
19

Quantum gradient estimation

The authors are grateful to Nikitas Stamatopoulos for reviewing this chapter.

Rough overview (in words)

Estimating the gradient of a high-dimensional function is a widely useful sub-

routine of classical and quantum algorithms. The function’s gradient at a cer-

tain point can be classically estimated by querying the value of the function

at many nearby points. However, the number of evaluations will scale with the

number of dimensions in the function, which can be very large. By contrast, the

quantum gradient estimation algorithm evaluates the function a constant num-

ber of times (in superposition over many nearby points) and uses interference

effects to produce the estimate of the gradient. While there are caveats related

to the precise access model and the classical complexity of gradient estima-

tion in specific applications, this procedure can potentially lead to significant

quantum speedups.

Rough overview (in math)

Let f : Rd → R be a real function on d-dimensional inputs, and assume that

it is differentiable at a specific input of interest, taken to be the origin 0 =

(0, 0, . . . , 0) for simplicity (the algorithm works equally well elsewhere). Let

g = (g1, . . . , gd) denote the gradient of f at 0, that is, g = ∇ f (0). We wish to

produce a classical estimate g̃ of g that satisfies |g j− g̃ j| < ε for all j = 1, . . . , d.

Ignoring higher-order terms, the function may be approximated near the ori-

gin as f (x) ≈ f (0) + ⟨g, x⟩, where ⟨·, ·⟩ denotes the normal inner product.

The original gradient estimation algorithm by Jordan [587] then considers a

d-dimensional grid of points near the origin denoted by G. For simplicity, sup-

pose on each of the d dimensions, the grid has N evenly spaced points on the

276

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.022
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.47, on 12 Sep 2025 at 19:43:17, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.022
https://www.cambridge.org/core

19. Quantum gradient estimation 277

interval [−ℓ/2, ℓ/2], for a certain parameter ℓ related to the precision require-

ments of the algorithm, where N is assumed to be a power of 2. Let m be an

upper bound on the magnitude of the components of g. Define g′ = Ng/2m to

have components between −N/2 and N/2. Similarly, let g̃′ = Ng̃/2m be the

desired normalized-and-shifted output.

The quantum algorithm prepares a superposition of the grid points x ∈ G and

computes function f (x) (times a constant πN/mℓ) into the phase, producing the

state

1√
Nd

∑

x∈G
eiπN f (x)/mℓ |x⟩ ≈ eiπN f (0)/mℓ

√
Nd

∑

x∈G
eiπN⟨g,x⟩/mℓ |x⟩ ,

where |x⟩ denotes the product state |l1⟩|l2⟩ · · · |ld⟩, where l j is a binary string

of length log2(N) containing a representation of the j-th component x j of the

vector x, with the identification x j = −ℓ/2+ ℓl j/N. With this in mind, the latter

state is rewritten as the product state, up to a global phase and normalization

constant
e
−πig′1

N−1∑

l1=0

e2πil1g′1/N |l1⟩


e
−πig′2

N−1∑

l2=0

e2πil2g′2/N |l2⟩
 · · ·

e
−πiNg′

d

N−1∑

ld=0

e2πildg′
d
/N |ld⟩

 .

Due to the approximated linearity of f , each of the product state constituents

is observed to be close to a basis state in the Fourier basis (see Eq. (12.1)). By

performing an inverse quantum Fourier transform (QFT) in parallel for each of

the d dimensions and measuring in the computational basis, a computational

basis state

|g̃′⟩ = |g̃′1⟩|g̃′2⟩ · · · |g̃′d⟩

is retrieved (up to an unimportant global phase), where with high probability

g̃′
j

approximates g′
j

to log2(N) bits of precision. The coordinate g̃ j is then re-

covered as g̃ j = 2mg̃′
j
/N. Assuming m = O(1), taking N = O(1/ε) suffices to

solve the problem. In a full analysis, one must make sure not to choose ℓ too

large (else the linearity approximation breaks down).

In [587], the unitary U f sending |x⟩ 7→ eiπN f (x)/mℓ |x⟩ was performed using

a constant number of calls to the evaluation oracle that computes an approxi-

mation to f (x)/m to precision O(ε2/
√

d) into an ancilla register. In [430], the

precision required was improved to O(ε/
√

d) using finite difference formu-

las to put the gradient into the phase. Additionally, it was shown how U f can

be implemented using O(
√

d/ε) calls to a “probability oracle” that (assuming

0 ≤ f (x) ≤ 1) performs the map |x⟩|0⟩ 7→
√

f (x)|x⟩|1⟩ +
√

1 − f (x)|x⟩|0⟩.
The gradient estimation algorithm can be viewed as a generalization of

the Bernstein–Vazirani algorithm [129], which considers binary functions f :

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.022
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.47, on 12 Sep 2025 at 19:43:17, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.022
https://www.cambridge.org/core

278 19. Quantum gradient estimation

{0, 1}n → {0, 1}, and promised that f (x) = ⟨g, x⟩ mod 2 for some unknown

vector g, determines g with one query to f .

Dominant resource cost (gates/qubits)

The superposition over grid points can be easily accomplished with Hadamard

gates. Likewise, the inverse QFT operation is relatively cheap. The number

of qubits is O(d log(N)), and the number of elementary operations for each

of the d parallel QFTs is polylog(N)—thus, the gate depth is independent of

d, while the total gate complexity is linear in d. Additionally, an important

component of the complexity comes from performing the unitary U f , which

requires implementing either an evaluation oracle or a probability oracle for

the function f . If one has access to an evaluation oracle, the function must

be evaluated to precision O(ε/
√

d). Thus, if function evaluations can be made

to precision δ in circuit depth polylog(d, 1/δ), the overall circuit depth of the

quantum gradient estimation algorithm will be polylog(d, 1/ε), a potentially

exponential speedup over the at least Ω(d) classical query complexity to learn

the gradient. In the case that one has access to a probability oracle, a number

of oracle calls scaling as O(
√

d/ε) must be made.

For some functions, it is possible to classically compute f (x) to precision

δ with gate complexity poly(d, log(1/δ)). This can be turned into a quantum

circuit U f with a comparable gate complexity. For other functions, computing

f (x) may be much harder. For example, if f (x) is defined as the output prob-

ability of a quantum circuit described by d parameters, then computing f (x)

to precision δ might be difficult for a classical computer, and even on a quan-

tum computer, it generally requires O (1/δ) complexity. However, in this case,

implementing a probability oracle is simple, leading to the motivation for the

work of [430].

Caveats

Jordan’s formulation of the algorithm [587] appears to offer a large quantum

speedup by accomplishing in a single quantum query what requires Ω(d) clas-

sical queries. However, this requires a fairly strong access model where one

has access to an oracle for computing the value of the function f to high preci-

sion. For an exponential speedup to be possible, precision εmust be achievable

at cost polylog(d, 1/ε). Unfortunately, for actual functions f that show up in

applications where this is possible, it is often the case that one can classically

compute the gradient much more efficiently than simply querying the value

of f at many nearby points. Indeed, the “cheap gradient principle” [457, 163]

asserts that (in many practical situations) computing the gradient has roughly

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.022
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.47, on 12 Sep 2025 at 19:43:17, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.022
https://www.cambridge.org/core

19. Quantum gradient estimation 279

the same cost as computing the function itself. This principle limits the scope

of application of the large speedup of Jordan’s algorithm.

By contrast, [430] shows how the gradient can alternatively be computed

using a probability oracle rather than an evaluation oracle, which makes the

algorithm compatible with computing gradients in the setting of variational

quantum algorithms. However, O(
√

d/ε) calls to the oracle are required, which

represents a (much less dramatic) quadratic speedup compared to the strategy

of using the probability oracle to estimate f (x) at many nearby points and

subsequently estimating the gradient classically.

Example use cases

• Convex optimization: In convex optimization, local optima are also global

optima, and thus a global optimum can be found by greedy methods such

as gradient descent. When one can efficiently compute the function f much

more cheaply than computing its gradient, the quantum gradient estimation

algorithm can give rise to a speedup over classical optimization procedures

[47, 245].

• Pure state tomography: Given access to a unitary U that prepares the pure

state |ψ⟩, [49] utilizes the gradient estimation algorithm to estimate the am-

plitudes of |ψ⟩ in the computational basis using an optimal number of queries

to U.

• Estimating multiple expectation values: Amplitude estimation can be used

to estimate an expectation value to precision ϵ at cost O (1/ϵ). In [549, 49],

it is shown how the gradient estimation algorithm further allows M expecta-

tion values to be simultaneously estimated at cost Õ(
√

M/ϵ) calls to a state

preparation unitary, considered the most expensive part of the circuit.

• Computing molecular forces: While ground state energies are the object

most often studied in algorithms for quantum chemistry, other interesting

quantities such as molecular forces can be related to gradients of molecular

energies. Reference [805] studies how the gradient estimation algorithm can

be leveraged into a quantum algorithm for computing such quantities.

• Escaping saddle points: Although not the essential ingredient, the gradient

estimation algorithm was used in the algorithm of [1081] for escaping saddle

points.

• Variational quantum algorithms: Variational quantum algorithms involve op-

timizing the parameters of a quantum circuit under some cost function. The

ability to estimate the gradient of the cost function with respect to the pa-

rameters might allow acceleration of this loop.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.022
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.47, on 12 Sep 2025 at 19:43:17, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.022
https://www.cambridge.org/core

280 19. Quantum gradient estimation

• Financial market risk analysis: In [950], the quantum gradient estimation

subroutine was utilized to compute the Greeks, parameters associated with

financial market sensitivity.

Further reading

See [430] for a full discussion of the state of the art with respect to the quantum

gradient estimation algorithm.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.022
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.47, on 12 Sep 2025 at 19:43:17, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.022
https://www.cambridge.org/core

