
Appendix C

Weizsäcker–Williams approximation

A useful approximation for the electron scattering cross section at low q2

follows from the results in chapter 11; it is due to Weizsäcker and Williams
(WWA). This approximation gives the dominant part of the inelastic cross
section whenever the electron is undetected as it passes through matter,
for then one has to sum over all possible momentum transfers, and the
WWA cross section increases as 1/q2 for small q2. Furthermore, the
form of the WWA result derived below provides a stepping stone into
the renormalization group evolution equations for quantum field theory
[Al77], as discussed, for example, in [Ro90, Wa95].

We relate the electron scattering process in Fig. 11.1 to the correspond-
ing real photon process illustrated in Fig. 11.4. This will allow us to express
the electron scattering cross section as q2 → 0 in terms of a cross sec-
tion measured in photoabsorption. In the course of the analysis, we will
be able to identify a probability of finding a photon in the field of the
electron. The classical basis for the WWA is described, for example, in
[Ja62]. The Coulomb field of a relativistic electron Lorentz contracts and
becomes predominantly transverse; the electron current produces a trans-
verse magnetic field of comparable magnitude (Fig. C.1). This transverse
field configuration is equivalent to a collection of real photons with a
certain, specified momentum distribution.

The QED analysis here follows [Dr64, Wa84]. Recall the structure of
the response tensor in Eqs. (11.20) and (11.27) for a target of mass m

Wμν = (2π)3
∑
i

∑
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(C.1)
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Fig. C.1. Lorentz contracted electric field of relativistic electron; basis for
Weizsäcker–Williams approximation.

The (unpolarized) cross section for real photon processes follows directly
from this response tensor. The relationship is derived in chapter 11, and
the photoabsorption cross section is given by Eq. (11.39)

σγ =
(2π)2α√
(k · p)2

1

2
Wμμ

=
(2π)2α√
(k · p)2

W1(0,−k · p) (C.2)

The first line follows from the covariant polarization sum, and the second
from a change to incoming photon momentum. Note that the real photon
limit (q2 → 0) of Eq. (C.1) is perfectly finite; there are no singularities
of the r.h.s. in this limit. Hence one establishes the following relations as
q2 → 0 (chapter 11)

W2(q
2, q · p) = O(q2) ; q2 → 0

W1(q
2, q · p) =

(p · q)2
m2q2

W2(q
2, q · p) (C.3)

These equations can be inverted to give for q2 → 0

W1
.
=

√
(q · p)2

(2π)2α
σγ

(
q · p
m

)

W2
.
=

m2q2

(p · q)2W1 (C.4)

The electron scattering cross section can be written in terms of the
variables in Fig. 11.1 as (chapter 11)

dσe =
4α2

q4

d3k2

2ε2

1√
(k1 · p)2

{
q2W1 +

[
2(k1 · p)(k2 · p)

m2
− 1

2
q2

]
W2

}
(C.5)

The overall dependence of 1/q4 coming from the square of the virtual
photon propagator implies that in the integrated cross section, most of
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the contribution arises from the region where q2 → 0. In this case, one
can replace the structure functions by their limiting forms in Eqs. (C.4)1

dσe
.
=

4α2

q4

d3k2

2ε2

√
(q · p)2√
(k1 · p)2

1

(2π)2α
σγ

(
q · p
m

)

×
{
q2 +

m2q2

(p · q)2
[
2(k1 · p)(k2 · p)

m2
− 1

2
q2

]}
(C.6)

This expression is Lorentz invariant. It is exact in the limit q2 → 0;
at finite, but small q2, it forms the Weizsäcker–Williams approximation.
Equation (C.6) is the principal result of this appendix.

Let us, however, further develop this expression by using some kine-
matics. From Fig. 11.1 one has in the lab frame

q · p = m(ε1 − ε2) = mω

k1 · p = −mε1 (C.7)

Also, the expression in brackets in Eq. (C.6) can be rewritten as

{· · ·} = q2 +
4ε1ε2 sin2 θ/2

ω2

[
2ε1ε2 − 2ε1ε2 sin2 θ

2

]

= q2 +
8ε21ε

2
2 sin2 θ/2 cos2 θ/2

ω2
= q2 +

2ε21ε
2
2 sin2 θ

ω2
(C.8)

Hence the result in Eq. (C.6) becomes

dσe
.
=

8α2

q4

d3k2

2ε2

ω
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1

(2π)2α
σγ(ω)

[
ε21ε

2
2 sin2 θ

ω2
+

1

2
q2

]
(C.9)

Now change variables using

ω = ε1 − ε2

q2 = 2ε1ε2(1 − cos θ) (C.10)

Hence (after an immediate integration over dφ)

d3k2

2ε2
=

ε2ε2dω

2ε2
2π

dq2

2ε1ε2
=

π

2ε1
dωdq2 (C.11)

The limit q2 → 0 is achieved at finite ε2 by going to small angles where
θ → 0. In this case one has

ε21ε
2
2 sin2 θ

.
= ε21ε

2
2θ

2 .
= q2ε1ε2 (C.12)

1 Here the symbol
.
= implies an approximate relation that is exact in the limit q2 → 0.
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Hence

dσe
.
=

4πα

q2

dω

ε1

ω

ε1

1

(2π)2

[
ε1ε2

ω2
+

1

2

]
dq2σγ(ω) (C.13)

Now introduce the momentum fraction of the virtual photon

ω

ε1
≡ z

ε2

ε1
= 1 − z (C.14)

Also introduce the differential of the so-called resolution in the electron
scattering process defined here by

dτ ≡ d ln

(
q2

q2
0

)
=

dq2

q2
(C.15)

The electron scattering cross section in Eq. (C.13) can then be rewritten
as

dσe
.
=

α

2π
dτ z dz

[
2(1 − z)

z2
+ 1

]
σγ(z) (C.16)

We are now in a position to provide a more detailed interpretation
of this result [Al77]. The contribution from the accompanying photon
field to the electron scattering cross section for a beam of N electrons
can be written as the following product: [number of photons dγ(z, τ)dz
viewed with resolution between τ and τ+dτ carrying a momentum fraction
between z and z+dz of the beam]× (photoabsorption cross section at that
z). The first factor can in turn be related to the probability that at that τ,
a photon carrying momentum fraction z is produced by an electron; we
define that differential probability by (α/2π)Pγ←e(z)dτdz. It follows that

Ndσe ≡ [dγ(z, τ)dz] σγ(z)

≡
[
N

α

2π
Pγ←e(z)dτdz

]
σγ(z) (C.17)

One is now in a position to identify the splitting function Pγ←e(z) which
forms the heart of the analysis of the evolution equations of QED and
QCD. A comparison of Eqs. (C.16) and (C.17) gives

Pγ←e(z) = z

[
2(1 − z)

z2
+ 1

]
=

1

z
[(z − 1)2 + 1] (C.18)

Note that the splitting function as calculated here is independent of τ.
For the additional splitting functions in QED and QCD, see for example
[Qu83, Wa95].

https://doi.org/10.1017/9781009290616.040 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.040



