n→ ∞,

P
(
D= k | |T p,p0 | = n

) = P
(|T p,p0 | = n and D= k

)
P
(|T p,p0 | = n

)
→ kp0k∑∞

j=1 jp0j
. (40)

The limits on the right-hand side sum to 1, and thus the result (33) follows.
Moreover, (38) and (39) also yield

P
(
D= k | |T p,p0 | = n

) = P
(|T p,p0 | = n and D= k

)
P
(|T p,p0 | = n

)
�

kp0k∑∞
j=1 jp0j

(
1+ o(1)

)
, (41)

uniformly in k. In particular, (35) holds for all k if n is large enough.
Finally, by (33), ED̃= ∑

kP(D̃= k)<∞ if and only if
∑

k k2p0k <∞.
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It follows from Lemma 4.2 that the tree is overwhelmingly dominated by one branch. (Again,
this was shown by Kortchemski and Marzouk [38] in greater generality.)

Lemma 4.3. (essentially Kortchemski and Marzouk [38, Proposition 5.6]) Suppose that p is a
probability sequence with mean μ(p)= 1 and variance σ 2(p) ∈ (0,∞) and that p0 is a probabil-
ity sequence with finite mean μ(p0). Let Tn,(1), . . . , Tn,(d(o)) be the branches of T

p,p0
n arranged in

decreasing order. Then
|Tn,(1)| = n−Op(1). (42)

Proof. Let Dn = d(o) and condition on Dn =m, for a fixed m. Then, by Lemmas 4.1 and 3.1,
(42) holds. In other words, for every ε > 0, there exists Cm,ε such that

P
(
n− |Tn,(1)|> Cm,ε |Dn =m

)
< ε. (43)

By Lemma 4.2, Dn
d−→ D̃, and thus (Dn)n is tight, i.e., Op(1), so there exists M such that P(Dn >

M)< ε for all n. Consequently, if Cε := maxm�M Cm,ε ,

P
(
n− |Tn,(1)|> Cε

) =EP
(
n− |Tn,(1)|> Cε |Dn

)
� ε+ P(Dn >M)

� 2ε, (44)

which completes the proof.

Lemmas 4.1–4.3 make it possible to transfer many results that are known for simply generated
trees (conditionedGalton–Watson trees) to themodified version. See Section 9 for a few examples.

Problem 4.4. Does Lemma 4.2 (and thus Lemma 4.3) hold without assuming finite variance
σ 2(p)<∞. i.e., assuming onlyμ(p)= 1 andμ(p0)<∞? As said above, (33) was shown also when
the variance is infinite by Kortchemski and Marzouk [38], but they then assume that p is in the
domain of attraction of a stable distribution. What happens without this regularity assumption?

Remark 4.5. We assume in Lemma 4.2 that μ(p0)<∞. We claim that if μ(p0)= ∞, then
d(o)

p−→ ∞; in other words, P(d(o)= k)→ 0 for every fixed k, which can be seen as the natural
interpretation of (33)–(34) in this case.

We sketch a proof. First, from (38) and Fatou’s lemma (for sums),

lim inf
n→∞ n3/2P

(|T p,p0 | = n
)
�

∞∑
k=0

lim inf
n→∞ n3/2P

(|T p,p0 | = n and D= k
)

=
∞∑
k=0

ckp0k = ∞. (45)

In other words, n3/2P
(|T p,p0 | = n

) → ∞. Then, (38) and (45) yield, for any fixed k� 0,

P
(
D= k | |T p,p0 | = n

) = P
(|T p,p0 | = n and D= k

)
P
(|T p,p0 | = n

) → 0. (46)

This proves our claim.

5. Unrooted simply generated trees
We make definitions corresponding to Section 3 for unrooted trees. In this case, we consider
labelled trees, so that we can distinguish the vertices. (This is not needed for ordered trees, since
their vertices can be labelled canonically as described in Section 2.) Of course, we may then ignore
the labelling when we want.
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Let (wk)∞0 be a given sequence of non-negative weights, withw1 > 0 andwk > 0 for some k� 3.
(The weightw0 is needed only for the trivial case n= 1 andmight be ignored.Wemay takew0 = 0
without essential loss of generality.)

For any labelled tree T ∈Ln, now define the weight of T as

w(T) :=
∏
v∈T

wd(v). (47)

Given n� 1, we define the random unrooted simply generated tree T ◦
n = T w,◦

n as a labelled tree
in Ln, chosen randomly with probability proportional to the weight (47). (We consider only n
such that at least one tree of positive weight exists.)

Remark 5.1. Just as in the rooted case, replacing the weight sequence by an equivalent one (still
defined as in (28)) gives the same random tree T ◦

n .

In the following sections, we give three (related but different) relations with the more well-
known rooted simply generated trees.

6. Mark a vertex
Let T w,◦

n be a random unrooted simply generated tree as in Section 5 andmark one of its n vertices,
chosen uniformly at random. Regard the marked vertex as a root and denote the resulting rooted
tree by T w,•

n .
Thus, T w,•

n is a random unordered rooted tree, where an unordered rooted tree T has
probability proportional to its weight given by (47).

We make T w,•
n ordered by ordering the children of each vertex uniformly at random; denote

the resulting random labelled ordered rooted tree by T w,∗
n . Since each vertex v has d+(v)! possible

orders, the probability that T w,∗
n equals a given ordered tree T is proportional to the weight

w∗(T) := w(T)∏
v∈T d+(v)! = wd(o)

d(o)!
∏
v �=o

wd(v)
d+(v)! = wd(o)

d(o)!
∏
v �=o

wd+(v)+1
d+(v)! . (48)

The tree T w,∗
n is constructed as a labelled tree, but each ordered rooted tree T ∈Tn has the same

number n! of labellings, and they have the same weight (48) and thus appear with the same prob-
ability. Hence, we may forget the labelling and regard T w,∗

n as a random ordered tree in Tn, with
probabilities proportional to the weight (48). This is the same as the weight (31) with

φk := wk+1
k! , k� 0, (49)

φ0k :=
wk
k! , k� 0. (50)

Thus, T w,∗
n = T φ,φ0

n , the modified simply generated tree defined in Section 4.
We recover T w,◦

n from T ∗
n = T φ,φ0

n by ignoring the root (and adding a uniformly random
labelling). This yields thus a method to construct T w,◦

n .

Example 6.1. Marckert and Panholzer [41] studied uniformly random non-crossing trees of a
given size n and found that if they are regarded as ordered rooted trees, then they have the same
distribution as the conditioned modified Galton–Watson tree T p,p0

n , where

pk = 4(k+ 1)3−k−2, k� 0, (51)

p0k = 2 · 3−k, k� 1. (52)
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These weights are equivalent to φk = k+ 1 and φ0k = 1, which are given by (49)–(50) with wk = k!.
We may thus reformulate the result by Marckert and Panholzer [41] as: A uniformly random
non-crossing tree is the same as a random unrooted simply generated tree with weights wk = k!.

More generally, Kortchemski and Marzouk [38] studied simply generated non-crossing trees,
which are random non-crossing trees with probability proportional to the weight (47) for some
weight sequence w= (wk)k, and showed that they (under a condition) are equivalent to con-
ditioned modified Galton–Watson trees. In fact, for any weight sequence w, the proofs in [41,
in particular Lemma 2] and [38, in particular Proposition 2.1] show that the simply generated
non-crossing tree, regarded as an ordered rooted tree, is the same as T φ,φ0

n with

φk := (k+ 1)wk+1, k� 0, (53)

φ0k := wk, k� 0. (54)

Thus, comparing with (49)–(50), it follows that the simply generated non-crossing tree is an
unordered simply generated tree, with weight sequence wk := wkk!.

Note that non-crossing trees are naturally defined as unrooted trees. A root is introduced in [38,
41] for the analysis, which as said above makes the trees conditioned modified Galton–Watson
trees (or, more generally, modified simply generated trees). This is precisely the marking of an
unrooted simply generated tree discussed in the present section.

Remark 6.2. The constructions in this and the next section lead to simple relations of generating
functions (not used here); see [10, Appendix B].

7. Mark an edge
In the random unrooted tree T w,◦

n , mark a (uniformly) random edge, and give it a direction; i.e.,
mark two adjacent vertices, say o+ and o−. Since each tree T w,◦

n has the same number n− 1 of
edges, the resulting marked tree T w,••

n is distributed over all labelled trees on [n] with a marked
and directed edge with probabilities proportional to the weight (47).

Now ignore the marked edge, and regard the tree T w,••
n as two rooted trees Tn,1 and Tn,2 with

roots o+ and o−, respectively. Furthermore, order randomly the children of each vertex in each
of these rooted trees; this makes Tn,1 and Tn,2 a pair of ordered trees, and each pair (T+, T−) of
labelled ordered rooted trees with |T+| + |T−| = n and the labels 1, . . . , n appears with probability
proportional to

ŵ(T+, T−) := ŵ(T+)ŵ(T−). (55)

where, for a rooted tree T,

ŵ(T) :=
∏
v∈T

wd+(v)+1
d+(v)! . (56)

Using again the definition (49), we have by (26),

ŵ(T)=
∏
v∈T

φd+(v) = φ(T). (57)

Moreover, since we now have ordered rooted trees, the vertices are distinguishable, and each pair
(T+, T−) of ordered trees with |T+| + |T−| = n has the same number n! of labellings. Hence, we
may ignore the labelling and regard the marked tree T w,••

n as a pair of ordered trees (Tn,1, Tn,2)
with |Tn,1| + |Tn,2| = n and probabilities proportional to the weight given by (55) and (57). This
means that Tn,1 and Tn,2, conditioned on their sizes, are two independent random rooted simply
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generated trees, with the weight sequence φ given by (49); in other words, (Tn,1, Tn,2) is a simply
generated forest T φ

n,2.
Consequently, we can construct the random unrooted simply generated tree T w,◦

n by taking
two random rooted simply generated trees Tn,1 and Tn,2 constructed in this way, with the right
distribution of their sizes, and joining their roots.

Note that |Tn,1| = n− |Tn,2| is random, with a distribution given by the construction above.
More precisely, if an is the total weight (57) summed over all ordered trees of order n, then

P
(|Tn,1| =m

) = aman−m∑n−1
k=1 akan−k

. (58)

Remark 7.1. If φ2 > 0, we can alternatively describe the result as follows: Use the weight sequence
(φk)∞0 given by (49) and take a random rooted simply generated tree T φ

n+1 of order n+ 1, condi-
tioned on the root degree = 2; remove the root and join its two neighbours to each other (this is
the marked edge).

If φ2 = 0, we can instead take any k> 2 with φk > 0, and take a random rooted simply gener-
ated tree T φ

n+k−1 of order n+ k− 1, conditioned on the event that the root degree is k, and the
k− 2 last children of the root are leaves; we remove the root and these children, and join the first
two children.

Remark 7.2. Suppose that the weight sequence (φj)∞0 given by (49) satisfies
∑∞

j=1 φj = 1, so (φj)∞0
is a probability distribution. (Note that a large class of examples can be expressed with such
weights, see Remark 5.1.) Then the construction above can be stated as follows:

Consider a Galton–Watson process with offspring distribution (φk)∞0 , starting with two individ-
uals, and conditioned on the total progeny being n. This creates a forest with two trees; join their
roots to obtain T w,◦

n .
Note that it follows from the arguments above that if we mark the edge joining the two roots,

then the marked edge will be distributed uniformly over all edges in the tree T w,◦
n .

In the construction above, Tn,1 and Tn,2 have the same distribution by symmetry. Now define
Tn,+ as the largest and Tn,− as the smallest of Tn,1 and Tn,2. The next lemma shows that (at least
under a weak condition), Tn,− is stochastically bounded, so T w,◦

n is dominated by the subtree Tn,+.
Lemma 7.3. Suppose that the generating function�(z) in (29) has a positive radius of convergence.
Then, as n→ ∞, Tn,−

d−→ T p, an unconditioned Galton–Watson tree with offspring distribution p
equivalent to (φk)∞0 . In particular, |Tn,−| =Op(1), and thus |Tn,+| = n−Op(1).

Proof. This is a special case of Lemma 3.1, see also Remark 3.2.

As remarked in Problem 3.4, we conjecture that |Tn,−| =Op(1) also when the generating
function has radius of convergence 0, but we leave this as an open problem.

8. Mark a leaf
This differs from the preceding two sections in that we do not recover the distribution of T w,◦

n
exactly, but only asymptotically.

Let N0(T) be the number of leaves in an unrooted tree T. Let T̂ w,◦
n be a random unrooted

labelled tree with probability proportional to N0(T)w(T); in other words, we bias the distribution
of T w,◦

n by the factor N0(T).
Let T̂ w,•

n be the random rooted tree obtained by marking a uniformly random leaf in T̂ w,◦
n ,

regarding the marked leaf as the root. Then, any pair (T, o) with T ∈Ln and o ∈ T with d(o)= 1
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will be chosen as T̂ w,•
n and its root with probability proportional to the weight (47). We order the

children of each vertex at random as in Sections 6 and 7, and obtain an ordered rooted tree T̂ w,∗
n .

Then each tree with root degree 1 appears with probability proportional to (48).
Consequently, if we ignore the labelling, T̂ w,∗

n = T φ,φ0
n , where φ is given by (49), and φ0k := δk1

(with a Kronecker delta). Equivalently, T̂ w,∗
n has a root of degree 1, and its single branch is a T φ

n−1.
Conversely, we may obtain T̂ w,◦

n from T φ
n−1 by adding a new root under the old one and then

adding a random labelling.

Remark 8.1. The construction above can also be regarded as a variant of the one in Section 7,
where we mark an edge such that one endpoint is a leaf. Then, in the notation there, |Tn,−| = 1
and Tn,+ = T φ

n−1.

As said above, T̂ w,◦
n does not have the distribution of T w,◦

n , but it is not far from it.

Lemma 8.2. Let w be any weight sequence. As n→ ∞, the total variation distance
dTV(T̂ w,◦

n , T w,◦
n )→ 0. In other words, there exists a coupling such that P

(
T̂ w,◦
n �= T w,◦

n
) → 0.

Proof. We may construct T w,◦
n as in Section 7 from two random ordered trees Tn,+ and Tn,−,

where |Tn,−| =Op(1). Conditioned on |Tn,−| = �, for any fixed �, we have Tn,+
d= T φ

n−�, where φ is
given by (49). Thus, by [30, Theorem 7.11] (see comments there for earlier references to special
cases, and to further results), as n→ ∞, conditioned on |Tn,−| = � for any fixed �,

N0(Tn,+)
n

d= No(T φ
n−�)
n

p−→ π0, (59)

for some constant π0 > 0. (If φ is a probability sequence, then π0 = φ0.) Furthermore,N0(T w,◦
n )=

N0(Tn,+)+N0(Tn,−)=N0(Tn,+)+O(1), since N0(Tn,−)� |Tn,−| = �. Consequently, still condi-
tioned on |Tn,−| = � for any fixed �,

N0(T w,◦
n )
n

p−→ π0 > 0. (60)

Since |Tn,−| =Op(1), it follows that (60) holds also unconditionally.
Since N0(T w,◦

n )/n� 1, dominated convergence yields

EN0(T w,◦
n )

n
=E

N0(T w,◦
n )
n

→ π0. (61)

By (60) and (61),

N0(T w,◦
n )

EN0(T w,◦
n )

p−→ 1, (62)

and thus, by dominated convergence again,

E

∣∣∣ N0(T w,◦
n )

EN0(T w,◦
n )

− 1
∣∣∣ → 0. (63)

The definition of T̂ w,◦
n by biasing means that for any bounded (or non-negative) function

f :Ln →R,

Ef (T̂ w,◦
n )= E

[
f (T w,◦

n )N0(T w,◦
n )

]
EN0(T w,◦

n )
. (64)
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and thus, for any indicator function f ,∣∣Ef (T̂ w,◦
n )−Ef (T w,◦

n )
∣∣ =

∣∣∣E[
f (T w,◦

n )
( N0(T w,◦

n )
EN0(T w,◦

n )
− 1

)]∣∣∣
�E

∣∣∣ N0(T w,◦
n )

EN0(T w,◦
n )

− 1
∣∣∣. (65)

Hence, taking the supremum over all f = 1A,

dTV(T̂ w,◦
n , T w,◦

n )�E

∣∣∣ N0(T w,◦
n )

EN0(T w,◦
n )

− 1
∣∣∣, (66)

and the result follows by (63).
Lemma 8.2 implies that any result on convergence in probability or distribution for one of T̂ w,◦

n
and T w,◦

n also hold for the other.

9. Profile of conditionedmodified Galton–Watson trees
We will use the following extension of Theorem 1.2 to conditioned modified Galton–Watson
trees.

Theorem 9.1. Let Ln be the profile of a conditioned modified Galton–Watson tree T p,p0
n of order n

and assume that μ(p)= 1, σ 2(p)<∞ and μ(p0)<∞. Then, as n→ ∞,

n−1/2Ln(xn1/2)
d−→ σ

2
Le

(σ
2
x
)
, (67)

in the space C[0,∞], where Le is, as in Theorem 1.2, the local time of a standard Brownian
excursion e.

Proof.Denote the branches of T p,p0
n by T1, . . . , Td(o) and let T0 be a single root. Then, regarding

the branches as rooted trees, which means that their vertices have their depths shifted by 1 from
the original tree,

Ln(x)=
d(o)∑
i=1

LTi(x− 1)+ LT0 (x). (68)

Let T(1), . . . , T(d(o)) be the branches arranged in decreasing order. Lemma 4.3 shows that |T(1)| =
n−Op(1). Hence, (68) and the trivial estimate 0� LT(x)� |T| for any T and x yield

∣∣Ln(x)− LT(1) (x− 1)
∣∣� d(o)∑

i=2
|T(i)| + 1= n− |T(1)| =Op(1). (69)

Furthermore, conditioned on |T(1)| = n− �, for any fixed �, T(1) has the same distribution as T p
n−�,

and thus Theorem 1.2 shows that

(n− �)−1/2LT(1) (x(n− �)1/2) d−→ σ

2
Le

(σ
2
x
)
, in C[0,∞], (70)

and it follows easily that, still conditioned,

n−1/2LT(1) (xn
1/2 − 1) d−→ σ

2
Le

(σ
2
x
)
, in C[0,∞]. (71)

Together with (69), this shows that for every fixed �,(
Ln(x) | |T(1)| = n− �

) d−→ σ

2
Le

(σ
2
x
)
, in C[0,∞]. (72)

https://doi.org/10.1017/S0963548321000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000304


386 G. Berzunza Ojeda and S. Janson

It follows that (72) holds also if we condition on n− |T(1)|� K, for any fixed K, and then (67)
follows easily from n− |T(1)| =Op(1).

Recall that for conditioned Galton–Watson trees T p
n with μ(p)= 1 and σ 2(p)<∞, the width

divided by
√
n converges in distribution: we have

n−1/2W(T p
n )

d−→ σW, (73)

for some random variableW (not depending on p). In fact, as noted by Drmota and Gittenberger
[18], this is an immediate consequence of (13) and (1), with

W := 1
2 max

x�0
Le(x). (74)

It is also known that all moments converge, see [19] (assuming an exponential moment) and [1]
(in general).

The next theorem records that (73) extends to conditioned modified Galton–Watson trees,
together with two partial results on moments.

Theorem 9.2. Consider a conditioned modified Galton–Watson tree T p,p0
n where μ(p)= 1,

σ 2(p)<∞ and σ 2(p0)<∞. Then, as n→ ∞,

n−1/2W(T p,p0
n ) d−→ σW, (75)

n−1/2
EW(T p,p0

n )→ σEW = σ
√
π/2, (76)

E
[
W(T p,p0

n )2
] =O(n). (77)

Proof. First, (75) follows as in [18]: f → sup f is a continuous functional on C[0,∞], and thus
(75) follows from (67), (13) and (74).

We next prove (77). Denote the branches of T p,p0
n by T1, . . . , Td(o). Assume n> 1, then the

width is attained above the root, and we have, for every i� d(o),

W(Ti)�W(T p,p0
n )�

d(o)∑
i=1

W(Ti). (78)

Condition on d(o) and |T1|, . . . , |Td(o)| as in Lemma 4.1. For a random variable X, denote its
conditioned L2 norm by

‖X‖′
2 :=

(
E

[
X2 | d(o), |T1|, . . . , |Td(o)|

])1/2. (79)

By (78) and Minkowski’s inequality, we have

‖W(T p,p0
n )‖′

2 �
d(o)∑
i=1

‖W(Ti)‖′
2. (80)

Furthermore, by Lemma 4.1 and [1, Corollary 1.3], if |Ti| = ni,

E
(
W(Ti)2 | d(o), |T1|, . . . , |Td(o)|

) =E
[
W(T p

ni )
2]� Cni, (81)

and thus ‖W(Ti)‖′
2 � Cn1/2i = C|Ti|1/2. Hence, by (80),

‖W(T p,p0
n )‖′

2 �
d(o)∑
i=1

C|Ti|1/2 (82)
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and thus, by the Cauchy–Schwarz inequality,

E
[
W(T p,p0

n )2 | d(o), |T1|, . . . , |Td(o)|
] = (‖W(T p,p0

n )‖′
2
)2

� C
(d(o)∑
i=1

|Ti|1/2
)2

� Cd(o)
d(o)∑
i=1

|Ti|� Cd(o)n. (83)

Taking the expectation yields

E
[
W(T p,p0

n )2
]
� CnE

[
d(o)

]
. (84)

Furthermore, (35) implies that for large n, E[d(o)]� 2ED̃, where ED̃<∞ by Lemma 4.2. Thus,
E[d(o)]� C, and (84) yields

E
[
W(T p,p0

n )2
]
� Cn, (85)

showing (77).
Finally, (77) implies that the variables on the left-hand side of (75) are uniformly integrable [26,

Theorem 5.4.2], and thus (76) follows from (75). EW = √
π/2 is well known, see e.g. [12].

Problem 9.3. We conjecture that under the assumptions of Theorem 9.2, E
[
W(T p,p0

n )r
] =

O
(
nr/2

)
for any r> 0, which implies convergence of all moments in (75), as shown for the

case p0 = p in [1]. The proof above is easily generalized if ED̃r/2 =O(1), which is equivalent to∑
k k1+r/2p0k <∞, but we leave the general case as an open problem.

Problem 9.4. Is σ 2(p0)<∞ really needed in Theorem 9.2?

10. Distance profile, first step
We now turn to distance profiles. We begin with a weak version of Theorem 1.4; recall the
pseudometric d defined in (20), and (21).

Lemma 10.1. Consider a conditioned Galton–Watson tree T p
n where μ(p)= 1 and σ 2 = σ 2(p)<

∞. Then, as n→ ∞, for any continuous function with compact support f : [0,∞)→R,∫ ∞

0
n−3/2�T p

n

(
xn1/2

)
f (x) dx d−→

∫ 1

0

∫ 1

0
f
( 2
σ
d
(
s, t; e

))
ds dt. (86)

Proof. The function f is bounded, and also uniformly continuous, i.e., its modulus of continuity
ω(δ; f ), defined in (9), satisfies ω(δ; f )→ 0 as δ→ 0. Thus, for any rooted tree T ∈Tn, noting that
�T(x)� n on [−1, 0] and using the analogue of (11) for�,∫ ∞

0
n−3/2�T

(
xn1/2

)
f (x) dx= n−2

∫ ∞

0
�T(x)f

(
n−1/2x

)
dx

= n−2
∫ ∞

−1
f
(
n−1/2x

)
�T(x) dx+O

(
n−1)

= n−2
∞∑
i=0

∫ i+1

i−1
f
(
n−1/2x

)
�T(i)τ (x− i) dx+O

(
n−1)

= n−2
∞∑
i=0

f
(
n−1/2i

)
�T(i)+O

(
ω(n−1/2; f )

) +O
(
n−1)

= n−2
∑
v,w∈T

f
(
n−1/2d(v,w)

) + o(1), (87)
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where (as throughout the proof) o(1) tends to 0 as n→ ∞, uniformly in T ∈Tn. Recall that
the contour process CT(x) of T is a continuous function CT : [0, 2n− 2]→ [0,∞) that describes
the distance from the root to a particle that travels with speed 1 on the ‘outside’ of the tree.
(Equivalently, it performs a depth first walk at integer times 0, 1, . . . , 2n− 2.) For each vertex
v �= o, the particle travels through the edge leading from v towards the root during two time
intervals of unit length (once in each direction). Thus, as is well known,∫ 2n−2

0
f
(
n−1/2CT(x)

)
dx= 2

∑
v �=o

f
(
n−1/2d(v, o)

) +O
(
nω(n−1/2; f )

)
. (88)

We will use a bivariate version of this. It is also well known that if v(i) is the vertex visited by the
particle at time i, then, for any integers i, j ∈ [0, 2n− 2],

d
(
v(i), v(j)

) = d(i, j; CT), (89)

where the first d is the graph distance in T, and the second is the pseudometric defined by (20)
(now on the interval [0, 2n− 2]). Hence, the argument yielding (88) also yields∫ 2n−2

0

∫ 2n−2

0
f
(
n−1/2d(x, y; CT)

)
dx dy= 4

∑
v,w �=o

f
(
n−1/2d(v,w)

) +O
(
n2ω(n−1/2; f )

)
. (90)

We use the standard rescaling of the contour process

C̃T(t) := n−1/2CT
(
(2n− 2)t

)
, t ∈ [0, 1], (91)

and note that for any g : [0, 1]→ [0,∞) with g(0)= g(1)= 0 and c> 0,

d(s, t; cg)= cd(s, t; g), s, t ∈ [0, 1]. (92)

Thus, by (90) and a change of variables,∫ 1

0

∫ 1

0
f
(
d(s, t; C̃T)

)
ds dt

= 1
(2n− 2)2

∫ 2n−2

0

∫ 2n−2

0
f
(
n−1/2d(x, y; CT)

)
dx dy

= 1
(n− 1)2

∑
v,w �=o

f
(
n−1/2d(v,w)

) +O
(
ω(n−1/2; f )

)
.

= 1
n2

∑
v,w �=o

f
(
n−1/2d(v,w)

) + o(1). (93)

Combining (87) and (93), we find∫ ∞

0
n−3/2�T

(
xn1/2

)
f (x) dx=

∫ 1

0

∫ 1

0
f
(
d(s, t; C̃T)

)
ds dt + o(1). (94)

We apply this to T = T p
n and use the result by Aldous [3, 4],

C̃T p
n
(t) d−→ 2

σ
e(t), in C[0, 1]. (95)

The functional g → ∫∫
f
(
d(s, t; g)

)
ds dt is continuous on C[0, 1], and the result (86) follows from

(94) and (95) by the continuous mapping theorem, using also (92).
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11. Distance profile of unrooted trees
We continue with the distance profile, now turning to unrooted simply generated trees for a while.
Throughout this section, we assume that w is a weight sequence and that φ and φ0 are the weight
sequences given by (49) and (50). We assume that the exponential generating function of w has
positive radius of convergence; this means that the generating function �(z) in (29) has positive
radius of convergence, which in turn implies that there exists a probability weight sequence p
equivalent to φ. We assume furthermore that it is possible to choose p such that μ(p)= 1; p will
denote this choice. (For algebraic conditions on� for such a p to exist, see e.g. [30].)

We note that by (49)–(50), φ0k � φk−1, k� 1. Hence, if pk = abkφk, then
∑

k bkφ0k <∞, and it
is possible to find a0 > 0 such that p0 := φ0′ given by (32) also is a probability sequence; hence
T φ,φ0
n = T p,p0

n is a modified Galton–Watson tree. Furthermore, p0k � (a0/a)pk, and thus if σ 2(p)<
∞, then σ 2(p0)<∞.

We begin with an unrooted version of Lemma 10.1.

Lemma 11.1. Let w, φ and p be as above and assume σ 2 := σ 2(p)<∞. Let �n be the distance
profile of the unrooted simply generated tree T w,◦

n . Then, as n→ ∞, for any continuous function
with compact support f : [0,∞)→R,∫ ∞

0
n−3/2�n

(
xn1/2

)
f (x) dx d−→

∫ 1

0

∫ 1

0
f
( 2
σ
d
(
s, t; e

))
ds dt. (96)

Proof. Consider the leaf-biased random tree T̂ w,◦
n defined in Section 8. By Lemma 8.2, we may

assume P(T̂ w,◦
n �= T w,◦

n )→ 0 and thus it suffices to show (96) with �T̂ w,◦
n

instead of �n. If Tn,+
denotes the unique branch of T̂ w,◦

n , then, trivially,

0��T̂ w,◦
n

(x)−�Tn,+(x)� 2n− 1, x� 0, (97)

and thus we may further reduce and replace �n in (96) by �Tn,+ . As shown in Section 8, Tn,+
d=

T φ
n−1 = T p

n−1, and the result now follows from Lemma 10.1, replacing n there by n− 1 and x by
x= (n/(n− 1))1/2x, noting that supx |f (x)− f

(
(n/(n− 1))1/2x

)| → 0 as n→ ∞.

Theorem 11.2. Let w, φ and p be as above, and assume σ 2 := σ 2(p)<∞. Let �n be the distance
profile of the unrooted simply generated tree T w,◦

n . Then, as n→ ∞,

n−3/2�n
(
xn1/2

) d−→ σ

2
�e

(σ
2
x
)
, (98)

in the space C[0,∞], where�e(x) is as in Theorem 1.4.

Proof. Let

Yn(x) := n−3/2�n
(
xn1/2

) = n−3/2�T w,◦
n

(
xn1/2

)
. (99)

Regard Yn as a random element of C[0,∞]. Define also the mapping ψ : C[0,∞]→M([0,∞)),
the space of all locally finite Borel measures on [0,∞), defined by ψ(h) := h(x) dx; i.e., for h ∈
C[0,∞] and f ∈ C[0,∞) with compact support,∫ ∞

0
f (x) dψ(h) :=

∫ ∞

0
f (x)h(x) dx. (100)

In other word, ψ(h) has density h.
We give M([0,∞)) the vague topology, i.e., νn → ν in M([0,∞)) if

∫
f dνn → ∫

f dν for
every f ∈ C[0,∞) with compact support, and note that M([0,∞)) is a Polish space, see e.g. [32,
Theorem A2.3]. Clearly, the separable Banach space C[0,∞] is also a Polish space. (Recall that a
Polish space has a topology that can be defined by a complete separable metric.) It follows from the

https://doi.org/10.1017/S0963548321000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000304


390 G. Berzunza Ojeda and S. Janson

definition (100) that ψ is continuous C[0,∞]→M([0,∞)). Furthermore, ψ is injective, since
the density of a measure is a.e. uniquely determined.

We will use the alternative method of proof in [17, p. 123–125], and show the following two
properties:

Claim 1. The sequence Yn is tight in C[0,∞].

Claim 2. The sequence of random measures ψ(Yn) converges in distribution in M([0,∞)) to
some random measure ζ .

It then follows from [14, Lemma 7.1] (see also [17, Theorem 4.17]) that

Yn
d−→ Z, in C[0,∞], (101)

for some random Z ∈ C[0,∞] such that

ψ(Z) d= ζ . (102)

It will then be easy to complete the proof.
Proof of Claim 1: For i= 1, . . . , n, let T (i) be T w,◦

n rooted at i. By symmetry, all T (i) have the
same distribution; moreover, they equal in distribution T̂ w,•

n defined in Section 6 (which has a
random root). Hence, if we order each T (i) randomly, we have by Section 6

T (i) d= T w,∗
n = T φ,φ0

n = T p,p0
n . (103)

By (16),

Yn(x)= n−3/2�T w,◦
n

(
xn1/2

) = 1
n

n∑
i=1

n−1/2LT(i)
(
xn1/2

)
. (104)

Since the sequence n−1/2L
T p,p0
n

(
xn1/2

)
converges inC[0,∞] by Theorem 9.1, it is tight inC[0,∞].

Furthermore,

sup
x

∣∣n−1/2L
T p,p0
n

(
xn1/2

)∣∣ = n−1/2W(T p,p0
n ), (105)

which are uniformly integrable by (77) in Theorem 9.2. Hence, by Lemma A.2 (which we state
and prove in Appendix A) and Remark A.3, (104) and (103) imply that the sequence Yn is tight in
C[0,∞], proving Claim 1.

Proof of Claim 2: Let f ∈ C[0,∞) have compact support. Then, Lemma 11.1 shows that∫ ∞

0
f (x) dψ(Yn)=

∫ ∞

0
f (x)Yn(x) dx

d−→
∫ 1

0

∫ 1

0
f
( 2
σ
d
(
s, t; e

))
ds dt

=
∫ ∞

0
f (x) dζ (x), (106)

where ζ is the (random) probability measure on [0,∞) defined as the push-forward of Lebesgue
measure on [0, 1]× [0, 1] by the map (s, t)→ (2/σ )d(s, t; e); in other words, ζ is the conditional
distribution, given e, of (2/σ )d(U1,U2; e) whereU1 andU2 are independent uniformU[0, 1] ran-
dom variables. This convergence in distribution for each f with compact support is equivalent to
convergence in M([0,∞)), see [32, Theorem 16.16]. Thus, ψ(Yn)

d−→ ζ in M([0,∞)), proving
Claim 2.
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As said above, the claims imply (101)–(102). Thus, by the definition of ζ above, see (106), for
any bounded measurable f : [0,∞)→R,∫ ∞

0
f (x)Z(x) dx=

∫ ∞

0
f (x) dψ(Z)=

∫ ∞

0
f (x) dζ (x)

=
∫ 1

0

∫ 1

0
f
( 2
σ
d
(
s, t; e

))
ds dt. (107)

Define

�e(x) := 2
σ
Z
( 2
σ
x
)
. (108)

Then, (101) is the same as (98). Furthermore, replacing f (x) by f (σx/2) in (107) yields after a
simple change of variables (21) and thus (4). (In particular, �e does not depend on the weight
sequence w.)

12. Distance profile of rooted trees
Finally, we can prove Theorem 1.4 as a simple consequence of the corresponding result
Theorem 11.2 for unrooted trees.

Proof of Theorem 1.4. Let φ = p, and use (49) to define the weight sequence w. Then, Theorem
11.2 applies to T w,◦

n . Consider, as in the proof of Lemma 11.1, the leaf-biased unrooted random
tree T̂ w,◦

n . By Lemma 8.2, Theorem 11.2 holds also for T̂ w,◦
n .

Let again Tn,+
d= T φ

n−1 = T p
n−1 denote the unique branch of T̂ w,◦

n . By (97), Theorem 11.2 holds
also for Tn,+ and thus for T p

n−1. Replace n by n+ 1, then a change of variables shows that Theorem
11.2 holds for T p

n too, which is Theorem 1.4.
As part of the proof, we have shown the corresponding result Theorem 11.2 for unrooted trees.

The result also extends easily to conditioned modified Galton–Watson trees, using the method by
Marckert and Panholzer [41] and Kortchemski and Marzouk [38].

Theorem 12.1. Let �n be the distance profile of a conditioned modified Galton–Watson tree T p,p0
n

of order n and assume that μ(p)= 1, σ 2(p)<∞ and μ(p0)<∞. Then, (3) holds as n→ ∞.

Proof. This is a simple consequence of Theorem 1.4 and Lemma 4.3. It follows from (42) that

sup
x

∣∣�
T p,p0
n

(x)−�Tn,(1) (x)
∣∣� 2n

(
n− |Tn,(1)|

) =Op(n), (109)

and thus (3) for T p,p0
n follows from the same result for Tn,(1), which follows from (42) and

Theorem 1.4 by conditioning on |Tn,(1)|. We omit the details.

13. Wiener index
Recall that theWiener index of a tree T is defined as

Wie(T) := 1
2

∑
v,w∈T

d(v,w), (110)

where d is the graph distance in T. Thus,

Wie(T)= 1
2

∞∑
i=1

i�T(i)= 1
2

∫ ∞

−1
x�T(x) dx. (111)
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Since the integrand x in (111) is unbounded, convergence of the Wiener index does not fol-
low immediately from convergence of the profile, but only a simple extra truncation argument is
needed. For a conditioned Galton–Watson tree T p

n , with μ(p)= 1 and σ 2(p)<∞, convergence
is more easily proved directly from Aldous’s result (95) [3, 4], see [28], but as an application of the
results above, we show the corresponding result for unrooted trees.

Theorem 13.1. Let w and p be as in Theorem 11.2. Then

n−5/2Wie
(
T w,◦
n

) d−→ 1
σ

∫ ∞

0
x�e(x) dx= 1

σ

∫ 1

0

∫ 1

0
d(s, t; e) ds dt. (112)

Proof. Let T ∈Tn, and define a modified version by

Wie′(T) := 1
2

∫ ∞

0
x�T(x) dx=Wie(T)+O(n), (113)

using (111) and noting that �T(x)� n for x ∈ [− 1, 0]. It suffices to prove (112) for Wie′(T w,◦
n ).

By (113),

n−5/2Wie′(T)= n−5/2

2

∫ ∞

0
x�T(x) dx= 1

2

∫ ∞

0
xn−3/2�T(n1/2x) dx. (114)

Define a truncated version by, form≥ 0,

Wiem(T) := n5/2

2

∫ ∞

0
(x∧m)n−3/2�T(n1/2x) dx. (115)

Then, since the support of�T is [− 1, diam(T)+ 1],

P
(
Wie′(T w,◦

n ) �=Wiem(T w,◦
n )

)
� P

(
diam(T w,◦

n )> n1/2m− 1
)
. (116)

Since diam(T w,◦
n )=Op(n1/2), as an easy consequence of any of the constructions in Sections 6–8

and known results on the height of rooted Galton–Watson trees, see e.g. [3, 36] or [1, Theorem
1.2], it follows that

sup
n

P
(
Wie′(T w,◦

n ) �=Wiem(T w,◦
n )

) → 0, asm→ ∞. (117)

Furthermore, for each fixedm, (115) and Theorem 11.2 imply, as n→ ∞,

n−5/2Wiem(T w,◦
n ) d−→ 1

2

∫ ∞

0
(x∧m)

σ

2
�e

(σ
2
x
)
dx

= 1
σ

∫ ∞

0

(
x∧ σm

2
)
�e(x) dx. (118)

The convergence in (112) follows by (117) and (118), see [11, Theorem 4.2]. The equality in (112)
holds by (21).

Of course, the limit in (112) agrees with the limit in [28] for the rooted case.

14. Moments of the distance profile
In this section, we prove the following estimates on moments of the distance profile for a condi-
tioned Galton–Watson tree; we use again the simplified notation Ln and �n for the profile and
distance profile as in Theorems 1.2 and 1.4. Throughout the section, C and c denote some positive
constants that may depend on the offspring distribution p only; Cr denotes constants depending
on p and the parameter r only. (As always, these may change from one occurrence to the next.)

Theorem 14.1. Let�n be the distance profile of a conditioned Galton–Watson tree of order n, with
an offspring distribution p such that μ(p)= 1 and σ 2(p)<∞.
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(i) Let r� 1 be a real number. Then, for all i, n� 1,

E[�n(i)r]� Crn3r/2e−ci2/n. (119)
(ii) Let r� 1 be an integer, and suppose that p has a finite (r + 1)thmoment:∑

k
k1+rpk <∞. (120)

Then, for all i, n� 1,
E[�n(i)r]� Crirnr. (121)

Furthermore, we may in this case combine (119) and (121) to

E[�n(i)r]� Crirnre−ci2/n, (122)
for all i, n� 1.

The proof is given later. Note that (122) trivially implies (121) and (changing Cr and c) (119);
conversely (119) and (121) imply (122) by considering i� n1/2 and i> n1/2 separately.

The special case r = 1 of (121), i.e.,
E�n(i)� Cin, (123)

was proved in [16, Theorem 1.3]; note that when r = 1, (120) holds automatically by our
assumption σ 2(p)<∞.

Remark 14.2. The estimates above are natural analogues of estimates for the profile Ln. First, as
proved in [1, Theorem 1.6], under the conditions in Theorem 14.1(i),

E[Ln(i)r]� Crnr/2e−ci2/n, (124)
for all i, n� 1. Second, as proved in [29, Theorem 1.13], under the conditions in Theorem 14.1(ii),

E[Ln(i)r]� Crir , (125)
for all i, n� 1. The estimates (124)–(125) are used in our proof of Theorem 14.1.

Remark 14.3. We do not know whether the moment assumption (120) really is necessary for the
result. This assumption is necessary for the corresponding estimate (125) for the profile Ln(i), as
noted in [1], but the argument there does not apply to the distance profile. We state this as an
open problem.

Problem 14.4. Does (121) hold without the assumption (120)?

Remark 14.5. We also do not know whether the assumption that r is an integer is necessary
in Theorem 14.1(i); we conjecture that it is not. (This assumption is used in the proof of (125)
in [29].)

As an immediate consequence of Theorems 1.4 and 14.1, we obtain the corresponding results
for the asymptotic profile�e.

Theorem 14.6. For any r� 1 and all x� 0,

E[�e(x)r]� Cr min
(
xr , e−cx2). (126)

Proof. Fix an offspring distribution p with μ(p)= 1 and all moments finite. (For exam-
ple, we may choose a well-known example such as Po(1) or Bi(2, 12 ).) Let x ∈ (0,∞). Define
in := �2σ−1xn1/2�. Then in/n1/2 → 2x/σ as n→ ∞, and (3) implies

n−3/2�n(in)
d−→ σ

2
�e(x). (127)
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Hence, Fatou’s lemma and (119) yield, for any r� 1,

E[�e(x)r]� (2/σ )r lim inf
n→∞ E

[
n−3r/2�n(in)r

]
� Cre−cx2 . (128)

Similarly, Fatou’s lemma and (121) yield

E[�e(x)r]� Crxr (129)

for integer r� 1; equivalently, the Lr norm is estimated by ‖�e(x)‖r � Crx. This estimate extends
to all real r� 1 by Lyapounov’s inequality. Hence, (128) and (129) both hold for all r� 1, which
yields (126) for x> 0.

Finally, the result (126) is trivial for x= 0, since�e(0)= 0 a.s.

Remark 14.7. The same argument shows that Theorem 1.2 and (124)–(125) imply

E[Le(x)r]� Cr min
(
xr , e−cx2), (130)

for any r� 1 and all x� 0.

The proof of Theorem 14.1 relies on an invariance property of the law of Galton–Watson trees
under random re-rooting proved by Bertoin and Miermont [9, Proposition 2]. A pointed tree is a
pair (T, v), where T is an ordered rooted tree (also called planar rooted tree) and v is a vertex of
T. We endow the space of pointed trees with the σ -finite measure P• defined by

P
•((T, v))= P(T p = T), (131)

where T p is a Galton–Watson tree with offspring distribution p such that μ(p)= 1. We let E•
denote the expectation under this ‘law’. In particular, the conditional law P

•( · | |T| = n) on the
space of pointed trees with n vertices is well defined and equals the distribution of (T p

n , v) where
given the conditioned Galton–Watson tree T p

n of order n, v is a uniform random vertex of T p
n .

Let us now describe the transformation of pointed trees of Bertoin and Miermont [9, Section
4]. They work with planted planar trees; the base in the planted tree is useful since it implicitly
specifies the ordering of the transformed tree. However, we ignore this detail and formulate their
transformation for rooted trees; our formulation is easily seen to be equivalent to theirs. For any
rooted planar tree T and vertex v of T, let Tv be the fringe subtree of T rooted at v, and let Tv be
the subtree of T obtained by deleting all the strict descendants of v in T. We define a new pointed
tree (T̂, v̂) in the following way. If v is the root, we do nothing, and let

(
T̂, v̂

) = (T, v). Otherwise,
first remove the edge e(v) between v and its parent pr(v) in T, and instead connect v to the root of
T. We then re-root the resulting tree at pr(v) and obtain the new rooted tree T̂, which we point at
v̂= v. Note that T̂v̂ = Tv, and that T̂v̂ \ {v̂} equals Tv \ {v} = T \ Tv rerooted at pr(v).

Bertoin and Miermont [9, Proposition 2 and its proof] and its proof establish that this
transformation preserves the measure P•; this includes the following.

Proposition 14.8. (Bertoin and Miermont [9]). Under P•, (T̂v̂, Tv) and (Tv, Tv) have the same
‘law’. Furthermore, the trees Tv and Tv are independent, with Tv being a Galton–Watson tree
with offspring distribution p.

Proof of Theorem 14.1. For a rooted plane tree T and i� 0 an integer, it will be convenient to
write Zi(T) := LT(i) for the number of vertices at distance i from the root of T. For a vertex v in T,
note that the number of vertices at distance i� 1 from v is less than or equal to Zi−1(T̂v̂)+ Zi(Tv).
(Strict inequality may occur because of the extra vertex v̂ added in T̂v̂.) From (16), we thus obtain
that if�T is the distance profile of T defined in (14), then

�T(i)�
∑
v∈T

(
Zi−1(T̂v̂)+ Zi(Tv)

)
, i≥ 1. (132)
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If r� 1 and |T| = n, then (132) and Jensen’s inequality yield(
n−1�T(i)

)r � 1
n

∑
v∈T

(
Zi−1(T̂v̂)+ Zi(Tv)

)r . (133)

Consequently, using (131),

E[�n(i)r]� nrE•[(Zi−1(T̂v̂)+ Zi(Tv)
)r ∣∣ |T| = n

]
� 2rnrE•[Zi−1(T̂v̂)r + Zi(Tv)r

∣∣ |T| = n
]
. (134)

By Proposition 14.8, we have on the one hand that

E
•[Zi−1(T̂v̂)r

∣∣ |T| = n
] =E

•[Zi−1(Tv)r
∣∣ |T| = n

]
�E

•[Zi−1(T)r
∣∣ |T| = n

]
=E[Zi−1(T p

n )r]. (135)

On the other hand, since |T| = |Tv| + |Tv| − 1, we see from Proposition 14.8 that

E
•[Zi(Tv)r

∣∣ |T| = n
] =

n∑
m=1

E
•[Zi(Tv)r

∣∣ |Tv| =m, |Tv| = n−m+ 1
]

× P
•[|Tv| =m

∣∣ |T| = n
]

=
n∑

m=1
E

[
Zi(T p

m )r
]
P

•[|Tv| =m
∣∣ |T| = n

]
� sup

1�m�n
E

[
Zi(T p

m )r
]
. (136)

Combining (134), (135) and (136), we have that

E[�n(i)r]� 2rnr
(
E

[
Zi−1(T p

n )r
] + sup

1�m�n
E

[
Zi(T p

m )r
])

= 2rnr
(
E

[
Ln(i− 1)r

] + sup
1�m�n

E
[
Lm(i)r

])
. (137)

Therefore, (119) and (121) follow from (124) and (125), proved in [1, Theorem 1.6] and [29,
Theorem 1.13], respectively.

Finally (122) follows from (119) and (121) as noted above.

15. Hölder continuity
We now discuss Hölder continuity properties of the continuous random functions Le and�e. We
begin with Le, the local time of e. The results are to a large extent known, although we do not
know any reference to the form of them stated here; nevertheless, we treat also Le in detail, as a
background to and preparation for the discussion of�e below.

It is well known that the local time of Brownian motion at some fixed time a.s. is Hölder con-
tinuous of order α for any α < 1/2, see [49, VI.(1.8)]. It is also known that this Hölder continuity
extends by standard arguments to the local times of Brownian bridge and Brownian excursion,
and thus (see Theorem 1.2) to Le. We need a quantitative version of this.

For α > 0 and an interval I ⊆R, let the Hölder space Hα =Hα(I) be the space of functions
f : I →R such that

‖f ‖Hα
:= sup

{ |f (x)− f (y)|
|x− y|α : x, y ∈ I, x �= y

}
<∞ (138)
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This is a semi-norm.Wemay regardHα as a space of functions modulo constants, and then ‖·‖Hα

is a norm andHα a Banach space.

Theorem 15.1. Let 0<α < 1
2 and let A<∞. Then

E ‖Le‖Hα[0,A] <∞. (139)

In particular, Le ∈Hα[0,∞) a.s.

Proof.We let α and A be fixed. Constants C below may depend on α and A.
Recall that Le(x)= Lx1, where L

x
t is the local time of a (standard) Brownian excursion e. The

proof will actually show the result for Lxt for any fixed t ∈ [0, 1].
We first note that if β is a 3-dimensional Bessel process started from 0 (see e.g. [49, Section

VI.3]), then a standard Brownian excursion e is given by e(1)= 0 and

e(t)= (1− t)β
( t
1− t

)
, 0≤ t< 1; (140)

see [13, II.(1.5)]. One then can deduce from [49, VI.(3.3)] and an application of the Itô integration
by parts formula that e satisfies

e(t)=
∫ t

0

( 1
e(s)

− e(s)
1− s

)
ds+ B(t), 0� t� 1, (141)

where B is a standard Brownian motion. In particular, e is a continuous semi-martingale.
We now follow the proof of [49, VI.(1.7), see also VI.(1.32)], but avoid localising at the cost of

further calculations. Let

v(t) := 1
e(t)

− e(t)
1− t

, 0� t< 1, (142)

so (141) can be written

e(t)= B(t)+
∫ t

0
v(s) ds. (143)

Then, by Tanaka’s formula [49, VI.(1.2)], writing x+ := x∨ 0,

Lxt = 2
(
e(t)− x

)+ − 2
(−x

)+ − 2
∫ t

0
1{e(s)> x} dB(s)

− 2
∫ t

0
1{e(t)> x}v(s) ds. (144)

Fix t ∈ [0, 1] and denote the four random functions of x on the right-hand side of (144) by
F1(x), . . . , F4(x). Trivially, the first two are in H1 (= Lipschitz), with norm at most 2. Hence,

‖F1‖Hα[0,A] + ‖F2‖Hα[0,A] � C. (145)

For each x, F3(x) is a continuousmartingale in t. Thus, if 0� x< y�A, the Burkholder–Davis–
Gundy inequality [49, IV.(4.1)] and the occupation times formula [49, VI.(1.9)] yield, for any
p� 2,
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E|F3(x)− F3(y)|p � CpE
[(∫ t

0
1{x< e(s)� y} ds

)p/2]
= CpE

[(∫ y

x
Lzt dz

)p/2]
= Cp(y− x)p/2E

[( 1
y− x

∫ y

x
Lzt dz

)p/2]
� Cp(y− x)p/2E

[ 1
y− x

∫ y

x

(
Lzt

)p/2 dz].
= Cp(y− x)p/2

1
y− x

∫ y

x
E

(
Lzt

)p/2 dz. (146)

We have Lzt � Lz1 = Le(z), and thus (130) implies E(Lzt )p/2 � Cp for all z; hence (146) yields

E|F3(x)− F3(y)|p � Cp(y− x)p/2. (147)

Consequently, F3 satisfies the Kolmogorov continuity criterion, and the version of it stated in [49,
I.(2.1)] shows that if p is chosen so large that (p/2− 1)/p>α, then (147) implies

E ‖F3‖Hα[0,A] �
(
E ‖F3‖pHα[0,A]

)1/p
<∞. (148)

Similarly, using the extension of the occupation times formula in [49, VI.(1.15)], if again 0�
x< y�A,

F4(y)− F4(x)= 2
∫ t

0
1{x< e(s)� y}v(s) ds

= 2
∫ t

0
1{x< e(s)� y}

( 1
e(s)

− e(s)
1− s

)
ds

= 2
∫ y

x
dz

∫ t

0

(1
z

− z
1− s

)
dLzs . (149)

We now simplify and assume 0� t� 1
2 . Then (149) implies∣∣F4(y)− F4(x)

∣∣� 2
∫ y

x

(1
z

+ 2z
)
Lzt dz� C

∫ y

x

1
z
Lzt dz� C

∫ y

x

Le(z)
z

dz. (150)

Let p′ := 1/α and let p := (1− α)−1 > 1 be the conjugate exponent. Then, by (150) and Hölder’s
inequality, ∣∣F4(y)− F4(x)

∣∣� C(y− x)α
(∫ y

x

Le(z)p

zp
dz

)1/p
. (151)

Consequently,

‖F4‖Hα[0,∞) � C
(∫ ∞

0

Le(z)p

zp
dz

)1/p
. (152)

Thus, using again (130),

E ‖F4‖pHα[0,∞) � CE
∫ ∞

0

Le(z)p

zp
dz = C

∫ ∞

0

ELe(z)p

zp
dz<∞ (153)

and thus

E ‖F4‖Hα[0,A] �E ‖F4‖Hα[0,∞) <∞. (154)

Consequently, (144), (145), (148) and (154) yield
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E ‖Lxt ‖Hα[0,A] <∞ (155)

for 0� t� 1
2 .

We have for simplicity assumed t� 1
2 . To complete the proof, we note that e is invariant

under reflection: e(1− t) d= e(t) (as processes), and thus Lx1 − Lx1/2
d= Lx1/2 (as processes in x).

Consequently,

E ‖Le‖Hα[0,A] =E ‖Lx1‖Hα[0,A] � 2E ‖Lx1/2‖Hα[0,A] <∞, (156)

showing (139). (The case 1
2 < t< 1 follows similarly.)

Finally, (139) shows that a.s., Le ∈Hα[0,A] for every A> 0. Moreover, Le has finite support
[0, sup e], and thus Le ∈Hα[0,∞).

We have for simplicity considered a finite interval [0, A] in Theorem 15.1, but the result can
easily be extended toHα[0,∞).

Theorem 15.2. Let 0<α < 1
2 . Then

E ‖Le‖Hα[0,∞) <∞. (157)

Proof. Note that the proof of Theorem 15.1 actually shows E ‖Le‖pHα[0,A] <∞ for some p> 1,
see (148) and (153). Moreover, the same proof applied to the interval [m,m+ 1] shows that for
anym� 1,

E ‖Le‖pHα[m,m+1] � Cmp, (158)

with C independent ofm, where the factormp comes from (150). Furthermore, Le = 0 on [m,m+
1] unless sup e>m. The explicit formula for the distribution function of sup e, see e.g. [15, 33] or
[17, p. 114], yields the well-known subgaussian decay

P
(
sup e> x

)
� e−cx2 , x� 1. (159)

(See also [1] for the corresponding result for heights of conditioned Galton–Watson trees.)
Combining (158) and (159) with Hölder’s inequality, we obtain, with 1/q= 1− 1/p,

E ‖Le‖Hα[m,m+1] �
(
E ‖Le‖pHα[m,m+1]

)1/p
P
(‖Le‖Hα[m,m+1] �= 0

)1/q
� CmP

(
sup e>m

)1/q � Cme−cm2
, (160)

Finally, it is easy to see that

‖Le‖Hα[0,∞) �
∞∑

m=0
‖Le‖Hα[m,m+1] (161)

and thus, by (139) and (160),

E ‖Le‖Hα[0,∞) �
∞∑

m=0
E ‖Le‖Hα[m,m+1] � C +

∞∑
m=1

Cme−cm2
<∞. (162)

Remark 15.3. The proofs above apply also to the local time of the Brownian bridge. The main dif-
ferences are that we consider functions on (− ∞,∞) and that the term 1/e(t) in (142) disappears.
This shows that, writing Lb(x) for the local time of the Brownian bridge at time t = 1,

E ‖Lb‖Hα(−∞,∞) <∞. (163)
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By Vervaat [51], the Brownian excursion can be constructed from a Brownian bridge by shifts in
both time and space, and thus Le is a (random) shift of Lb. Consequently, with this coupling,

‖Le‖Hα[0,∞) = ‖Lb‖Hα(−∞,∞), (164)

and thus (157) and (163) are equivalent. This yields an alternative proof of Theorem 15.2.

We have so far considered α < 1/2. For α � 1/2, it is well known that Brownian motion is
a.s. not locally Hölder(α); see e.g. [49, I.(2.7)] or [43, Section 1.2] for even more precise results.
Moreover, the same holds for the local time L̄xt of Brownian motion, regarded as a function of
the space variable x (for any fixed t> 0); we do not know an explicit reference but this follows
easily, for example, from the first Ray–Knight theorem [49, XI.(2.2)], which says that if we stop
at τ1, the hitting time of 1, then the process (L̄1−x

τ1 ), 0� x� 1, is a 2-dimensional squared Bessel
process, which (at least away from 0) has the same smoothness as a Brownian motion (since it can
be written as the sum of squares of two independent Brownian motions); we omit the details.

Similarly, Le = Lx1, which is the local time of a standard Brownian excursion is a.s. not
Hölder( 12 ). One way to see this is that if we stop a Brownian motion when its local time at 0
reaches 1, i.e., at τ := inf{t : L̄0t = 1}, then the part of the Brownian motion before time τ and
above any fixed δ > 0 is a.s. included in a finite number of excursions, and these are independent,
conditioned on the number of them and their lengths. Hence, if the local time of a Brownian
excursion were Hölder( 12 ) with positive probability, then so would L̄xτ , restricted to x� δ, be, and
then L̄xt , x� δ, would be Hölder( 12 ) with positive probability for some rational t, and thus for all
t> 0 by scaling, which contradicts the argument above.

15.1. Distance profile
We next consider the asymptotic distance profile�e. We first note that the nice re-rooting invari-
ance property of the standard Brownian excursion e presented in Section 2.3 yields the following
corollary of Theorem 15.2.

Corollary 15.4. Let 0<α < 1
2 . Then

E ‖�e‖Hα[0,∞) <∞. (165)

In particular, the random function�e ∈Hα[0,∞) a.s.

Proof. It follows from the identity (24) that

‖�e‖Hα[0,∞) �
∫ 1

0
‖Le[s]‖Hα[0,∞) ds, (166)

where for every s ∈ [0, 1], Le[s] denotes the local time of the process e[s] defined in (22), which is
distributed as a standard Brownian excursion (23). Hence, Theorem 15.2 yields

E ‖�e‖Hα[0,∞) �
∫ 1

0
E ‖Le[s]‖Hα[0,∞) ds=E ‖Le‖Hα[0,∞) <∞. (167)

However, it turns out that the averaging in (24) actually makes �e smoother than Le; we have
the following stronger result, which improves Corollary 15.4.

Theorem 15.5. The asymptotic distance profile �e ∈Hα for every α < 1, a.s. Furthermore, �e is
a.s. absolutely continuous and with a derivative �e′ (defined a.e.) that belongs to Lp(R) for every
p<∞.
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In order to prove Theorem 15.5, we first prove an estimate of the Fourier transform of�e. We
choose to define Fourier transforms as, for f ∈ L1(R),

f̂ (ξ ) :=
∫ ∞

−∞
f (x)eiξx dx, −∞< ξ <∞. (168)

Note that by (21), the Fourier transform �̂e can be written as

�̂e(ξ ) :=
∫ ∞

0
eiξx�e(x) dx=

∫∫
s,t∈[0,1]

eiξd(s,t; e) ds dt. (169)

Lemma 15.6. There exists a constant C such that

E |�̂e(ξ )|2 � C
(
ξ−4 ∧ 1

)
, −∞< ξ <∞. (170)

Proof.Note first that the profile�e is a (random) non-negative function with integral 1, e.g., by
(4). Hence, for every ξ , ∣∣�̂e(ξ )

∣∣� ∫ ∞

0

∣∣�e(x)
∣∣ dx= 1. (171)

Thus, (170) is trivial for |ξ |� 1. Assume in the remainder of the proof |ξ |� 1.
By (169),

E
∣∣�̂e(ξ )

∣∣2 =E

∫
· · ·

∫
t1,...t4∈[0,1]

eiξ (d(t1,t2; e)−d(t3,t4; e)) dt1 · · · dt4
=Eeiξ (d(U1,U2; e)−d(U3,U4; e)), (172)

where U1, . . . ,U4 are i.i.d. uniform U(0,1) random variables, independent of e.
Recall from Section 2.3 that the Brownian excursion e defines the continuum random tree Te,

with a quotient map ρe : [0, 1]→ Te. Let Ui := ρe(Ui), i= 1, . . . , 4, be the points in Te corre-
sponding toUi; these are i.i.d. uniformly random points in Te, and d(Ui,Uj; e) equals the distance
d(Ui,Uj) between Ui and Uj in the real tree Te. Then (172) becomes

E
∣∣�̂e(ξ )

∣∣2 =Eeiξ (d(U1,U2)−d(U3,U4)). (173)

Furthermore, we can simplify the calculations by rerooting Te at U4; this preserves the distribu-
tion, see (23), and U1, . . . ,U3 are still independent uniformly random points in the tree; hence,
we also have, with o= ρe(0) the root of Te.

E
∣∣�̂e(ξ )

∣∣2 =Eeiξ (d(U1,U2)−d(U3,o)). (174)

To calculate (174), it suffices to consider the (real) subtree of Te spanned by the root o and
U1, . . . ,U3. [4, Corollary 22] showed that the distribution of the random real tree T̃k spanned in
this way by k� 1 i.i.d. uniform randompointsU1, . . . ,Uk ∈ Te can be described as follows. Let the
shape τ of T̃k be the tree regarded as a combinatorial tree, i.e., ignoring the edge lengths. Then τ is
a.s. a rooted binary tree with k leaves, labelled by 1, . . . , k (corresponding toU1, . . . ,Uk). Let T̄k be
the set of possible shapes, i.e., the set of binary trees with k labelled leaves. Then |T̄k| = (2k− 3)!!.
Each shape τ has k− 1 internal vertices, and thus 2k vertices and 2k− 1 edges. For each shape τ ,
label the edges 1, . . . , 2k− 1 in some order, and for each tree T̃k with shape τ , let �1, . . . , �2k−1
be the corresponding edge lengths. Then T̃k is described by (τ , �1, . . . , �k), and the distribution of
(τ , �1, . . . , �k) is given by the density, for τ ∈ T̄k and �i > 0,

22kse−2s2 d�1 · · · d�2k−1, with s := �1 + · · · �2k−1. (175)

Recall that our normalisation differs from [4], where T2e is used instead of Te, and thus all edges
are twice as long; hence (175) is obtained from [4, (33)] by a trivial change of variables.
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For k= 3 we have |T̄3| = 3!! = 3 different shapes. It is easy to verify that in each of them, we
may label the five edges such that d(U1,U2)− d(U3, o)= �1 + �2 − �3 − �4. Consequently, (174)
and (175) yield, with s as in (175),

E
∣∣�̂e(ξ )

∣∣2 = 3
∫
R
5+
eiξ (�1+�2−�3−�4)26se−2s2 d�1 · · · d�5

= 192
∫ ∞

0
ψ(s)se−2s2 ds, (176)

where, with�5(s) := {(�1, . . . , �5) : �i > 0 and �1 + · · · + �5 = s},

ψ(s) :=
∫
�5(s)

eiξ (�1+�2−�3−�4) d�1 · · · d�4. (177)

We can easily find the Laplace transform of ψ(s): for λ> 0,∫ ∞

0
e−λsψ(s) ds=

∫
R
5+
e−λ(�1+···+�5)eiξ (�1+�2−�3−�4) d�1 · · · d�5

= 1
(λ− iξ )2(λ+ iξ )2λ

. (178)

A partial fraction expansion of (178) yields,∫ ∞

0
e−λsψ(s) ds= a(ξ )

λ
+ b+(ξ )
λ− iξ

+ b−(ξ )
λ+ iξ

+ c+(ξ )
(λ− iξ )2

+ c−(ξ )
(λ+ iξ )2

, (179)

for some coefficients a(ξ ), b±(ξ ), c±(ξ ). It is easy to calculate these, but it suffices to note that (178)
is homogeneous of degree −5 in (λ, ξ ), and thus a(ξ )= aξ−4, b±(ξ )= b±ξ−4 and c±(ξ )= c±ξ−3

for some complex a, b±, c±. By inverting the Laplace transform (179), we find

ψ(s)= aξ−4 + b+ξ−4eiξ s + b−ξ−4e−iξ s + c+ξ−3seiξ s + c−ξ−3se−iξ s. (180)

Finally, we substitute (180) in (176). We define

hm(s) := sme−2s21{s> 0}, (181)

and obtain, recalling (168),

E
∣∣�̂e(s)

∣∣2 = 192ξ−4(aĥ1(0)+ b+ĥ1(ξ )+ b−ĥ1(− ξ )+ c+ξ ĥ2(ξ )+ c−ξ ĥ2(− ξ )
)
. (182)

We have ĥ1(ξ )=O(1) since h1 is integrable, and ξ ĥ2(ξ )= iĥ2′(ξ )=O(1) since h2 is differentiable
with integrable derivative. Consequently, the result (170) follows.

Remark 15.7. It is easy to see that in the proof above, a= 1 and ĥ1(0)=
∫ ∞
0 se−2s2 ds= 1/4;

moreover, ĥ1(ξ )=O(ξ−2) and ĥ2(ξ )=O(ξ−3). Hence, the proof yields

E
∣∣�̂e(ξ )

∣∣2 = 48ξ−4 +O
(
ξ−6). (183)

Thus, the estimate in Lemma 15.6 is sharp.

Remark 15.8. The result (170) (or (183)) can also be obtained in the same way from (172).
However, for k= 4 we have |T̄4| = 5!! = 15 different shapes that we have to consider, and they
yield several different terms in (176). The leading term in the partial fraction expansion (179) will
now be aξ−4/λ3.
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Proof of Theorem 15.5. Let 0<α < 3/2. Then, by Lemma 15.6,

E

∫ ∞

−∞
∣∣|ξ |α�̂e(ξ )

∣∣2 dξ = 2
∫ ∞

0
|ξ |2αE ∣∣�̂e(ξ )

∣∣2 dξ
� C

∫ 1

0
ξ 2α dξ + C

∫ ∞

1
ξ 2α−4 dξ <∞. (184)

Hence, a.s., the function �e belongs to the (generalised) Sobolev space L2
α (also called potential

space; many different notations exist), which is defined as the space of all functions f ∈ L2(R) such
that

‖f ‖2L2
α
:= ‖f ‖2L2 +

∫ ∞

−∞
∣∣|ξ |α�̂e(ξ )

∣∣2 dξ <∞, (185)

see, e.g. [50, Chapter V] or [8, Chapter 6]. Furthermore, this Sobolev space equals the Besov space
B2,2α , see again [50, Chapter V (there denoted�2,2

α )] or [8, Chapter 6.] B2,2α is an L2 version ofHα ,
and for 0<α < 1, B2,2α may be defined as the set of functions in L2 such that

‖f ‖2B2,2α := ‖f ‖2L2 +
∫ ∞

0

(‖f ( · +u)− f ( · )‖L2(R)
uα

)2 du
u
<∞; (186)

the equivalence (within constant factors) of (186) with (185) follows easily from the Plancherel
formula. (For a much more general result, see [8, Theorem 6.2.5] or [50, (V.60)].) For 1<α < 2,
(177)) fails, but B2,2α = {f ∈ L2 : f ′ ∈ B2,2α−1}, which again equals L2

α .
If 1� α < 3/2, it follows that the derivative (in distribution sense)�e′ ∈L2

α−1. By the Sobolev
(or Besov) embedding theorem [8, Theorem 6.5.1], see also [50, Theorem V.2] and, for a sim-
plified version, [14, Lemma 6.2], this implies �e′ ∈ Lp(R) with 1/p= 1/2− (α− 1). Since α may
be chosen arbitrarily close to 3/2, it follows that �e′ ∈ Lp for every p<∞. (Recall that �e, and
thus �e′, has compact support, so small p is not a problem.) The continuous function �e thus
has a distributional derivative �e′ that is integrable, which implies that �e is the integral of this
derivative, so �e is absolutely continuous, with a derivative in the usual sense a.e, which equals
the distributional derivative�e′.

Finally,�e ∈Hα for α < 1 by�e′ ∈ Lp (with p= 1/(1− α)) andHölder’s inequality, or directly
by �e ∈L2

α+1/2 = B2,2α+1/2 and the Besov embedding theorem [8, Theorem 6.5.1], [50, V.6.7],
notingHα = B∞,∞

α .

Remark 15.9. For the Fourier transform L̂e, we have instead of (170) and (183) the analogous
estimate

E |L̂e(ξ )|2 � C
(
ξ−2 ∧ 1

)
, −∞< ξ <∞, (187)

and, more precisely,

E
∣∣L̂e(ξ )∣∣2 = 4ξ−2 +O

(
ξ−4). (188)

These are proved by the same argument as above, now with
(
d(U1, o)− d(U2, o)

)
in the exponent

in (173) and using (175) with k= 2; we omit the details.

Note that the exponent of ξ is −2 in (188), but −4 in (174). Hence, �̂e(ξ ) decays faster than
L̂e(ξ ) (at least in an average sense), which intuitively means that �e is smoother than Le, as seen
in the results above.

Note also that the result of Vervaat [51] mentioned in Remark 15.3 implies that |L̂e(ξ )| =
|L̂b(ξ )|. The expectation E|L̂b(ξ )|2 can easily be calculated and estimated directly, since b is a
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Gaussian process, which leads to another proof of (187) and (188); we leave the details to the
reader.

The proof above shows that

�e ∈ B2,2α , α < 3/2, (189)

and thus

�e′ ∈ B2,2α , α < 1/2. (190)

More precisely, it follows from the proof that

E ‖�e′‖2B2,2α−1
� CE ‖�e‖2B2,2α <∞ for α < 3/2, (191)

but not for any α � 3/2.
For comparison, (188) implies that

E ‖Le‖2B2,2α <∞ for α < 1/2, (192)

but not for α � 1
2 . In this case, the range of α in (192) is thus the same as the range of Hölder

continuity, note that since Hα = B∞,∞
α for α ∈ (0, 1), this range equals the set of α ∈ (0, 1) such

that Le ∈ B∞,∞
α . Another, similar, example is the Brownian bridge b; a simple calculation shows

that E ‖b‖2
B2,2α

<∞ for α < 1
2 , but not for larger α.

This suggests (but does not prove) that �e is even smoother than shown by Theorem 15.5.
However, the derivative �e′ is not Hölder continuous on (− ∞,∞), as might be guessed from
the analogy between (191) and (192). In fact, the (two-sided) derivative �e′ does not exist at 0,
and thus�e′ is not even continuous, at least not at 0.

Theorem 15.10. �e does not a.s. have a (two-sided) derivative at 0.

To see this, we note first the following.

Lemma 15.11. For every x� 0,

E�e(x)=ELe(x)= 4xe−2x2 . (193)

Proof. The result for Le is well known; it was shown by [15, (6.2)], and it is equivalent to the
case k= 1 of (175).

The result for�e follows by (24) and (23).

Proof of Theorem 15.10. Suppose that �e is differentiable at 0. Since �e(x)= 0 for x< 0, the
derivative has to be 0, and thus �e(x)/x→ 0 as x↘ 0. Furthermore, Theorem 14.6 shows that
E

(
�e(x)/x

)2 � C, and thus �e(x)/x is uniformly integrable for x> 0. Consequently, if �e were
a.s. differentiable at 0, then E

(
�e(x)/x

) → 0 as x↘ 0, which contradicts Lemma 15.11.

Nevertheless, it is quite possible that �e is continuously differentiable on [0,∞), with a one-
sided derivative at 0. We end with some open problems suggested by the results above.

Problem 15.12.

(i) Is�e a.s. Lipschitz, i.e., is the derivative�e′ a.s. bounded?
(ii) Does�e′(0) exist a.s. as a right derivative?
(iii) Is the derivative�e′ a.s. continuous on [0,∞)?
(iv) Is the derivative�e′ a.s. inHα[0,∞) for some α > 0? For every α < 1

2 ?
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15.2. Finite n
Wehave in this section so far considered only the asymptotic profiles Le and�e. Consider now the
profile Ln and distance profile�n of a conditioned Galton–Watson tree T p

n , for a given offspring
distribution p. We assume throughout the section that μ(p)= 1 and that 0<σ 2(p)<∞; we will
often add the condition that p has a finite fourth moment μ4(p) := ∑

k k4pk.
It was shown byDrmota andGittenberger [18], see also [17, Theorem 4.24], that if the offspring

distribution has an exponential moment, then

E
∣∣n−1/2Ln(xn1/2)− n−1/2Ln(yn1/2)

∣∣4 � C|x− y|2, (194)

which by the standard argument in (147)–(148) yields

E ‖n−1/2Ln(n1/2 · )‖Hα[0,A] <∞ (195)

for α < 1/4. This and Theorem 1.2 then yield (139) for α < 1/4. We conjecture that (194) can be
extended to higher moments, yielding (195) and thus another proof of (15.1) for all α < 1

2 , but
this seems to require some non-trivial work.

Moreover, as said in [17, footnote on p. 127], the proof of (194) does not really require an expo-
nential moment, but it seems to require at least a fourth moment for the offspring distribution.
We do not know whether such a moment condition really is necessary for (194), and we state the
following problem.

Problem 15.13. Let p� 2. Is it true for any offspring distribution pwithμ(p)= 1 and σ 2(p)<∞
then

E
∣∣n−1/2Ln(xn1/2)− n−1/2Ln(yn1/2)

∣∣p � Cp|x− y|p/2 ? (196)

Is this true assuming a pth moment for p? Assuming an exponential moment?

Remark 15.14. A rerooting argument as in the proof of Theorem 14.1 shows that (196) would
imply

E
∣∣n−3/2�n(xn1/2)− n−3/2�n(yn1/2)

∣∣p � Cp|x− y|p/2. (197)

Again we can ask under which conditions this holds.

We can also use generating functions and singularity analysis to estimate the Fourier transform
of Ln and�n. Recall that we in Section 2.1 have defined Ln and�n as functions onR, using linear
interpolation. We first consider their restrictions to the integers, and the corresponding Fourier
transforms, for −∞< ξ <∞,

L̂Zn (ξ ) :=
∞∑
k=0

Ln(k)eiξk and �̂Z
n (ξ ) :=

∞∑
k=0

�n(k)eiξk. (198)

Note that these are periodic functions with period 2π , and that, as a consequence of (12) and (15),

|L̂Zn (ξ )|� L̂Zn (0)= n and |�̂Z
n (ξ )|� �̂Z

n (0)= n2. (199)

Lemma 15.15. Let p be an offspring distribution with μ(p)= 1.

(i) If p has a finite second moment, then

E |L̂Zn (ξn−1/2)|2 � Cn2(ξ−2 ∧ 1), |ξ |� πn1/2. (200)

(ii) If p has a finite fourth moment, then

E |�̂Z
n (ξn

−1/2)|2 � Cn4(ξ−4 ∧ 1), |ξ |� πn1/2. (201)
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The proofs of (200) and (201) are based on lengthy calculations of some generating functions;
we omit these and refer to the preprint version of the present paper [10, Appendix C].

We return to the interpolated profiles Ln and �n and their Fourier transforms L̂n and �̂n
defined by (168). It follows from (11) that

L̂n(ξ )= L̂Zn (ξ )̂τ (ξ )= L̂Zn (ξ )
sin2 (ξ/2)
(ξ/2)2

(202)

and similarly

�̂n(ξ )= �̂Z
n (ξ )̂τ (ξ )= �̂Z

n (ξ )
sin2 (ξ/2)
(ξ/2)2

. (203)

In particular, |L̂n(ξ )|� |L̂Zn (ξ )| and |�̂n(ξ )|� |�̂Z
n (ξ )|; hence, the estimates in Lemma 15.15 hold

also for L̂n and �̂n.
We have stated Theorems 1.2 and 1.4 with convergence (in distribution) in C[0,∞]; however,

it is obvious that then the same statement holds with convergence in C[− ∞,∞]. Note that both
sides of (1) and (3) are non-negative functions on (− ∞,∞) with integral 1. It is easily seen
that in the set of such functions, convergence a.e. (and a fortiori convergence in C[− ∞,∞],
i.e., uniform convergence) implies convergence in L1(R), and thus (uniform) convergence of the
Fourier transforms. Furthermore, the Fourier transforms of the left-hand sides of (1) and (3) are
n−1L̂n(ξn−1/2) and n−2�̂n(ξn−1/2), respectively. Hence, Theorems 1.2 and 1.4 imply that for any
fixed ξ

n−1L̂n(ξn−1/2) d−→ L̂e
( 2
σ
ξ
)
, (204)

n−2�̂n(ξn−1/2) d−→ �̂e
( 2
σ
ξ
)
. (205)

Consequently, by Fatou’s lemma, the estimates (200) and (201) in Lemma 15.15 yield another
proof of the estimates (187) and (170) above.

Moreover, we can argue similarly to the proof of Theorem 15.5 and obtain a corresponding
result on the smoothness of �n. Of course, this profile is by construction Lipschitz, but what is
relevant is a smoothness estimate that is uniform in n.

Theorem 15.16. If the offspring distribution p has a finite fourth moment, then

E
∥∥n−3/2�n

(
xn1/2

)∥∥2
Hα

� C (206)

uniformly in n, for every fixed α < 1.

For the proof, we need a discrete version of (a simple case of) the Sobolev embedding theorem.
We do not know an explicit reference, so for completeness, we state this and give a proof.

Lemma 15.17. Let f :R→R be a function initially defined on Z and extended by linear inter-
polation to R. Suppose that

∑∞
−∞ |f (k)|<∞, and define, as in (198), f̂ Z(ξ ) := ∑

k f (k)eiξk. Let
0<α < 1. Then

‖f ‖Hα
� Cα

(∫ π

−π
|ξ |2α+1|f̂ Z(ξ )|2 dξ

)1/2
. (207)

Proof. Let j, k ∈Z. Then, by Fourier inversion,

|f (j)− f (k)| =
∣∣∣∣ 1
2π

∫ π

−π
(
e−ijξ − e−ikξ )f̂ Z(ξ ) dξ ∣∣∣∣

�
∫ π

0

(|j− k|ξ ∧ 1
)∣∣f̂ Z(ξ )∣∣ dξ . (208)
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Hence, using the Cauchy–Schwarz inequality,

|f (j)− f (k)|2 �
∫ π

0

(|j− k|2ξ 2 ∧ 1
)
ξ−2α−1 dξ

∫ π

0

∣∣f̂ Z(ξ )∣∣2ξ 2α+1 dξ . (209)

Writing M := ∫ π
0

∣∣f̂ Z(ξ )∣∣2ξ 2α+1 dξ , and changing variables to t := |j− k|ξ in the first integral
(assuming j �= k), we obtain

|f (j)− f (k)|2 � |j− k|2α
∫ ∞

0

(
t2 ∧ 1

)
t−2α−1 dt ·M = CM|j− k|2α (210)

for some C<∞ (depending on α). Hence,

|f (x)− f (y)|� CM1/2|x− y|α , (211)

whenever x and y are integers. Since f is linear between integers, it follows that (211) holds for all
x, y ∈R (with another C), i.e., ‖f ‖Hα

� CM1/2, as claimed in (207).
Proof of Theorem 15.16. Lemma 15.17 and a change of variables together with (201) yield

E ‖�n‖2Hα
� CE

∫ π

−π
|ξ |2α+1∣∣�̂Z

n (ξ )
∣∣2 dξ

= Cn−α−1
∫ πn1/2

−πn1/2
|ξ |2α+1

E
∣∣�̂Z

n (ξn
−1/2)

∣∣2 dξ
� Cn3−α

∫ ∞

−∞
(|ξ |2α−3 ∧ |ξ |2α+1) dξ = Cn3−α , (212)

since the final integral converges for 0<α < 1. A change of variables yields (206).

We end this subsection with a couple of open problems suggested by Theorem 15.16.
The fourth moment condition in Theorem 15.16 is used in our proof (see [10]) of (201), but it

seems likely that it can be weakened. Hence, we ask the following.

Problem 15.18. Does (206) hold assuming only a finite second moment for p?

Just as for the limit�e, we do not know whether (206) holds for α = 1. Since Hölder(1) equals
Lipschitz, and�n is defined by linear interpolation, it is easy to see that∥∥n−3/2�n

(
xn1/2

)∥∥
H1

= n−1 max
k

|�n(k+ 1)−�n(k)|. (213)

Consequently, the question whether (206) holds for α= 1 is equivalent to the following. (Cf.
(123).)

Problem 15.19. Assume thatμ(p)= 1 and that p has a finite second moment (or fourth moment,
or an exponential moment). Is then

Emax
k

|�n(k+ 1)−�n(k)|2 � Cn2 ? (214)

A slightly weaker version is

Emax
k

|�n(k+ 1)−�n(k)|� Cn ? (215)

16. Further remarks

Remark 16.1. In analogy with Sections 3 and 5, we might, as a third alternative, also define ran-
dom unlabelled simply generated trees by using the weights (47) on the set Un of all unlabelled
unrooted trees of order n. (These are defined as equivalence classes of labelled trees in Ln under
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isomorphisms.) It is usually more challenging to consider unlabelled trees; we conjecture that
results similar to those above hold for unlabelled simply generated trees too, but we leave this as
an open problem.

There is some existing work [48, 52] on yet another related model for random trees: simply
generated unrooted plane trees (i.e., unlabelled unrooted trees where each vertex is endowed with a
cyclic ordering of its neighbourhood). In particular, the results in [48, Sections 2 and 3] seem to be
reminiscent of some of our results in Sections 3–5. Informally, through a series of approximations
(using rooted/labelled/differently weighted versions) one ends up comparing those tree models
to a pair of Galton–Watson trees (with the roots joined by an edge), conditioned on the sum of
vertices. One of the two trees being typically macroscopic while the other is microscopic.

Remark 16.2. Another class of ‘simply generated’ trees is simply generated increasing trees, see
[7] and [17, Section 1.3.3]. These random trees are quite different: They have (under weak con-
ditions) logarithmic height; moreover, both the profile and distance profile are degenerate, in the
sense that the distribution of depths or distances divided by log n converges to a point mass at
some positive constant. With a more refined scaling, the profile and distance profile are both
Gaussian, see Panholzer and Prodinger [45].

Remark 16.3. The degenerate behaviour seen in Remark 16.2, with almost all distances close
to c log n for some constant c> 0, seems to be typical for many classes of random trees with
logarithmic height, see [31].

Problem 16.4. We have in this paper assumed that the offspring distribution is critical and has
finite variance. It would be interesting to extend the results to the case of infinite variance, with
the offspring distribution in the domain of attraction of a stable variable. In this case, the tree
converges in a suitable sense to a random stable tree [20, 37]; moreover, there is a corresponding
limit result for the profile [5, 34]. However, there seems to be several technical challenges to adapt
the arguments above to this case, and we leave it as an open problem.
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Appendix A. Tightness
We show here a general technical result used in the proof of Theorem 11.2, and thus of our main
theorem.

We recall the standard criterion for tightness in C[0, 1] in, e.g., [11, Theorem 8.2], which we
formulate as follows, using the modulus of continuity defined in (9). (The equivalence of our
formulation and the one in [11] is a simple exercise.)

LemmaA.1. A sequence of random functions (Xn(t))∞1 in C[0, 1] is tight if and only if the following
two conditions hold:

(i) The sequence Xn(0) of random variables is tight.

(ii) ω(δ; Xn)
p−→ 0 as δ→ 0, uniformly in n.

The uniform convergence in probability in (ii) means that for every ε, η > 0, there exists δ > 0
such that

sup
n

P
(
ω(δ; Xn)� ε

)
� η. (A1)

Equivalently, for every sequence δk → 0 and every sequence (nk)∞1 ,

ω(δk; Xnk)
p−→ 0 as k→ ∞. (A2)

We use this to prove the following general lemma on tightness of averages.

Lemma A.2. Suppose that (Xn(t))∞1 is a sequence of random functions in C[0, 1], that (Nn)∞1 is
an arbitrary sequence of positive integers, and that for each n, (Xni(t))Nn

i=1 is a, possibly dependent,
family of identically distributed random functions with Xni

d= Xn. Assume that

(i) The sequence (Xn) is tight in C[0, 1].
(ii) The sequence of random variables

‖Xn‖ := sup
t∈[0,1]

|Xn(t)| (A3)

is uniformly integrable.

Then the sequence of averages

Yn(t) := 1
Nn

Nn∑
i=1

Xni(t) (A4)

is tight in C[0, 1].

Remark A.3. We state Lemma A.2 for C[0, 1]; it transfers immediately to, e.g., C[0,∞]. It follows
also that the lemma holds for C[0,∞), with (ii) replaced by the assumption that sup[0,b] |Xn| over
any finite interval [0,b] is uniformly integrable.

Proof. Let δk → 0 and let nk be arbitrary positive integers. Then (A2) holds by assumption (i)
and Lemma A.1.

Furthermore, for any δ > 0, we obviously have, by (9), ω(δ; Xn)� 2‖Xn‖. In particular,
ω(δk; Xnk)� 2‖Xnk‖, and it follows from (ii) that the sequence ω(δk; Xnk), k� 1, is uniformly
integrable. Hence, (A2) implies

Eω(δk; Xnk)→ 0, as k→ ∞. (A5)
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Next, it follows from the definitions (A4) and (9) that, for any δ > 0,

ω(δ; Yn)= 1
Nn
ω

(
δ;

Nn∑
i=1

Xni
)
� 1

Nn

Nn∑
i=1

ω
(
δ; Xni

)
(A6)

and hence,

Eω(δ; Yn)�
1
Nn

Nn∑
i=1

Eω
(
δ; Xni

) =Eω
(
δ; Xn

)
. (A7)

Consequently, by (A5) and (A7),
Eω(δk; Ynk)�Eω(δk; Xnk)→ 0, as k→ ∞. (A8)

Since the sequences (δk)k and (nk)k are arbitrary, this shows that the sequence (Yn)n satisfies (A2)
and thus condition Lemma A.1(ii).

Furthermore, condition Lemma A.1(i) holds too, because by (A4), (A3) and assumption (ii),

E|Yn(0)|� 1
Nn

Nn∑
i=1

E|Xni(0)| =E|Xn(0)|�E ‖Xn‖ =O(1), (A9)

which implies that the sequence Yn(0) is tight. Hence, the conclusion follows by Lemma A.1.

Remark A.4. The assumption on uniform integrability in Lemma A.2(ii) cannot be weakened to
E ‖Xn‖ =O(1). For an example, let

Xn(t) := ξnn(1∧ nt), t� 0, (A10)

where ξn ∼ Be(1/n), i.e., P(ξn = 1)= 1/n and otherwise ξn = 0. Then E ‖Xn‖ = 1. On the other
hand, take Nn := n and let Xni

d= Xn be independent, 1� i�Nn. Then, for every n, with prob-
ability e−1 + o(1) exactly one Xni is not identically 0, and in this case Yn = (1∧ nt) and thus
ω(1/n; Yn)= 1. Hence, P

(
ω(1/n; Yn)= 1

)
� e−1 + o(1) and thus (A2) and Lemma A.1(ii) do not

hold for (Yn); thus, the sequence Yn is not tight.
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