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AN OBSERVATION PROBLEM FOR THE
BESSEL DIFFERENTIAL OPERATOR
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Abstract

In this paper, the parabolic partial differential equation u, = urr + {\/r)ur — (v2/r2)u,
where v S= 0 is a parameter, with Dirichlet, Neumann, and mixed boundary conditions is
considered. The final state observability for such problems is investigated.

1. Introduction

In this paper, we consider the final state observation problem for the parabolic
differential equation involving the Bessel differential operator of order c = 0or
v E \\, 1], namely

/ denotes the time and r the spatial variable.
We understand a process to be a solution of a partial differential equation or,

as in our case, a solution of an evolution equation in a Banach space. Therefore,
let 5(0 be a strongly continuous semigroup of bounded operators defined on a
reflexive Banach space X for f > 0. For M0 E X we define M() E C[0, T; X] by
u(t) = S(t)u0 and call it the trajectory of u0. For such a trajectory the observa-
tion operator C: ^ (C) C X -» Y is defined by Cuo = HS()u0, u0 £ ^(C),
where H: X -» F is the observing operator. The 'final state' operator F: X -> A" is
defined by /w0 = S(T)u0, uQ £ X The final state observation problem consists
of the question as to whether or not Ĥ MOIIA- is bounded relative to ||CM0||r. The
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(2] Bessel differential operator 93

existence of a reconstruction operator G: Y -> X such that F = GC amounts to
continuous constructibility of the final state from the observations HS()u0.

As a concrete example, consider a physical model of small vibrations (diffu-
sion) of a gas in a cylinder or the heat transfer in a solid cylinder, where the
temperature at any point depends only upon the distance of that point from the
axis of the cylinder. Then, the problem consists of determining the temperature
distribution u(r, T) in the moment T > 0 by measuring the temperature u(6, t) at
a fixed point 8 e [0,1] during the time 0 to T. Therefore, we ask whether it is
possible to reconstruct the temperature distribution u(r,T) at the fixed time
T > 0 if the initial condition is not known.

Dolecki [4], [5], Dolecki and Russel [6], Mizel and Seidman [9], [10], Seidmann
[15] and other authors have represented certain results concerning observability
for systems governed by linear parabolic partial differential equations with
various boundary conditions. However, only observability for special cases of
regular operators (see [2] for more general definitions) is considered in these
investigations.

The Bessel differential operator has a discontinuity at zero and hence is of a
singular type. Thus, in particular, results reported in [4], [15], cannot be applied
directly to this problem. For regular operators, considered in references [4], [6]
and [9], the modulus of the eigenfunctions do not tend to zero, and the distances
between any two successive zeros of the eigenfunctions are equal. These two
properties are not valid for the case involving Bessel's differential operator.
Nevertheless, similar results can be established via a different approach. This is
the main aim of this paper.

In Section 2, we describe the system and specify the problem to be considered.
Some important preparatory results are also given in Section 3, a known sufficient
continuity criterion for the operator <j>$T is recalled briefly. This result is then used
to prove another sufficient continuity criterion for <j>e T. Furthermore, an expres-
sion for the observation time is also stated. In Section 4, a Theorem on the a.e.
existence of a continuous linear operator <j>g T is proved for a special case of the
considered system. Using this result we show that the set of 6 £ [0,1] for which
<t>g T does not exist (for a fixed T > 0) is dense in [0,1]. In the final Section 5, we
extend the main result to the case in which the system is described by the Bessel
differential operator of order v with v G \\, 1].

2. Problem statement and preparatory results

Let T be a fixed positive real number and consider for each v > { or v = 0 the
linear parabolic partial differential equation

H, + fl(^1)M = 0, (r, t) e (0,1) X (0, T), (2.1)
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94 K.-D. Werner [3]

where B[o 1} is the Bessel differential operator of order v, defined by

To this partial differential equation three types of boundary conditions, namely

"(1 ,0 = 0, (2.2)

| f 0 , 0 = 0, (2.3)

(lt) + a > 0 fixed, (2.4)

together with «(0 + ) bounded in all three cases for each v 2* \ or v = 0, are
considered. The initial condition is

n(r,0) = «„(/•), (2.5)

where u0 is an element in the Hilbert space H defined by

H = L2(0,1; fr ) = [x: frx{r) E L2(0,1)).

In this paper, we consider three types of problems. Each of them is formulated
from equation (2.1), where v — 0 or v G [j, 1], by including the initial condition
(2.5) together with one of the boundary conditions. For brevity, these three
problems are to be called problem 1, problem 2 and problem 3 respectively.

Let /„ be the Bessel function of order v and let

y = 1,2 (2.6)

where \p j = /ij y denote the eigenvalues for each of the problems 1,2 and 3. For
each problem, let {/„ j(r)} be the sequence of the corresponding eigenfunctions
which is orthonormal with respect to the natural norm in H. Let Cv j,j — 1,2,...,
be the Fourier-Bessel-Dini coefficients of u0 with respect to the natural scalar
product in H. It is well known that

7=1

belongs to C2((0,1) X (0, T)) and is the unique solution for each corresponding
problem to the considered v.

REMARK 2.1. The explicit expressions for the three different eigenfunctions fvj{r),
can be found in [1, Section 7.10.4]. Furthermore, it is known [1, expression 9.1.60]
that

|y_(/-)|<l, V f £ R , i - ? 0 . (2.7)

Without loss of generality, the expression for/,j given in (2.6) is normalized
with respect to the norm in C[0,1].
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[4] Bessel differential operator 95

Before defining our observation problem, we need some notation.
Let X, Y, Z be Banach spaces. Consider the abstract linear system

(2.8)

Z

where the observation operator C: X -> Y is linear with dense domain ^(C) and
F is linear and bounded.

With this notation we give a general definition of observation problems.

DEFINITION 2.2. The system (2.8) is (continuously) F-observable if there exists a
constant K 3= 0 such that

The system (2.8) is F-constructible if there is a bounded linear operator G: Y -> Z
such that

F=GC,
i.e. G makes the diagram (2.8) commutative.

In application, we may choose X = H, the Hilbert space of the initial condi-
tions, y = C[a, T] or Lp[a, T], p E [2, oo) with 0 < a < T, and Z = H or
C[0,1]. Let 8 G [0,1] be arbitrary but fixed. Define the observation operator
C: X-+ Yby

Ceu0 = u(6,-).

Then, Q is a continuous linear operator, since by Remark 2.1 we have for

< max(l, T)k\ £ |C, J = max(l, T)K,\\uo\\H,

where

£ , = ( 2 e~2*'->" <oo, a > 0 .

Clearly, Q is linear, while the finiteness of Kr follows from Lemma 2.3.
The final state operator F: X -> Z is defined by Fu0 — «(•, T). F is linear and

with exactly the same arguments as above one shows that F is continuous. The
reconstruction operator G = 4>$T: Y -» Z is therefore defined by ^ Tu(0, •) =

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0334270000004355
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.146, on 14 Jul 2025 at 21:54:16, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0334270000004355
https://www.cambridge.org/core


96 K.-D. Werner [s]

From Definition 2.2, the reconstruction problem consists in determining a
continuous linear operator $e T, depending on 8 and T, which makes the diagram
(2.8) commutative, e.g. Fu0 = <j>$TCgu0.

Note that the continuity of the operator <l>e T implies final state observability,

For convenience, certain results concerning the roots of the eigenvalues for
each of the problems 1,2,3 are summarized in

LEMMA 2.3. For each j — 1,2,..., and fixed v = 0 or v s* \, let /*„ j = fovj
denote any ofppj, yv j or yp y, where pyJ (respectively yv 7 and yy 7 ) is the root of the
eigenvalue of the problem 1 (respectively problem 2 and problem 3). Then it is true
for each v — 0 or v 3s \, that

l im(/i + 1 - M ) = TT (2.10)
7^00

and

H,j = O(j). (2.11)

Let v > {. For all three cases of boundary conditions (2.2), (2.3), and (2.4) (except
the case a — ̂  in (2.4)), the inequalities

/ V 2 - J V 1 > • • ' > ^ , 7 + i - M , . y > • • • > - » « • (2 .12)

valid.
If v — \, (2.12) « afao true in the case of the boundary condition (2.3). For the

boundary conditions (2.2) and (2.4) with a = ^ a// inequalities in (2.12) become
equalities.

For v = 0, i f« fn<e fAaf

( | ) . / ' y + i - / » > < ' • V - / e N , (2-13)

J V / e N , (2.15)

is a constant and 4>(j) is a suitable bounded function in N.

PROOF, a) nP j — pv y. In the case v > {, (2.10) and (2.12) are proved in [8,
Theorem 1.4 and 1.2].

For v = 0, (2.10) and (2.13) are known (see [14, page 43]).
b) /!„ j = yv y. Let v > \. The proof of (2.12) is then a special case (a = a = 0)

in the proof of Theorem 1.1 in [8]. For (2.10) see Theorem 1.4 in that reference.
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(61 Bessel differential operator 97

In the case c = 0we get j ^ y = p h j since J^(r) = —Jx{,r). The validity of (2.10)
and (2.12) follows then from (a). For a proof of the first inequality in (2.14) see
[13, page 314].

c) \iv j = yp y. For a proof of (2.10) and (2.12) in the case of v> \, o >0, see
[8, Theorem 1.4 and 1.1]. Equation (2.15) follows from equation (57) of [11, page
406]. The expression (2.10), in this case v = 0, follows then directly from (2.15).

Because all intervals between two successive positive roots pftJ- equal or exceed
•n, it follows that

Pyj^ij- I)"1. j= 1,2,...,

except in the two cases of (2.13) and (2.15), where in case of (2.15) such a result is
not stated. But, ti,j>(j — 1)TT together with the first inequality in (2.13)
respectively (2.15) in the exceptional cases imply that /*„ y = O(j) for each v 3s \
or v = 0. This completes the proof.

The next lemma is needed in Section 3 for the establishment of a sufficient
criterion for the continuity of the operator <j>e T.

LEMMA 2.4. Let v > 0. For sufficiently large X E R + , the following inequality is
valid:

^ f * ^ , (2-16)

where M(y) and K(v) > 0 are constants which depend on v.

PROOF. See the paragraph 14 in Section 13 of [16].

3. Continuity criteria

Let {\j),j = 1,2,..., be a sequence of complex numbers. Furthermore, it is
assumed that the following conditions are satisfied:

3p > 0,Vi, j=\,2,...,\\j- XJ>/» | / -j\, (3.2)

38 > O,3yo,V/ >j0, ReXy » S|\y|. (3.3)

THEOREM 3.1. Let {\j),j = 1,2,..., be a sequence of complex numbers satisfying
(3.1)—(3.3). Under the following conditions: there exists a sequence {BAJ = 1,2,. . . ,
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98 K.-D.Werner [7]

of real numbers such that
a)

and there is an e> 0 so that
b)

^ > r : Y -* Z is well-defined and bounded.

PROOF. [4, Lemma 1] or [12, Satz 7.2].

From Lemma 2.3, it follows immediately that one can set {Xj} = {A,,,},
j — 1,2,..., in the expressions (3.1)—(3.3) for each fixed number v > \ or v = 0.
Consequently, the operator <$>e T makes the diagram (2.8) commutative if we can
verify the conditions (a) and (b) of Theorem 3.1.

For brevity, let (Y, Z) denote any pair of Banach spaces Y = C[a,T] or
L"[a, T],p E [2, 00), 0 < a < T, and Z = H or C[0,1].

THEOREM 3.2. a) / / 2™=, exp(-A,jT)\fvj(0)\~x is convergent, v > \ or v - 0,
fl r- w well-defined and bounded for T > T> 0 and for any pair (Y, Z ).

b) / / /Aw jenes w divergent, then <j>e T is unbounded for T < T and for any pair

PROOF, a) Set Bj =^,^(0)^ for an arbitrary but fixed v 5= \ or v = 0 and
apply Theorem 3.1.

b) Clearly, if this series is divergent (v fixed), then there does not exist ay0 G N
such that for ally >j0,

1 < or3/2.
Thus, we can find a subsequence {jn} of the sequence {j} so that, after
multiplying withy,,3,

for sufficiently large j n . To show that 4>e T is unbounded, it suffices to show that
there is a subsequence, again indexed byyn, such that

||exp(-X
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[8] Bessel differential operator 99

For this, we note that, if Y = Lp[a, T], p E [ 2, oo), then

lav(-k,tJt)\\r<\ asy-oo. (3.4)

On the other hand, the inequality (3.4) becomes an equality if Y= C[a,T] and
a -* 0. Thus, by definition of $e T,

Since ||/F>y||c[o,i] ̂  llX.yllw ^ follows from Lemma 2.4 and (3.5) that

exp(-\PJT') I K(v) \ '/2 / \ '/2

asy -» oo, where c(v) is a constant which depends on the chosen v, \vj = 0(j2)
and 7" is chosen as T — e.

As a consequence of Theorem 3.2, we have

COROLLARY 3.3. For any $ e [0,1], if fvj(6) ^ 0 for all j e N, w/iere v^{ or
v = 0, /Ae observation time To is given by

/ / there exists a j EN such that fvj(Q) = 0 then <j>eT is not well-defined. In this
case, set To = oo.

PROOF. See Corollary 1 of [4].

4. Main theorem

We state our main result for the case v — 0 in

THEOREM 4.1. For almost all 6 £ [0,1] and for any pair (Y, Z ) there exists a
continuous linear operator <j>eT (T > 0) which makes the diagram (2.8) commutative.

For the proof of this theorem, we need some preparations.
Let P = {pj, jr E No} be the set of the positive zeros of Jo U {pQ = 0} and

define for r 3* 0,

8(r,P)= inf { i r - ^ r ^ G P } . (4.1)

Next, we need a lemma which is related to the diophantine approximation
theory.
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100 K.-D. Werner [9]

LEMMA 4.2. Let b, w be real numbers with w > -n and 0 *S b «£ \. Let 8 be defined
as in (4.1). Then, the Lebesgue measure A of the set

Hwb = {0 e [0,1]: 8(wd,P) *£&}

is less than or equal to 4b, that is \(HW b) «£ 4b.

PROOF. From the definition of Hwb, it is clear that

Pj- b pj +

Note that each of the subintervals in (4.2) has length 2b/w, and that each
distance between any two successive subintervals has length (pj+l — Pj — 2b)/w.
Suppose that K subintervals in (4.2) have nonempty intersection with [0,1]. Since
w > 77 >px » 2.4... (see [1, Table 9.5]) and 0 =£ b «£ \, it follows that K > 2.
Thus,

(^) (4-3)

Note that />, — po= px and pl — 2b> 1. Furthermore, from (2.13), pJ+i — pj
3* I77 for ally e N. Thus, together with (4.3), we have

Pj+i

'•I02*-)

\ w

Combining (4.3) and (4.4), we get

(4.4)

[o,hHWib) K-\ ™-

This completes the proof.

The next lemma follows from Lemma 4.2 and the Borel-Cantelli Lemma.

LEMMA 4.3. Let {bj}, {p^, j — 1,2,..., be sequences of real numbers such that
bj > 0, V/ G N, lim^oo/*, > w, andlj^bj < 00. Then,

\{H) =\{6 E [0,\]:VN,3j > N: 8(nj$, P) *z bj} =0 .

To proceed further, it is useful to introduce the function

0|. r>0. (4.5)
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[10] Bessel differential operator 101

LEMMA 4.4. Let wo(r) and 8(r, P) be defined by (4.5) and (4.1) respectively.
Then, there exists a constant c, 0 < c < 1, such that for all r>0,

wo(r) ^ c8(r, P). (4.6)

PROOF. Since /0(r) satisfies the Bessel differential equation of zeroth order it is
easily checked that wo(r) is strictly concave in each of the intervals (pj, pJ+i),
j G No. Now, let qj,j G No, denote the point in (pjt pj+x) where wo(r) attains its
maximum in q^ over the interval (pj, pj+\)- Then,

and

wo(r)
Pj+I-Pj

These in turn imply that

inf

2 sup (pj+l - p^
8{r,P).

From equality (2.13) and the facts that qQ < px » 2.4..., \J0(x) |< 1, x G R, it
follows that the constant c can be chosen:

1/2

LEMMA 4.5. Lei {/x,}, j — 1,2,..., be a sequence of positive real numbers with
lim,-inf(/*,-//) > 0. Then, there exists a set & C [0,1] with X(©) = 1 such that, for
all BE®,

J0{lijB) * 0, V/ G N, (4.7)

and

where

and

\\Jo(Vjr% V/ G N, (4.8)

oo forT>0. (4.9)
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102 K.-D. Werner [n]

PROOF. Let

0 = {6 £ [0,1]: 3N = N(0),Vj ^ N: 8(^0, P)

n ( f l e [0, l ] : 3 y e N

where Bc denotes the complement of the set B.
Since B represents the countable set of the zeros of wo(r), the validity of (4.7) is

clear. On this basis, it follows from Lemma 4.3 that X(6) = 1.
For 6 e 0 , Bjg is well-defined which together with (2.7) implies (4.8).
Let 6 G 0 , and T > 0. Then,

7 = 1

N{$) oo

7 = 1 7

l n r ^ p ( ^ )
+ - J y 2 . / „ px (using inequahty (4.6))

+ -Jj9 2 fif <oo (from the definition of 0) ,

where N(0) is an integer and C(0) is a constant both depending on 6.
The proof is complete.

We are now in a position to prove Theorem 4.1.

PROOF OF THEOREM 4.1. The eigenfunctions of each of the problems 1, 2 and 3
are represented by jj.(r) = /o(Mo,/) a n ^ t n e corresponding eigenvalues are Xj =
/4 j , j — 1,2, Furthermore, it is obvious that <£9 T is a linear operator. Thus,
the result follows from Theorem 3.1 and Lemma 4.5.

This completes the proof.

As a consequence of Theorem 4.1, we have

COROLLARY 4.6. Let To(6) be as defined in (3.6). Then,

\{8E[0,l]:TQ(0) = 0) = 1.

REMARK 4.7. Using a similar technique given for Theorem 4 of [4], it can be
shown that the result of Corollary 4.6 implies that of Theorem 4.1. Thus, these two
results are equivalent.
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1121 Bessel differential operator 103

REMARK 4.8. In the case J0(Hj6) - 0 for aj G N and 8 G [0,1], it is clear (see
Theorem 3.2b) that there exist no continuous linear operators <J>9 r which make the
diagram (2.8) commutative. In the next Theorem we shall prove that the set

H = {6 e [0,1]: 3j G N with 7 0 ( M / ) = 0}

is dense in [0,1]. Therefore, the set of all 6 G [0,1] for which <}>eT is not bounded for
T > 0 and for any pair (Y, Z ) is dense in [0,1] and has nevertheless Lebesgue
measure zero according to Theorem 4.1.

THEOREM 4.9. Let for each v s* \ or v = 0, {p,j}, j = 1,2,..., denote the
sequence of the positive zeros ofJv(r)- Then, the set

} (4.10)

is dense in [0,1].

PROOF. It suffices to show that Vp, q G N (p «£ q), 3j, n G N (« >y) such that

f^^^T1' (411)

for each arbitrary but fixed v 3* \ or F = 0.
Choose an « E N so that for arbitrary but fixed p, q (p < q),

^ < 2q < My>n+1 , (4.12a)

respectively

——<:2q^—' , (v — U). (4.12b)

To this n G N, we choose ay > 1 such that

<M,,y. (4.13a)

f o r y = l , (4.13b)

where the existence of such integers n,j> 1 follow from the inequalities 0 < /tv,
< /x.,2 < • • • < Mi.,; ~* °° f°ry ~* °° a11*! T ̂  /*!-,;+1 "" Mi-,y ̂  Mi/.̂ y e N, except
in the case of v = 0, where |TT < /to,;+i "" Mo.y < "• ( s e e (2-13)). Inequalities
(4.13a) and (2.12) (respectively (2.13)) together with /!„ „ > q\i.vX (see 4.12a)
(respectively /z0 „ ~s? q-n) imply that

«* . .>< /» , . „ ( / '+ ! ) • (4-14)

Combining (4.13a) and (4.14), the inequahty (4.11) is proved for v > {, v = 0 and
7 > 1. For (4.13b) observe that qn,ti <ppF n + qfiv, < P,<n(p + 1), where we
used the fact nOi < IT in the case of v = 0.

Thus, the proof is complete.
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104 K.-D. Werner [13]

S. Certain extensions

In this section, the main result reported in Theorem 4.1 is extended to the case
in which the system (2.1) is described by the Bessel differential operator of order v
with v E [j, 1] rather than v — 0. We shall only indicate the major changes in the
proof.

Let Pv = {pyj, j E No} be the set of the zeros of /„, where v E \\, 1], and
define, for r s» 0,

8(r,P,)= inf {\r-PpJ\:PpJGP,}. (5.1)

LEMMA 5.1. For v £ (\, 1], define

i \ — \ Jwr/2\JAr)\>
[J,(r)> Mr <=[0,ppl].

For v = 5, define

/2(r)|, r>0. (5.2b)

Then, wv(r), v E [5,1], is strictly concave in each of the intervals [pvJ, P,j+\],
j = 1,2,...; and wl/2(r) is strictly concave in (0, Pi/2,i) too.

PROOF. For each v e (\, 1], consider intervals (prj, pyj+l],j £ N, where Jv is

positive. Using the recurrence relation (see [7], 7.2.8, expression (55))

rJ:(r)=vJ,(r)-rJ,+ l(r), (5.3)

together with the Bessel differential equation, we obtain

Then, wv(r) is strictly concave in the considered intervals iff r2 — v2 + % > 0
which is equivalent to r > {v1 - \ , since r>0. From [17, page 485], we observe

that/7Fi, > TJV(V + 2) > {v* — \ . Thus, the desired result follows. The case when
/„ < 0 can be treated similarly.

Since Jx/1(r) — J2/irr sin r, (see [7], page 79, expression (1.4)), the concavity
of w,/2(/-) in the intervals (p1/2J, P\/ij+\) = (jv,(j + 0^). j £ No is clear.

The proof is complete.

REMARK 5.2. From the series representation of /„(/•) for v s* 0 (see [7], page 4,
expression (2)), follows that limr_04.'(r) = °° for v EL (5,1) and]imr^0J{(r) — \.
Furthermore, we haveJXpv<\) ^ 0, since there is only one positive zero of Jv. In fact,
JXPv,\) =J*(PV,\)

 = 0 would imply that Jv vanishes identically. However, this is
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[ 14 ] Bessel differential operator 105

impossible, since Jv is a nontrivial solution of an ordinary differential equation of
second order.

Using this result, (5.3) and the fact that /„+]('•) > 0 in (0, /?„,) we conclude
that J'y{pv , ) < 0 .

LEMMA 5.3. Let wr(r) and 8(r, Pv) be defined by (5.2a, b) and (5.11) respectively.
Then, there exists a constant cp, 0 < cv < 1, such that, for all r>0,

wv{r)>cv8{r,Pp). (5.4)

PROOF. With the same proof as in Lemma 4.4, we get

r>P..u (5-5)
for each v E (\, 1), where

0< c; < , /? -=L < 1 (using (2.2)).

In the case when r £ [0, pvl] with v G (j, 1], we proceed as follows: From
Remark 5.2, we have /„'(()) = oo, 7,(0) = \ and J'v{pv}) < 0. Now, by using the
fact that the graph of /„(/•) resembles a damped oscillation (see [3], pages
178-185), there exists a point qp0 E (0, prl) and a constant a, = ay(qrfl) > 0
such that

wv{r) ^ ^^-S(r, {0, />„,,}) = c^(r, (0, />„,,}), r 6 [0, />„,,], (5.6)

where 0 < cv < \/pvA < I/77.
Setting c, = min(c^, c,) and then combining (5.5) and (5.6) we get

The case when v = { is trivial, since i ) | y 2 = { w , / i £ N 0 ) and therefore,

The proof is complete.

With the same proof as for Lemma 4.2, by using the expression (2.12), we can
show that the following remark is valid.
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REMARK 5.4. Let v E [%, 1] and let b, uv be real numbers with uv > />„, and

X(//u,,6) = \{6 E [0,1]: «(«,», P) < b) < 4b.

For each r 6 [|, 1], define

0, = {0 E [0, l]:3iV = M«), Vy > /V: 5 ( ^ , 0 ,

n [0 E [0,1]: 3y £ No w i t h / i , / E ^ } C -

Then, the proof of the expressions (4.7)-(4.9) for these values of v is similar to
that given for Lemma 4.5, except that (4.9) is required to be modified as follows:

Since only a finite number, say M(6), of pvj6 E (0, />„,), we get

(
7 = 1 7 = 1

+ 2 exp(-M;>yr)|/r(;i,,/)|
j = N(6)+\

<00,

for S G 0 , ; where M(0), N(6) are integers and C(0) is a constant, all depending
on 0 and p.

Now, the proof of the main result follows easily from the last result, the
corresponding expressions (4.7), (4.8), and Theorem 3.1.

REMARK 5.5. The technique of this paper works only for the cases v = 0 or
i< 6 [ j , 1]. The reason is that the technique requires that J^O) ¥= 0, which is not true
for v > 1.
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