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Let F be an algebraic number field, and S a subgroup of the general linear
group GL(n, F). We shall call S a U-group if S satisfies the condition (U): Every
x € Sis a matrix all of whose eigenvalues are algebraic integers. This is equivalent
to either of the following conditions:

a) the eigenvalues of each matrix x are all units as algebraic numbers;
b) the characteristic polynomial for x has all its coefficients integers in F.

In particular, then, every group of matrices with entries in the integers of F
is a U-group.

Our aim is to examine the structure of completely reducible soluble U-groups.
We use the results given by Suprunenko [1] for soluble and nilpotent linear groups,
and obtain some special conditions that must be satisfied by completely reducible
soluble U-groups. We show that such groups are polycyclic, and we obtain some
arithmetical conditions that must be satisfied by primitive irreducible soluble
U-groups, depending on the degree of the group and the field F. The results ob-
tained depend on results for irreducible abelian and nilpotent U-groups, which we
examine separately.

2. Abelian U-groups

The structure of abelian linear groups over the integers of an algebraic number
field has been described by Dade [2]. In this section we give a generalisation of his
result to completely reducible U-groups.

2.1 THEOREM. Let A be an irreducible abelian U-group in GL(n, F), and let
the degree [F : Q] of F over Q be d. Then A is finitely generated, of rank at most
nd—1, and Ax, the torsion subgroup of A, is cyclic of order t, where ¢(t) (the Euler
Sunction) divides nd.

Note: the estimate for | 47| depends only on the fact that A is an irreducible
abelian subgroup of GL(n, F), not on the condition (U).
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PROOF. Let [A4] be the linear hull of A over F (i.e. [4] is the subalgebra of
the full matrix algebra M(n, F) generated by elements of A4). [A] is irreducible,
and therefore is a simple ring ([3], p. 56). Since [4] is also a commutative ring
with unity, the fact that it is simple makes it a field. Let a,, - - -, a, be a basis for
[4] over F. Let V be an n-dimensional F-module, and identify End; V and M(n, F).
Let ve V, v # 0. Because [A] is a field, va,, - - -, vay, are linearly independent
over F. They span a subspace W of V which is invariant under [A4]. Since [4] is
irreducible, W = V, and the dimension [[A] : F] of [4] over Fis equal to n.

The group A4 is therefore isomorphic to a subgroup of the multiplicative group
of a finite extension E of F such that [E: Q] = nd. The condition (U) satisfied
by the elements of A implies that each a € 4 corresponds to a unit in the integers
of E. By Dirichlet’s theorem on units in an algebraic number field ([4], Ch. XI),
the rank of the group of units of E cannot exceed nd—1.

Suppose A has an element of order r > 1. Then E contains a primitive r-th
root of unity, {, say, and ¢(r) = [Q(() : Q] divides [E: Q] = nd. Since each
finite multiplicative group in a field is cyclic, we conclude that Ay is a cyclic group
of order ¢ such that ¢(t) divides nd. By an obvious argument we obtain the follow-
ing corollary.

2.2 COROLLARY. A completely reducible abelian U-group in GL(n, F) requires
at most nd generators, where d = [F : Q).

3. Irreducible nilpotent U-groups

Let N be an irreducible nilpotent U-group in GL(m, F).

3.1 THEOREM. If the class of N is c, then
< =2m(1+log2 d) if d>1
~2.12m if d=1
where d = [F: Q).
Note: This estimate depends only on the fact that N < GL(m, F), not on
the condition (U).

PROOF. Let N = 9,(N) 2 y,(N) o - - - D y.+1(&¥) = 1 be the lower central
series for N, and let s be the smallest index such that yJ(N) is abelian. Since
[yi(N), y(N)] = 7i+;(N) we must have s < [¢/2]+]1.

By Clifford’s theorem, y(N) is completely reducible over F. Suppose y,(N)
has r homogeneous components. We shall show that ¢ < 2r(1 +log, md/r).

In any irreducible nilpotent linear group the index of the centre is finite
([1], p. 64). |IN : Z(N)| finite implies |y,(N)| finite ([6], problem 5.24). If s # 1,
75(N) is therefore finite, and is a subgroup of a direct product of r cyclic groups
of order #,, where ¢(t,) divides md/r. Let Q, be the Sylow g-subgroup of y,(¥),
and suppose |Q,| = ¢'. Let Q,,; be the Sylow g-subgroup of y..;(N). Then
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Q.+; = 1. Let p* be the highest prime power dividing #,. Then for each Q,,
1 < ra, and 50 Y4 ,(N) =1, and ¢+1 £ s+ra £ [¢/2]+ 1 +ra. Hence ¢ < 2ra.
Since ¢(t,) divides mdjr, p*~! divides md/r, and so a—1 < log, mdfr. We have
now ¢ < 2r(1+log, mdjr), and the result follows from this if we consider the
maximum value of 2x(1+1log, md/x) over 1 £ x < m.

3.2 CoroLLARY. There exist maximal irreducible nilpotent U-groups in
GL(m, F).
This follows from 3.1 by an application of Zorn’s Lemma.

3.3 Divisors of |N : Z(N)|: All prime factors of |N : Z(N)| divide the expo-
nent m, of Z,(N)/Z(N), and m, divides m ([1], Chapter III, Lemmas 19 and 22).
Also, if xZ(N) is of order k in Z,(N)/Z(N), there exists y € N such that [x, y]
has order k ([1], Chapter III, Lemma 20). In our case we have an additional
condition on m,. [x, y] lies in the torsion subgroup of Z(N), which is cyclic, of
order t,. m, divides t,, and ¢(t,) divides md.

3.4 In particular, if md is odd, there are no non-abelian irreducible nilpotent
U-groups in GL(m, F).

PrOOF. If mdis odd, t, = 1 or 2, since ¢(¢,) divides md, and m, must be odd.
Hence m, = 1 and N is necessarily abelian.

3.5 Structure of NJA, where A is a maximal normal abelian subgroup of N.

LemMA. (i) N/A is isomorphic to a nilpotent permutation group N of degree k,
where k divides m.

(ii) If N is primitive (see [5], p. 346), N is semiregular (i.e. a permutation
group in which only the identity leaves any symbol fixed).

PRrOOF. (i) A is finitely generated. Choose a finite set of generators for A4,
and adjoin their eigenvalues to F. The field E obtained is a normal extension of F.
If we consider N as a subgroup of GL(m, E), N is completely reducible, and all
its irreducible components are of equal degree. ([5], Theorems 69.4 and 70.15).
A is also completely reducible over E. Since A is abelian, and each of a set of its
generators can be diagonalised in GL(m, E), A is reducible to a diagonal group.

Let W be a minimal invariant space for N in VZ (where V¥ is an m-dimensional
E-module, and we have identified EndgV with M(m, E)). Then dim W divides
m. Let © : x — x|W (the restriction of x€ N to W). Let ye ker 1t n Z(N). Z(N)
is isomorphic to one of its own irreducible components. Hence y|W = 1 implies
vy = 1, and we have ker T " Z(N) = 1. 7 is therefore faithful. Define N* = N|W,
A* = A|W. We shall prove the result for N*/4*.

A* is reducible to a diagonal group. Let Wy, - - -, W, be the distinct eigen-
spaces for 4 in W. A*|W,, - - -, A*|W, are the homogeneous components of 4%,
and the spaces W, - - -, W, are permuted by the elements of N* (see [5], p. 345).
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Since A* is its own centralizer in N* ([6], problem 6.36) we have N*/4* ~ N, a
nilpotent permutation group on k symbols. k divides dim W, which divides m.

(ii) If N is a primitive group in GL(m, F), A is isomorphic to one of its own
irreducible components over F. Hence if ae 4, a—1 is either zero or invertible.
If x* € N* fixes an eigenspace W, of A* in W, then [x, a]|W, = 1 for all ae 4%,
This implies [x, a] = 1 for all ae 4, and so x € A. N is therefore semiregular.

3.6 In particular, suppose N is transitive, and E = Q or Q(0), where 0 is
complex of degree 2 over Q. Then N is finite.

PROOF. Z(N*) is a group of scalar matrices f- 1, fe E, if N is transitive. By
Dirichlet’s Theorem, the group of units of E is finite, and so Z(N*) is finite.
Hence Z(N) and |N : Z(N)] are both finite, and the result follows.

3.7 THEOREM. If the class of N is 2, then N has a faithful absolutely irreducible
representation in GL(s, E) where E is the field defined in 3.5, and s divides m. It
Sollows that |[N : Z(N)| = s*.

Proor. We shall show that the group N* defined in 3.6 is absolutely irreduc-
ible.

(i) If the class of N is 2, N is semiregular. For: Let W be the space defined
in 3.5, and W, an eigenspace for A* in W. We have already: if x* = x{|We N*¥
fixes Wy, then [x, a]|W, = 1 for all a € A. Since the class of Nis 2, [x, ale Z(N).
Z(N) is isomorphic to one of its own irreducible components, and so [x,a] = 1
for all ae A. Hence x € A, and N must then be semiregular.

(ii) Let w # 0e W, and let 1 = x;, x,, " -, X5 be a complete set of coset
representatives for 4 in N. Let L, be the space spanned by w, x] = x;|W, and
define L; = L,x} j =1, -, 5. By (i) the L; belong to distinct eigenspaces of
A* in W. They are permuted transitively by the elements of N*. The space
L=L & -@®L,is a nonzero invariant space for N* in W, and so L = W.

The construction of L shows that the centralizer of N* in M(s, E) can contain
scalar matrices only. N* is therefore the required representation of N. (see [5],
p. 202),

(iii) [N : Z(N)| = s*. This can be deduced from [1] Chapter I, Lemma 10.
The following more elegant argument is due to Professor J. D. Dixon.

The linear hull of N* over E has dimension s* ([5], Theorem 27.8). We can
therefore find elements x7,- -, x> € N* that form a basis for M(s, E). Since

Z(N*) is a group of scalar matrices, x}, - -, x are in distinct cosets of Z(N*)
in N*. We show that they form a complete set of coset representatives for Z(N*)
in N*,

Let x*e N*, x* ¢ Z(N*). Then there exists y* € N* such that [x*, y*] =
Z*e Z(N*), z* = (-1, L # 1, i.e. (y*) 7 'x*p* = {x*, { # 1. Trace x* = trace
(y*) 'x*p* = trace {x* = { trace x*. Since { # 1, trace x* = 0. Now let x* be

https://doi.org/10.1017/51446788700009812 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700009812

[5] Groups of matrices with integer eigenvalues 355

any element of N*. x* = Y5_, a,x¥, a, € E. At least one o; # 0. Trace x*(xF) ™"
= Yio a; trace (xf(x])™!) =sx; #0. As we have just seen, this implies
x*(x})~! € Z(N'*), and gives the result.

4. Completely reducible soluble U-groups

4.1 Let S be an irreducible soluble U-group in GL(n, F). Suppose S is maxi-
mal with respect to the property of being soluble.

Suppose S is imprimitive. Let V be an n-dimensional F-module, and identify
End;V with M(n, F). Let V =V, @ - - @ V, be a complete decomposition of
V into systems of imprimitivity for S (cf. [1], p. 7). By an argument similar to
that used in the proof of Lemmas 3 and 4 of [1], Chapter I, S has a normal
subgroup G for which each V;, i = 1, - - -, k, is an invariant space, such that S/G
is isomorphic to a maximal soluble permutation group of degree k. G is the direct
product of the groups G|V;, i = 1, -, k. Each G|V; is isomorphic to G|V,
which is a maximal irreducible primitive soluble U-group in GL(n/k, F).

4.2 Let S be a primitive irreducible soluble U-group in GL(n, F). We describe
S by describing the factors in the series

ls A<t B<a C<a §

where 4 is a maximal normal abelian subgroup of S, C the centraliser of 4 in S,
and B the Fitting subgroup of C. Suprunenko ([1], Chapter I) uses a similar de-
composition to describe primitive soluble linear groups, except for a different
choice of B. Our choice of B allows us to use information about irreducible nil-
potent U-groups.

4.3 The group A: By Clifford’s Theorem 4 is completely reducible over F.
Since S is primitive, all the irreducible components of 4 are equivalent, and so A
is isomorphic to an irreducible abelian U-group in GL(¢, F),where ¢ divides n.
The results of 2.1 then apply to 4.

4.4 LEMMA. B is nilpotent, of class at most 2.

ProoF. The Fitting subgroup of any linear group is nilpotent ([9], Theorem
1 (ii)). Let the class of B be ¢, B = y(B) D 7,(B) = -+ * 2 yc41(B) = | the
lower central series for B, and r the smallest index such that y,(B) is abelian.
7(B) = C, and so y,(B) - A is abelian, and normal in S. By the maximality of 4,
7(B) = A = Z(B). We have therefore ¢ < r, and, by the argument used in 3.1,
r = [¢/2]+1. Hence ¢ £ 2.

4.5 Since S is primitive, B is isomorphic to one of its own irreducible com-
ponents, and so, if ¢ = 2, we can apply 3.7, with s a divisor of nft (where ¢ is the
degree of an irreducible component of 4). The primes dividing s must satisfy the
conditions of 3.3.
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4.6 In particular, if nd is odd, B = A = C = H, where H is the Fitting
subgroup of S.

PrOOF. By 3.4, nd odd implies B and H are both abelian. If C # A4, C/A
contains a non-trivial characteristic abelian subgroup K/4, and K is necessarily
nilpotent, giving a contradiction.

4.7 The group B/A: Suppose BfA is non-trivial. Since B is the Fitting subgroup
of C, B/A is the maximal normal abelian subgroup of C/A. B/A is equal to its
own centralizer in C/4 (cf. [1], Chapter I, proof of Theorem 4). By [1], Chapter I,
Lemma 15, the Sylow g-subgroups of B/A are elementary abelian g-groups.

4.8 The groups C/B and S/B: By [1], Chapter I, Theorem 11,if s = g{' - - - gf*,
C/B is isomorphic to a soluble subgroup of the direct product of the symplectic
groups Sp(2a,, q,), * * *, SpQa, gi.)-

By an argument similar to that of 3.5 we obtain: S/C is isomorphic to a
soluble semiregular permutation group of degree t. (cf. [1], p. 12). For these two
factors we obtain no special restrictions.

4.9 THEOREM. A completely reducible soluble U-group S in GL(n, F) satisfies
the maximum condition for subgroups.

We shall prove the equivalent condition that all subgroups of S are finitely
generated.

ProoF. (1) If S'is a primitive irreducible soluble U-group, it is a finite extension
of a finitely generated abelian group, and the result follows. This extends to the
maximal imprimitive irreducible case by 4.1, and therefore to any irreducible
soluble U-group in GL(n, F).

(ii) If S is completely reducible, with ¥V = V, @ - -+ @ V, a direct sum of
minimal S-invariant subspaces, then S is isomorphic to a subgroup of S|V; x
S|Vyx -+ xS|V,. Each S|V;, i=1, -k, is an irreducible soluble U-group
in GL(n;, F), where n; = dim V. The result then holds for each S|¥;, and hence
for S|V, x -+ - x S|V, and for S.

4.10 CoROLLARY. If S is any completely reducible soluble U-group in GL(n, F),
we can apply two theorems of Hirsch to conclude:

(i) S is polycyclic [7}, p. 193.

(ii) If S is infinite, S has a normal subgroup H such that \S : H\ is finite, and
H has a normal series H= Hy > H, > --+ > H, = 1, in which each factor
H, ,/|H;, i=1\,--- k,is an infinite cyclic group (8], p. 188. We can actually take
H 10 be a finitely generated torsion-free abelian group, since we have a bound on
the orders of torsion elements in a maximal normal abelian subgroup of finite
index in S.
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Note. It follows from Mal’cev’s Theorem ([1], p. 31) that any completely re-
ducible soluble linear group is an extension of an abelian group by a finite group.
4.9 and 4.10 can therefore be made to follow directly from 2.1 (but without inter-
mediate results 4.4-4.6). I am indebted to the referee for this comment.
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