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Abstract

The derivation of gene-transport equations is re-examined. Fisher’s assumptions for a
sexually reproducing species lead to a Huxley reaction-diffusion equation, with cubic
logistic source term for the gene frequency of a mutant advantageous recessive gene.
Fisher’s equation more accurately represents the spread of an advantaged mutant strain
within an asexual species. When the total population density is not uniform, these reaction-
diffusion equations take on an additional non-uniform convection term. Cubic source terms
of the Huxley or Fitzhugh-Nagumo type allow special nonclassical symmetries. A new
exact solution, not of the travelling wave type, and with zero gradient boundary condition,
is constructed.

1. Introduction

At the end of the 20th century, the subject of population genetics has been given
additional impetus by the imperatives of new technological developments in bioengi-
neering. Therefore it is timely to re-examine the derivation of gene transport equations.
Fisher’s equation, which appeared in his seminal paper [§], is

— =kT+mp(1 -p), (L.1)

where p is the “frequency of the mutant gene” and m is “intensity of selection in
favour of the mutant gene”.

Fisher considered a population “distributed in a linear habitat ... which it occupies
with uniform density”.
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The case of two possible pre-existing alleles occupying the locus of the mutant gene
was simplified to that of a “ ... parent allelomorph, which we shall suppose to be the
only allelomorph present”. The physiological or anatomical characteristic governed
by the mutant gene was assumed to be recessive, in keeping with the “common
recessiveness of observed mutations”.

In Section 2, we impose Fisher’s assumptions on a spatially homogeneous popula-
tion with discrete breeding cycles. This does not lead to the simple logistic reproduc-
tion rate mp (1 — p) but to another nonlinear growth rate for which the leading term is
of the form xp?(1 — p), with « constant. The cubic production term leads to a much
delayed spread of the new gene after the mutation occurs. However for a species
reproducing asexually, we do indeed recover the quadratic logistic reproduction law.

In Section 3, we re-examine the direct continuum modelling approaches of [2] and
[13], leading to the same class of possible reaction-diffusion-convection equations for
p(x, t). We point out that in the common case of uniform selective advantage of the
double recessive genotype over all others, the Huxley equation is appropriate. This
is one of a small class of nonlinear reaction-diffusion equations that admits particular
exact solutions by the Painlevé methods [5, 11] or by nonclassical symmetry reductions
[3, 7]. The direct continuum modelling approach already shows us how to incorporate
a non-uniform total population density. We construct a nontrivial exact solution for
one such case.

2. Growth rate of a mutant population from discrete breeding cycles

At a single locus, there occurs one pair of genes, each having two possible allelo-
morphs, labelled ‘a’ (recessive and advantageous) and ‘A’ (dominant). In the classical
Mendel binary scheme, the dominant physical characteristic associated with allele
A will be equally apparent in the hybrid population with genotype (Aa) and in the
pure-bred population with genotype (AA). Assume that these two genotypes have the
same survival rate ry from the zygote to sexual maturity. The recessive characteris-
tic ‘a’ is apparent only in the population with double recessive genotype (aa). This
genotype will have a slightly higher survival rate r,. We assume random mating,
with fertility independent of genotype. Following the notation of Fulford ef al. [9,
pp. 166-187], in the kth generation at conception, N; is the total population, N;(AA),
N; (Aa) and N/ (aa) are the populations of the three genotypes, while corresponding
symbols without asterisks refer to genotype populations in the kth generation at sexual
maturity. Here G,(AA), G,(Aa) and G,(aa) are the genotype frequencies in the kth
adult generation, for example G.(Aa) = N¢(Aa)/N;. Also P,(A) and P,(a) are the
gene frequencies in the gene pool of the kth generation of adults.

By definition,

N/ (AA) = G ((AA)NG, . 2.1
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By the assumption of random mating, G},,(AA) has an expected value of [Px(A)]>.
For a large population, (2.1) reduces to

N (AA) = [P(APN,,.
Similarly, we have

N;.(aa) = [P(@)’N},, and Ny}, (Aa) = 2P.(A)P(a)N},,.

+
By definition,
2N N1 (A
Pyyi(a) = r+1(aa) + Ny (Aa) . 22)
2Niy1(aa) + 2Ny (Aa) + 2Ny (AA)
Now, in (2.2) we substitute
Nit1(AA) = "ON[H(AA), Niyi1(Aa) = "ONEH(AG),
Niyi(aa) = Ny, (aa) and P(A) =1— P(a)
to obtain )
(B-1DP’+ P
Py = L= DB £ @3)

1+ (@B -1P>’
where B is the relative fitness, B = r,/ro . Wherever the symbol P, appears, it will
be an abbreviation for Pc(a). In the text [9, pp. 166-197], (2.3) was not compared
to the commonly used polynomial growth laws. Now we simply note that in known
beneficial mutations, 8 — 1 is usually small. Then (2.3) implies

Pt — Po= (B = )PX(1 = P) + O(IB — 11). 24)

Note that the quadratic logistic growth term of Fisher’s equation is replaced by cubic
logistic growth. The above analysis is generalised here to the case of all three
genotypes having different survival rates ry, r; and r,, with subscripts referring to the
number of ‘a’ genes present. We obtain

B, —BIPE+ B P
1+2(81 = P+ (14 2 — 2B P}
= P+ P(1 = P)([B: — Bi] P:
+ 8 — 111 = P+ OB, — 17 + [ — 1.
Now consider an asexual species that has a strain with phenotype A and another

with slightly advantageous mutant phenotype a. Using a similar notation as before,
we have

Py =

PeNio

PeNgey + B(1 = PON,,

Pk+|=
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implying
Peyt — Po= (B — DP(1 — P) + O([B — 11%).

The quadratic logistic source term of Fisher’s equation is more appropriate for asexual
species.
If At is the time between successive generations, then (2.4) is written as

Py — P,
At

where k = (8 — 1)/At. Assuming Fick’s law with equal mobility for each genotype
population, we obtain the Huxley equation

=« P21~ Py),

ap 3’p )

— =D— 1 -p), 2,
5 = Dy +ep’(l=p) (2.5)
which should henceforth take more prominence in Mendelian genetics. In the next

section, similar conclusions are drawn from direct continuum modelling.

3. Direct continuum models for genotype population densities

We consider one-dimensional population densities po(x, ), pi(x, t) and p,(x, 1)
for genotypes with zero, one and two copies respectively of the recessive gene a. In
this notation, Skellam’s equations [13] are

3%p

ap

3_1‘0 = DaTzo — upo + vo(1 = p)p,
ap a%p

5, = D55 — et n2p(-pp,
902 8%p !

o = DPoz et v2p°p,

where p is the total population density, p = py + p; + p; and p is the frequency of
the a-allele in the gene pool, p = (2p, + p1)/2p. Here reproductive success rates y;
may differ among the three genotype combinations i = 0, 1, 2. These three equations
imply

— = — +2n

- dx? ax

dp d%p ap
at

] +p(1 = p)ls:p +5:(1 — p)l, 3.1
where s, = y1 — yo, 52 = y» — y1 and

d
nx,n = a—log p(x,t).
X
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We could equally well have chosen a single common value y for the reproductive
success rates y;, and then modelled selective advantage by having different death
rates u; for the three genotypes. However, as seen from (2.5) of the discrete model,
this approach leads to the same source terms. In conjunction with direct continuum
modelling [2] it leads also to the same convection and diffusion terms. In the case
of constant total population density, n = 0, originally considered by Fisher, the three
coupled equations for genotype densities imply a relatively simple single uncoupled
reaction-diffusion equation for the gene frequency. However we point out here that for
the case of principal interest, the Mendelian case wherein individuals with either one
or two copies of the dominant A-gene have the same characteristics, s; = 0 and (3.1)
reduces to Huxley’s equation (2.5) with ¥ = s,. Skellam [13] proceeded to analyse
the effect of the extra convective term 2Dn(x, t)dp/3x in (3.1). For this purpose,
he chose s, = s, which resulted in a quadratic logistic source term. This choice
afforded a simpler analysis since the comparative case with n = 0 then happened
to be Fisher’s equation (1.1), for which travelling wave solutions were already well
known. However, there is no reason why this case should have any particular practical
relevance. In the general case with 5; # 0 and s, % s — 1, (3.1) is the Fitzhugh-
Nagumo equation with an additional convective term, due in this case to the migratory
diffusive flux of the total population.

In the case of two similar cohabiting strains of an asexual species distinguished
by alternative characteristics A and a with densities pp and p, respectively, Skellam’s
reasoning [2] leads to

) 92 3
a—’; = [—p +2n—p] +sp(1 —p),

dx? ax
where s = y; — ¥ and

i .
n=_—logp, with p=p +po.
ax
Notice that in this case the product source term sp (1 — p) is not due to heterosexual
coupling.

In order to compare the effects of the Fisher quadratic a-allele source term Q(p) =
mp (1—p) and the Huxley cubic source term Q(p) = kp?(1—p), wetake k = 27m/16,
so that both source functions have the same maximum value m /4. It is straightforward
to obtain the simple analytic solutions for the spatially uniform population p (¢). With
initial condition p (0) = 0.01, there is a large time lag of the Huxley growth compared
to the Fisher growth. The maximum growth rate under Huxley dynamics, appropriate
for sexual species, takes twenty times longer to arrive than that of the Fisher dynamics,
appropriate for asexual species. Although asexual species lack the genetic variability
effected by the shuffling processes of meiosis and fertilisation, variations due to
favourable mutations are likely to show up more quickly in the asexual population.
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Huxley and Fisher modeis for gene spread
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FIGURE 1. Spread of a Gaussian clump initially 0.2 exp(—4x?2) according to (a) Huxley’s equation with
D = 1 and ¥ = 1 (solid curves) and (b) Fisher's equation (dashed curve) with the same maximum
production rate.

Mutations in the sexual species, which are typically more complex, take longer to gain
prevalence in the population. Since the spatially uniform solutions are stable, similar
conclusions can be drawn for a spatially variable population mixture. In Figure 1, we
display solutions of the two models with the same initial localized Gaussian clump
of a-alleles, contained within the region 0 < x < 2 by zero-flux boundary conditions
Px = 0.

This is a numerical method-of-lines solution obtained by using the program
PDETWO of Melgaard and Sincovec [12]. At early times, the peak value of mu-
tant frequency decreases as the mutant population spreads by diffusion. Here time
scales and length scales have been chosen so that the diffusion coefficient and the
growth coefficient are of order one. At a dimensionless time of the order of 1, the peak
value reaches its minimum as the growth term begins to dominate the diffusion term.
Thereafter, the solution resembles the spatially uniform solution. Mutant takeover is
greatly retarded in the Huxley model compared to the Fisher model.

4. Nonclassical symmetry analysis of reaction-diffusion-convection equations

The most fundamental evolution equations of population genetics belong to the
class of (1+1)-dimensional quasilinear reaction-diffusion-convection equations

0= F(x,t,p, PxsPxx) = P: — Pxx — 20(x, )px — Q(P). “4.1)
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FIGURE 2. Solution at times ¢ = 0, 1 and 2 to the Huxley equation with a convection term, subject to zero
gradientatx = O0and x = 2.

The most relevant cases, those of the asexually reproducing advantaged mutant, and
the sexually reproducing recessive advantaged mutant, have a quadratic Fisher-type
logistic growth function Q = p(1 — p) and a cubic Huxley-type logistic growth
function Q = p2(1 — p) respectively.

In a study of any practical class of nonlinear partial differential equations, the
longest established systematic approach to finding exact solutions is the Lie symme-
try classification. The symmetry group possessed by the generic reaction-diffusion
equation [10] with n = 0 is nothing more than the translation group, generated by

2 0
Fr=a—+a—,

with a; and a, constant. The group-invariant solutions are the steady states (@, = 0),
the spatially uniform solutions (a; = 0) and the travelling wave solutions (a; # 0
and a, # 0). The travelling wave solution satisfies a nonlinear second-order ordinary
differential equation for p(s), where s is the d’Alembert variable s = x — ayt/q,.
Except for some special cases of wave speed [1], even the travelling wave solutions
are difficult to obtain exactly. As a rule, symmetry classification of PDEs with free
coefficient functions, such as Q(p) or n(x, t), results in special cases that are linear
functions or products of simple powers, logarithms and exponentials of linear functions
of the arguments. This is the case for reaction-diffusion equations [10]. Neither the
Fisher equation nor the Huxley equation, whose polynomial source terms Q(p) are
more complicated than a simple power law, possesses additional classical symmetries.

We now investigate the possibility of nonclassical symmetries. Unlike the classical
method, the nonclassical symmetry method [4] leads to nonlinear determining rela-
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tions. However, following the advent of Clarkson and Kruskal’s direct method [6], a
number of new nonclassical solutions were constructed for practical nonlinear PDEs.
Group-invariant solutions must satisfy the invariant surface condition (ISC)

Tp,+ Xp. = P.

If we demand invariance of F = 0 subject to the constraint of the ISC, then this
can sometimes lead to additional reductions to an ODE that are not obtainable by the
classical method. In terms of the second prolongation I'?, the nonclassical symmetry
determining relations are

F'®F = 0| rousc- “4.2)

After using the ISC to eliminate p, and its derivatives, then subsequently using the
governing equation to eliminate p,, and higher order derivatives, (4.2) reduces to
a polynomial equation in p,, from which we obtain the determining relations for
the coefficients X (x, ¢, p), T(x,t, p) and P(x,¢, p) of the infinitesimal symmetry
generating operator I'. In the case of the gene propagation equation (3.1) with Huxley
source term kp%(1 — p) , we deduce that the nonclassical symmetry determining
equations have a nontrivial solution if and only if n is a function of ¢ alone. That
is, the total population density must take the form p = po(£)e”™*, which allows a
restricted form of monotonic spatial variability in total population density at each
time. In this special case, the convection term in the gene transport equation may be
transformed to zero by a change of accelerating reference frame:

t
i=x+2/ Dy(s)ds; t=t
0

ap 3’p 2

— =D— K 1-— .

a1~ Do TP -p)
Remarkably, only this Huxley source term, and some other cubic source terms, result
in genuine nonclassical symmetries [3, 7]. Further, the nonclassical reductions lead

to an explicit symmetric solution [3, 5, 7, 11]. For ¥ = 1, this is

B etV 2 “3)
EPHIIVILF 1243 '

This solution (4.3) has a local minimum at x = a(f), where

a(i)=ﬁw(~/§exp[-j—§—2—%i])—3+2J§+iﬁ,
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where W is Lambert’s function. We may now impose a familiar Neurhann zero-
gradient boundary condition by choosing

t=t; x=x+a().

In terms of coordinates x and ¢, the governing gene transport equation is (4.1) with the
particular choice n = a’(t)/2D. The solution with zero-gradient boundary condition
is displayed in Figure 2. A population which has been elsewhere taken over by the
a-allele, is initially depleted of a-alleles near the origin, for example by selective
removal by pest controllers. The advantageous mutation then diffuses from the right
to again take over the population near the origin.
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