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Abstract

Exact solutions are constructed for a class of nonlinear hyperbolic reaction-diffusion
equations in two-space dimensions. Reduction of variables and subsequent solutions
follow from a special nonclassical symmetry that uncovers a conditionally integrable
system, equivalent to the linear Helmholtz equation. The hyperbolicity is commonly
associated with a speed limit due to a delay, 7, between gradients and fluxes. With lethal
boundary conditions on a circular domain wherein a species population exhibits logistic
growth of Fisher—KPP type with equal time lag, the critical domain size for avoidance of
extinction does not depend on 7. A diminishing exact solution within a circular domain
is also constructed, when the reaction represents a weak Allee effect of Huxley type.
For a combustion reaction of Arrhenius type, the only known exact solution that is finite
but unbounded is extended to allow for a positive 7.

2020 Mathematics subject classification: primary 35KS57; secondary 35L70, 92D25,
80A25, 35K20.

Keywords and phrases: reaction-diffusion, hyperbolic diffusion, population dynamics,
combustion.

1. Introduction

Over the past decade, there has been a growth of interest in transport equations in the
form of hyperbolic reaction-diffusion partial differential equations (PDEs):
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[2] Nonlinear hyperbolic reaction-diffusion 339

When 7 =0, this equation is the extensively studied nonlinear reaction-diffusion
equation of parabolic type. In standard physical applications that involve increasing
entropy, D > 0, except perhaps at 6§ = 0 where the equation might be degenerate
with D = 0. In the case 7 > 0, this equation is said to be a hyperbolic diffusion
equation or a damped wave equation, depending on the application. Around 1870,
Maxwell’s electromagnetic wave equation incorporated damping proportional to the
conductivity of the medium [34]. In the following decade, Heaviside applied the linear
telegraph equation [24] with a linear damping term to represent the decaying voltage
as charge leaks between transmission lines that are separated by a dielectric medium
(see for example, the review by Donaghy-Spargo [16]). Unlike parabolic diffusion
equations, hyperbolic diffusion equations predict a bounded speed of propagation
of a local disturbance. For familiar irreversible transport phenomena of heat, with
matter and charge obeying the second law of thermodynamics at the meso-scale, the
unbounded propagation speed of a diffusion equation causes no practical problem.
For example, the one-dimensional instantaneous point source solution of the linear
diffusion equation is proportional to the Gaussian, '/ exp(—x?/4Dt). This diminishes
so rapidly that at some finite distance from the source, the disturbance is so small that
it is not physically measurable.

At very small time scales and micro-scale distances, at very low temperatures, and
at very large time scales and astronomical distances, the bounded speed of propagation
can be significant. In molecular materials, there is a short “collision time” delay 7
before temperature gradients can lead to fluxes via intermolecular collisions. For neon
gas at standard temperature and pressure, the standard formulae from kinetic theory for
mean free path and mean kinetic energy [18] give 7 ~ 7 x 107! s and for monovalent
metals, T ~ 1074 s [33]. Cattaneo [11] modified the theory of heat conduction to a
hyperbolic diffusion equation to partly account for the delay. The delayed heat flux
under Fourier’s law is J = —k(6)VO(x, t — 7). Then by conservation of heat energy at
density &,

pcel‘(xv t)
— &

=V.-Jx,t—-1)
V- [DVE&],

where p is mass density, 6 is absolute temperature, k is thermal conductivity, C
is specific heat per unit mass and D = k/pC is thermal diffusivity. In the linear
unidimensional model with constant transport coefficients, 6; + 76, + O(t?) = D6,,.
In this equation, the spatial derivatives still occur within a self-adjoint operator, so
that with homogeneous linear boundary conditions and smooth initial conditions, a
series solution for 6(x, f) can be obtained as a trigonometric series after separation of
variables.

Neglecting O(7?), wave-like solutions of this equation have a speed limit ¢ = vVD/7.
By comparison theory, for hyperbolic diffusion with nonlinear bounded diffusivity
function, the parameter D within this expression for the speed limit may be generalised
to the least upper bound Dy,. The delay v may be much longer at very low
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temperatures. Tisza [41] and Landau [30] gave alternative versions of “second sound”
wave theory for the transport of heat in liquid helium.

At cosmological distances, relative to an inertial observer, material transport must
be limited by the speed of light c. This can be achieved in a simple phenomenological
model that is the hyperbolic diffusion equation [10]. In some sense, the hyperbolic
diffusion equation has been considered to be Lorentz invariant in three space and two
time (3 + 2) dimensions (see [2]).

Speed limits are naturally a consideration in modelling biological units, whether
they be individual organisms or motile cells. Using the Chapman—Enskog expansion,
Filbet et al. [19] derived hyperbolic models for chemotaxis, with a clear connection
to parabolic models. Natalini et al. [36] numerically compared degenerate parabolic
and hyperbolic models for chemotaxis. Hernandez et al. [25] developed a hyperbolic
model for the movement of bacteria through a porous medium. In spatially dependent
populations, individuals have a residence time in a home range of high population
density before they decide to explore alternative regions of lower density. For example,
if mobility of a fish population is modelled by diffusivity D = 100 km? /yr and 7 = 0.02
yr (one week), then the population wave has maximum speed 70 km/yr. This should
not be considered to be a physical limit of instantaneous speed but as a practical
longer-term limit due to hesitancy to migrate when the great majority consists of
home-stayers compared with a minority of rangers [9]. A reaction term then represents
the reproduction of the species.

There have been relatively few studies of nonlinear hyperbolic reaction-diffusion
equations. In particular, constructions of useful exact solutions are hard to find in the
literature. King et al. [27] and Leach and Bassom [31]) gave asymptotic properties and
exact weak travelling wave solutions for the hyperbolic Fisher equation. Polyanin et al.
[37] produced some solutions with free functions when R has a special dependence
on both density 8(x, t) and past density 6(x, r — ) with a fixed delay. Lenzi et al. [32]
constructed some exact solutions for models with linear source terms.

For the parabolic case (7 =0), there is a class of function pairs (D(6), R(9))
that gives rise to a special nonclassical symmetry and exact solutions by functional
separation of variables [23], allowing for Dirichlet, Neumann and Robin boundary
conditions [17] in terms of the flux potential on compact domains [5]. The question
then naturally arises as to whether such a construction still applies in the case 7 > 0.
The answer is indeed in the affirmative. In Section 2, we develop the nonclassical
symmetry reduction for conformable function pairs (D(6), R(6)) in which one or both
of the functions depend on 7. In those cases, we can construct an exact solution from
any solution of the linear Helmholtz equation. This affords an infinite-dimensional
class of exact solutions, not simply a two-dimensional class that would result from
a sequence of successive classical symmetry reductions. Those special nonlinear
hyperbolic reaction-diffusion equations are conditionally integrable.

In Section 3, we construct exact solutions for a Verhulst-Fisher—KPP class [29]
of population growth functions with R = s6 + O(#?) at small 6 and R = 0 at carrying
capacity. This includes a solution for a single species within a fisheries no-take area.
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It is found that the critical domain size of a no-take area depends only on D(0) and s,
with no dependence on 7. In Section 4, we construct exact solutions for a single species
with weak Allee effect, R = s6° + O(6°) at small 6, and still with a carrying capacity
so that R=0 at § = 0. > 0. In Section 5, we find exact solutions for nonlinear heat
transport with a reaction term that is exactly the nonanalytic Arrhenius combustion
term [21] for a monomolecular reaction at the leading order of 7.

2. Nonclassical symmetry reduction of a conditionally integrable PDE

For ease of analysis, we will sometimes use the Kirchhoff flux potential u as the
dependent variable [28]:

U= fg D(@) db,
o @2.1)

1 Ou 0 10u 2
BE-FTB—IBE—V u+ R.

Here, 6, is some concentration level of significance. For example, 6 is often chosen to
be zero, or a zero of the reaction function, R(8,) = 0 which gives a uniform fixed-point
solution. Then up to order 7, the flux density is J(x,#) = —Vu(x, — 7). When 7 =0,
there are some paired combinations of functions (D(6), R(6)) that result in equation
(2.1) admitting the simple nonclassical symmetry
! =t+e, xj’- =x;, u = ¢*u.

This one-parameter transformation is not an invariance transformation for equation
(2.1), so it is not a classical symmetry. However, under this transformation, there are
invariant solutions of equation (2.1) that are compatible with the invariant surface con-
dition [4], which in this case is simply the equation u, = Au. This is just the condition
that there is an invariant solution u = f(x;, 1) satisfying (d/de)[u’ — f(xj’., )] = 0. For
every Lie symmetry, there is a canonical coordinate system consisting of independent
invariants plus a translation variable & that undergoes simple translation & =& + €
under the action of the symmetry operation. For example, for rotations by angle €
about the origin in the plane, two independent invariants are the dependent variable u
and the radial coordinate r. One translation variable is the polar angle ¢. In the current
case, we have invariants ¥ and ® = ue™, while ¢ is a translation variable. Then after
symmetry reduction, invariant solutions have the form of a functional separation of
variables u(6) = ®(x)e*’. Note that, in general, 6 is a nonlinear function of u, so it is not
simply exponential in 7. For the relationship between Lie symmetry and separability in
many familiar standard PDEs, we refer to [35].

General noninvariant solutions may be written in the form u = O(x, e, Before
any reduction of variables, this is to be regarded as a change of variables (x;,#,u) —
(xj, 1, @). Under that change of variable, the PDE in equation (1.1) is equivalent to
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A + 7A? D'(®) R 1+2A D'
V20 + | - ST +n¥1ll+—]=@[ T a2 @ g
D3 u D D3
D'(0) T
—@%D3W+%B. (22)
The first square bracketed term is autonomous in f when R and D are related by
A+ 7A? D' (0
RO) = Ku+ BT W—ﬂqu;{ 2.3)

where k2 is a real valued function of x, independent of z. Thence, in the consequent
form of equation (2.2), we have the general form of a PDE that is consistent with
the proposed nonclassical symmetry. Noting that D(0) = u’(0), if R(0) is specified as a
function, then equation (2.3) is a second-order nonlinear differential equation for u(6).
When 7 = 0, it reduces to a first-order differential equation that is also separable when
k = 0. If the flux potential u(6) is specified as a function, then each of the modelling
functions D(#) and R(6) follows directly from u(6) by differentiation D(#) = u’(6) and
by explicit algebraic construction in equation (2.3).

When ®,(x, ) is identically zero, the reduced equation for ®(x) has no coefficients
that depend on z. Then there is a consistent reduction of variables. For the remainder of
this article, we assume that k” is simply constant. Then the reduced equation is simply
the linear Helmholtz equation

V2D + K*® = 0.

From every member of the infinite dimensional solution space of the Helmholtz
equation, a solution can be constructed for the nonlinear hyperbolic reaction diffusion
equation (1.1) that has the structure of equation (2.3). However, this does not give all
the solutions of equation (1.1), only those satisfying the side condition u, = Au with
du/df = D(6). In that sense, the nonlinear PDE is conditionally integrable. This is
to be compared with a classical Lie symmetry, in which case equation (2.2) would
immediately be autonomous in t. That is to say, the equation itself, and not just a
particular subclass of solutions, would be invariant. Generally speaking, reduction of
a PDE by successive classical Lie symmetries leads to an ordinary differential equation
and a finite- rather than infinite-dimensional manifold of solutions.

3. Reaction term of Fisher-KPP type

For a model of Fisher—KPP type [20, 29], the target reaction function is considered
to be the canonical Verhulst form R(0) = s6(1 — 6), where the density is dimensionless,
having been scaled by the carrying capacity. To approximate the structure of a target
reaction function R(6), it is convenient to express equation (2.3) as

D_(A+n¥)fDd9—TD4DxmA%fde2

3.1
R-k [Ddo G-b
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Consider a model of Fisher—-KPP type R = 56 — s6* + O(6*); D = Dy + O(6) near 6 = 0
with Dy > 0 and s > 0. Then equation (3.1) implies

(A + TA®)Dy0 + O(8?)

s0 — k2Dob + O(6%) -
Taking the limit & — 0 in equation (3.1) gives
s — (A +7A?%)

k2 ’

Choose Dy(6) = D(0) (constant). Then apply equation (3.1) as a recurrence relation
(A +7A%) [ D, d6 — tD;>D;(®)A*([ D, d6)>
R-k [D,do

Dy + 0(0) =

Do = (3.2)

D,1(0) =

>

where R is kept at the target R(0) = s6(1 — 0). For some cases of the parabolic (r = 0)
model with R bounded, such as in the Arrhenius reaction term, this gives a contraction
map on L™ that converges to the partner D(6) that solves equation (3.1). It is not known
if this can be a contraction map when 7 > 0. In any case, the first iteration gives a
useful function D; from which a useful partner reaction term R, () can be constructed
explicitly from equation (3.1) by integration:

A+ TA2
R,(0) = 2w, (6) + ~—F

u, — DD ()AL,

n

where u,(0) = f(;: D, (6) d6. However, 6, is chosen to be zero so that R — 0 as 8 — 0,

the necessity of which is shown in the sequel. The construction of Broadbridge and
Bradshaw-Hajek [5] for 7 > 0 now extends to 7 > 0:

—(A + TA*)Dy/s

Dy(0) =
16) 6+ 6o
k*D
90 = 0 +1
s
—(A + 7A?
= g, by equation (3.2).
s

Assume A < 0. Then,

0
_ N 77— LAl _ A2 Y 3(0 + 6o)
u(@)—foDl(G)dH—kzs(lAl TA%)(s + A| TA)log(|A|_TA2)
and
_ ON[(GHAI=ZTADY 0y 4l a2
Rl—log(1+90)[( - )(|A| 7A?) — (1A - 7A )(9+90)]

+TA20 + 00)[ log (1 i 9%)]2 = 50+ O(6).
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Note that R () has zeros at # = 0 and where 8 = .. such that

+]A] - 7A? 0
(M)(w — TA%) — (JA| - TA2)(0 + 60) + TAX(O + ) log (1 + 9—) = 0.
s 0
This transcendental equation can be expressed in normal form as

W

we" =z,
where
s+ Al - TA? 6,
TA? 0+ 6y
and

2
— _S + |A| - TA e—(lA‘—TAZ)/TAZ
TA?

Note that as 7 — 0, 6y — |A|/s,6, — 1,z — 0 and w — —oo. Therefore, the solution is
w=W_1(2),
where W_; is the real negative branch of the Lambert W function [14]. Then,

s+ |A| — TA% 6,

éc + 0() = TA2 "

When 7 > 0, the positive root 6. of R is now larger than 1. However, we can rescale
the dependent variable to ® = /6, to achieve a reaction diffusion equation with zero
reactionat ® = 1,

00 50 1
— + 17— = V- [D((0))VO] + —R(6(0)).
T an [D(6(©))VO] 96(())
Note that after rescaling 6, the governing equation still takes the form of equation (1.1)
and the nonlinear coefficient functions still obey a relationship of the form in equation
(2.3).

A zero population boundary condition represents lethal over-harvesting in the
exterior of a protected reserve. With zero population at a circular boundary r = a,
there is a solution of the form

_lA]-1A? K2se Jo(kr)
0= {eXP((|A| AN (s + A —TAZ))_ 1}
 Jothkr)

expA(t + [log6.1/|A]), (large-t),
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where k = Ag1/a, Aoa = 2.404 (first zero of Bessel Jy [39]). For specified linear
homogeneous boundary conditions for u(x,f) on a compact connected domain, k is
of the form A/a, where the geometric length scale a and the dimensionless factor A
depend on the geometry of the domain. For a line segment of length a, k = /a. For
a rectangle, 4 = m and a is the hyperbolic root mean square length of sides [8]. Now
consider the Fisher-KPP class with R = 56 + O(6%). The fundamental relationship in
equation (3.2) implies

1+ \/1 + 47(s — 2Dy/a?)
27 '

A= (3.3)
In applications such as no-take areas for conservation within fisheries, it is important
that the extinction point 6 = 0 be unstable. Then it is necessary that A > 0 which, by
equation (3.3), is equivalent to

a > A+\Dy/s.

Importantly, this is independent of the delay 7. In the case 7 = 0, this is the well-known
criterion for instability of the extinction point, originally obtained by linear stability
theory [39].

For the example with 7 = 0.1,s = 1, A = —1.5, in Figure 1, the partner diffusivity
and reaction functions are plotted as functions of the scaled population density. Note
that by equation (3.2), D must decrease with 7 whenever A # 0. With larger delay 7,
diffusivity is lower to achieve the same nonzero decay rate —A. Conversely, if both D
and s were prescribed, decay would be more rapid in the case of larger 7. In fact, in
the first application of the telegraph equation by Heaviside, T was proportional to the
electrical resistance of the medium.

4. Reaction term of Huxley form with weak Allee effect

The simplest form of an equation with weak Allee effect [3] is the Huxley equation
(see [12] and the references therein), which has

R = s6°(1 - 0).

Again, it is assumed here that the density has been scaled by the carrying capacity so
that it is dimensionless. In fact, this reaction term arises as the growth of a density
of a new favourable allele under Mendelian inheritance [38], not the Fisher equation
as is frequently supposed (for example, see [6]). As a model of population growth,
at low population, it has the per-capita growth rate R/6 ~ s — s6* increasing from
zero, rather than being a positive constant or decreasing from a positive constant, as
in the Malthusian and Verhulst models [26]. Since the growth rate is not negative near
0 = 0, this is a weak Allee effect rather than a strong Allee effect (see for example,
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(a) Diffusivity D;(®) in a solvable (b) Reaction term R;(®) in a solvable
model of Fisher-KPP type. model of Fisher-KPP type.

r/a

[—-At=0---- -A1=0.75 —— -At=7.5] [—-A=0---- -At=0.75 —— -At=7.5]
(c) Population density vs radial coordi- (d) Population density vs radial coordi-
nate with7=0. st =0, 0.5, 5. nate. st =0.1. O(r) = Jy(kr).

FIGURE 1. Solvable model of Fisher—KPP type. Parameters used: A = —1.5,s = 1,k = 2.4048.

Courchamp et al. [15]). Consider R = 56> + O(6%) and D = Dy + O(6) near 6 = 0 with
Dy > 0 and s > 0. Then equation (3.1) implies

(A + TA®)Dy0 + O(6?)
—k2Dof + O(6?)

Dy + O(@) =

Taking the limit 6 — 0 in equation (3.1) gives the result

_ —(A+T1AY
-

Dy
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Then,
Dy = ;—2 A=A+71A%
DoA
D =——
s0(1—6) + A
Uy = |A|_D—O/S arctan ([9 - 1] _;) 4.1)
Vs/(A] = 5/4) 21V |Al - s/4
+ —lAl_DO/S arctan(l _ : )
Vs/(A] = s/4) 2V Al - 5/4
and

K2 K _
Ry = —s0(1 — O)uy + tA%s— (260 — 1)(A| + s6[6 — 1])u’.
VA ( )iy A4( )A] + s6[ Duy

From equation (4.1), § — oo as

—_ADO/S [7—T + arctan —1 12 ]

Therefore, the maximum value of #; must be chosen to be much less than that limiting
value. Again, when 7 > 0, the positive zero 6. of R; exceeds 1. After rescaling by
® = 6/6,, the compatible diffusivity function and reaction function are plotted in
Figure 2.

As expected, again with larger delay 7, diffusivity is lower to achieve the same
logarithmic decay rate —A. Conversely, if both D and s were prescribed, decay would
be more rapid in the case of larger 7.

uy —

5. Arrhenius combustion

With 6 being the absolute temperature, a heat source is of the form pCR, where p is
density of the medium, C is heat capacity and the rate of temperature increase due to
combustion is

R = Rye B/,

From the Gibbs canonical distribution [22], typically B = AE/kg, where AE is a
molecular activation energy and kg is Boltzmann’s constant. This reaction function is
difficult to handle analytically. It is not an analytic function; all derivatives d"Ry/d6"
approach 0 as 6 — 0. In the case 7 = 0, the only known exact solution for temperature
is that given by Broadbridge et al. [7]. The solution requires k =0 and A > 0;
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(a) Diffusivity D;(®) in a solvable model of

(b) Reaction term R;(®) in a solvable model
Huxley type.

of Huxley type.

exp(-At) @
exp(-At) @

0 0.2 0.4 0.6 0.8 1 0
r/a

[—-AE0- -A=0.75 —— AT 5

0?2 014 016 0?8 i

r/a

[—-AE0- -A=0.75 —— AT 5

(c) Population density vs radial coordinate

(d) Population density vs radial coordinate
with 7 =0, ®(r) = 0.5Jy(kr).

with st = 0.075, ®(r) = 0.5Jy(kr).
FIGURE 2. Solvable model of Huxley type. Parameters used: A = —1.5,s = 1,k = 2.4048.

consequently, the solution is unbounded in both time and space. Given the Arrhenius
reaction term, the appropriate solution of equation (2.3) was found to be [7]

i A B\ AB _ (B
u=— exp(—@exp(—) - —Ei(—)),
A Ry 0/ Ry \0

where the function E; is the exponential integral and c; is an arbitrary positive constant
with units K m? s72. Since D(6) = u/(6),

D= ghew(G)en(goew(7) - FE(G)) » o 00
= —exp|=|exp|—0Oexp|= |- —E|=]]| 20, 6-0;
Re TP\ )P\R, TP ) " R\

¢ 9 \AB/Ro
~ SLexp B -y/R)(5)  exp(AO/Re), 6 oo,
0
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where y = 0.5772... is Euler’s number. More generally, with 7 > 0, this diffusivity
function has a partner reaction function

R = Role™"” + BRyr0 % "],

This reaction function agrees asymptotically with the Arrhenius reaction as # — 0 and
as @ — oo. From the form of the reaction and diffusivity functions, there are intrinsic
temperature, time and length scales, namely,

B
0.\' = B» ty = B/R(), fs = Cl_
\ RS

In terms of the dimensionless variables ¢ = 6/6;, t* = t/t; and r* = r/{,, equation (1.1)
is normalised to
oY 020 B

i +7 prohe V- [ID'(H)V ] + R* (D)

with
D" = Di,/€; = exp(1/9) exp(A*[# exp(1/9) — Ei(1/9)]),
R* = Rt,/6, = exp(—1/9) + 77972 exp(=2/9).

The dimensionless time lag parameter is 7° = Ry7/B. The other dimensionless param-
eter is A" = AB/Ry. This is related to the diffusivity at activation temperature by

A" = [log D"(B) — 1/B]/[Bexp(1/B) — Ei(1/B)].
The ratio of the additional reaction component to the Arrhenius reaction is

T _ Rt _(B/6)
Pexp(1/9) B exp(B/)

This approaches 0 at very small and very large 6, and it attains the maximum value
4Ry7/e’*B at 6 = 0.5B. This is a small fraction, equivalent to the ratio of the heat
released over one collision time to the total heat content of the material at activation
temperature. As an example, with k =0, there is an elementary radial solution
ujuy =log(r/a) (up constant) to the exterior problem with boundary condition
0(a,t) = 0. The isotherms follow exactly from the mapping

(1,0) > u > ® =e My r=aexp(uup).

The radial solution is plotted in Figure 3. At the circle r = a; > a, the radial heat flux
density j(r), which is —u’'(r), satisfies j(r)/u(r) = —®'(r)/®(r) = —ug/a; (constant).
This may be interpreted as a physical generalisation of a Newtonian cooling law.
Whereas the heat flux potential is u(6), the inward heat flow at the boundary is
proportional to the potential difference between the local temperature and that of a
remote inner point. However, the inward heat flow through a finite boundary is not
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FIGURE 3. Solvable model of Arrhenius type.

sufficient to prevent unbounded temperature rise due to combustion throughout the
entire external region of infinite area.

In addition to the delay T between setting up a density gradient and establishing a
flux, there is a separate delay 7, between changing a density and changing a reaction
rate before a sufficiently energetic collision takes place to overcome the activation
energy. At first order in both 7 and 75,

2
‘ra—: =V - [D(6)VE] + R(6). (5.1)
Since in the absence of harvesting, epidemics and environmental disasters, it normally
takes several generations for a population growth rate to change appreciably, it is
assumed that both 7R’(0) and 7,R’(#) are small compared to 1. Equation (1.1) may
result from the approximation 7, = 7. However, at temperatures well below observed
ignition temperatures, the delay 7, may be considerably longer than 7. In applications

06
I+ (12— T)R'(H)]E +
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to populations, an alternative approximation 7, = 0 is implicit in the reaction-telegraph
equation studied in [1, 13]. This may apply to some single-cell organisms that multiply
rapidly. In that case, the critical domain size increases with 7 [1]. For vertebrates with
a long gestation period, typically 7, > 7.

6. Discussion and conclusion

Physical fields that depend on both space and time generally evolve according to
PDEs. Most exact solution methods involve reduction to an ordinary differential equa-
tion after assuming some symmetry. The most familiar solutions obtained in this way
are steady states, uniform states, travelling waves, radial solutions and scale-invariant
similarity solutions. For the applicable class of nonlinear PDEs studied here, another
type of solution is available, that is, a solution with functional separation in which
the time dependence is exponential: u(6) = e’®(x). The reduction is associated with a
nonclassical symmetry that does not leave the governing PDE invariant, unless an extra
algebraic constraint is added among the coefficient functions. Somewhat surprisingly,
the constraint allows an exact solution to be constructed from any solution ®(x) to the
linear Helmholtz equation. That means that this class of nonlinear PDE is conditionally
integrable, yielding an infinite-dimensional space of exact solutions, albeit not the
whole set of solutions. The general classification of conditionally integrable PDEs
remains largely unexplored.

In particular, in this article, we have concentrated on nonlinear hyperbolic
reaction-diffusion equations in two space dimensions, for which, to our knowledge,
no space—time-dependent exact solutions have been seen before. In recent times, such
equations have been associated with speed-limited diffusion due to a delay 7 between
gradients and fluxes. For reaction-diffusion equations of Fisher—KPP type modified by
sufficiently small 7, we produced an exact solution approaching extinction due to lethal
boundary conditions on the boundary of a circular domain, that is, not just the small-0
approximation but the full nonlinear solution. It is well known from population models
that such a solution exists only when the domain is smaller than some critical size.
Importantly, we showed that the critical domain size does not depend on 7, therefore,
it does not depend on the speed limit.

For population models of Huxley type with weak Allee effect, we again produced
an extinction-bound solution within a circle when 7 > 0. For this type of model, the
linear approximation near the extinction point has zero reaction, so linear stability
analysis is not useful for determining the critical domain size. There have been some
general qualitative results in that direction, but explicit results on critical domain size
are lacking. Such results would be useful for conservation of invertebrate species,
such as queen conch that exhibit an Allee effect [40]. When gestation time is large
compared to the mobility delay, the governing equation is modified to equation (5.1).
The consequences of the gestation delay will be investigated in the future.

For a reaction-diffusion model of single-component combustion, we produced an
exact finite-valued but unbounded solution with 7 > 0. In the limit 7 — 0, this reduces
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to the only known exact solution with standard Arrhenius reaction. When 7 takes
realistic small positive values, the relative change to the standard reaction term is
bounded and small. As with the actual Arrhenius reaction term that is bounded,
blow-up occurs in infinite time, not in finite time as occurs in models with artificial
unbounded reaction terms.
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