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Abstract 

The research paper delves into the importance of point cloud data obtained from 3D scanning technology 

ensuring quality control in industrial settings. It presents a new heuristic approach that utilizes the wavelet 

algorithm and other techniques to detect and characterize induced forming defects accurately. The proposed 

approach offers more flexibility, ease of use, and better results based on descriptive and prescriptive analyses 

from DRM. The results demonstrate that the wavelet algorithm was successful in identifying and 

characterizing forming defects in point cloud data. 
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1. Introduction 

1.1. Motivation 

The validation of composite parts is a critical aspect of the manufacturing process, ensuring that the 

designed geometries meet standard quality standards and performance criteria. Non-destructive testing 

techniques are vital in validating composite parts without compromising their integrity. Methods such as 

ultrasonic testing, X-ray radiography, and thermography are employed to identify induced defects, 

delaminations, or voids that might be present within the material. This paper presents a comprehensive 

study on detecting the induced forming defects such as bridges, wrinkles and gaps using point cloud-based 

(PC) data (Eberly, 1999).  The paper proposes a novel heuristic approach that utilizes wavelet analysis to 

enhance the precision and efficiency of defect identification in PC datasets (Liu et al., 2021). The wavelet 

approach is preferred over existing methods in terms of versatility, computational efficiency, and 

performance across different fields such as image analysis, pattern recognition and standard signal 

processing. This study features relevant literature and proposes an innovative heuristic approach inspired 

by Zhang and Chen (2022). The study features descriptive and prescriptive components, with a review of 

relevant literature and the proposal of the innovative heuristic approach (Ying and Chen, 2013). This 

research has taken a multi-step approach to the analysis, including data preprocessing, wavelet 

transformation, thresholding, clustering, and visualization. This approach confirm the effectiveness of the 

wavelet algorithm in detecting defects, with a high level of accuracy and reliability in detecting other types  
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of defects, including scratches, dents, and cracks (Saleh et al., 2020; Stopjakova et al., 2005; Shi et al., 

2004). An essential contribution of the research is incorporating a clustering algorithm, which not only 

aids in defect identification but also plays a crucial role in detecting and analyzing gaps within the scanned 

PC data (Bártová and Bína, 2019). The clustering algorithm employs a modified DBSCAN algorithm, 

which is effective in identifying gaps in the point cloud data, leading to a more comprehensive and accurate 

analysis of the data (Bártová and Bína, 2019). Overall, this innovative approach represents a significant 

advancement in the field of point cloud analysis, with the potential to have a substantial impact on design 

methodology and design for manufacturability.  

1.2. Background 

Composite materials have gained immense popularity and high demand for several decades due to their 

remarkable versatility, durability, and suitability for various industrial applications (Saeed et al., 2022a; 

Saeed et al., 2022b; Boisse, 2015). In this research, the double dome geometry is considered due to its 

intricate curves and complexities during forming. However, during the forming process of these 

materials, they often encounter unequal stress and pressure, resulting in various types of defects on their 

surface such as wrinkles, bridges, gaps illustrated schematically in Figure 1 (Boisse et al., 2018). 

Wrinkles appears on the surface of the formed part when there is insufficient pressure or tension during 

the forming process. Bridging appears when the geometry has a curved shape and due to additional 

stress the material is unable to cover the radii of the geometry. Thus, resulting in larger area/void 

between the material and the geometry. Whereas the gaps appear where the material is not fully 

consolidated during forming. However, with the latest design and technology advancements, these 

defects can be mitigated to deliver high-quality, high-performing composite products (Amri et al., 2017; 

Heslehurst, 2014; Huang, 2013; Hussain et al., 2014). To ensure quality control and prevent costly 

repairs and downtime, identifying and addressing these defects is crucial (Jovančević et al., 2017). 

Various data analysis methods can be employed to detect and analyze these defects, depending on the 

specific approach used for defect detection on the material's surface (Ying and Chen, 2013; Bártová and 

Bína, 2019). Wavelet analysis is a mathematical tool that can analyze signals and images at different 

scales and resolutions (Saleh et al., 2020). It is an effective method for detecting and characterizing 

forming defects in composite materials, providing precise results and improving the efficiency of quality 

control processes (Yang et al., 2022). 

 
Figure 1. Common types of defects present in the formed part 

On the other hand, clustering algorithms group similar data points together to identify patterns and 

outliers in the data (Bártová and Bína, 2019). This feature enables the identification of areas that require 

further inspection and enhances the accuracy and efficiency of defect detection and analysis. Overall, it 

is essential to employ advanced techniques such as wavelet analysis and clustering algorithms to ensure 

quality control and prevent costly repairs and downtime in industrial settings (Márquez, 2013). These 

methods can significantly improve the performance and longevity of composite materials, making them 

more reliable and suitable for various industrial applications (Simon, 2011).  

Detecting the induced forming defects poses several challenges due to the nature of the geometry, 

processes and the material. Forming tools usually have complex geometries which include intricate 
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curves, shapes and structure. It is essential to detect minor defects in these geometries using advanced 

inspection approaches to ensure reliability. Another aspect to reliability is integrating the defect detection 

framework seamlessly in different manufacturing process to avoid any inefficiencies in the production. 

These inefficiencies could also include material variability because during composite forming process 

certain properties such as fiber orientation and alignment and matrix content can affect defect creation. 

Based on these challenges PC data has become increasingly important in a wide range of fields, including 

3D modelling, object detection, and inspection, due to its ability to provide an exact representation of 

surfaces in the form of a 3-D geometry (Liu et al., 2021; Jovančević et al., 2017). The key research question 

is In what way can point cloud-based inspection be effectively used to detect induced forming defects. 

However, the presence of defects or anomalies in point clouds can significantly impact the quality of the 

data and lead to potential issues in design processes (Ma et al., 2023). In this research paper, we present a 

comprehensive method for detecting three specific types of defects in point clouds as illustrated in Figure 

1, namely "wrinkles," "bridging," and "gaps". This approach combines various techniques, each designed 

to address specific defect types and strategically employed to complement one another, optimizing the 

overall detection process. To detect the "wrinkles" defect, this research employs the wavelet algorithm, 

which offers a robust approach for analyzing the frequency content of signals, making it an ideal approach 

for identifying defects in scanned PC data. To detect the "bridging" defect, this research compares the 

scanned PC with an original simulated or CAD data, which allows to identify anomalies that may be 

present due to deviations from the original design. In addition to this comparison, KD-tree analysis and 

statistical methods are utilized to identify and extract instances of this defect. One of the most significant 

challenges in point cloud data processing is the detection of "gaps", which can significantly impact the 

data quality. To address this, clustering algorithm is considered that groups data points spatially close and 

structurally similar (Bártová and Bína, 2019). In the context of gap detection, the clustering algorithm 

helps identify clusters of points with significant spatial discontinuities, indicating the presence of gaps in 

the PC. By integrating a clustering algorithm for gap detection, the detection enhances the overall 

effectiveness in identifying and characterizing defects using scanned PC data, providing a comprehensive 

solution for quality control and manufacturing processes. In summary, the approach mentioned in this 

research is limited to the composite parts using PC data comprehensively and effective solution that 

combines various techniques strategically to identify and characterize different types of anomalies. 

1.3. Literature review 

Defect detection in point cloud data is a subject of extensive research, and numerous techniques have 

been explored to address this issued (Belnoue et al., 2017). One of the most popular approaches is 

filtering, which removes unwanted noise and enhances the quality of the data (Zhang et al., 2016). 

Another common technique is segmentation, which partitions a point cloud into smaller, more 

manageable subsets (Zhang et al., 2016). Feature extraction is also widely used to extract specific 

information from the data (Ying and Chen, 2013). Despite these well-established techniques, existing 

approaches often need to be revised in accuracy, robustness, and computational efficiency. As a result, 

this research has explored various other methods to tackle this issue as illustrated in Figure 2. Structural 

approaches such as Auto-correlation, Co-occurrence matrix, and Spectral Approaches like Gabor 

transform, and wavelet transform have been employed to capture the structural properties of the data 

(Yang et al., 2022; Ying and Chen, 2013; Zhang et al., 2016). Model-based approaches rely on pre-

defined models to detect defects in the data. Learning approaches utilize machine learning algorithms 

to learn from the data and identify anomalies automatically (Simon, 2011; Stopjakova et al., 2005). 

Structural approaches combine multiple techniques to create a comprehensive approach for detecting 

defects. Hybrid approaches combine two or more techniques to achieve more accurate and robust results 

(Saleh et al., 2020). Finally, motif-based approaches focus on identifying recurring patterns in the data 

to detect defects. Overall, the field of defect detection in point cloud data is a complex and challenging 

area of research that requires careful consideration of various factors such as accuracy, robustness, and 

computational efficiency. While existing techniques have made significant progress in this area, there 

is still much work to be done to develop more effective and efficient methods for detecting defects in 

point cloud data (Ma et al., 2023; Márquez, 2013). 
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Figure 2. General approaches to defect detection; source automated fabric defect detection 

Motif-based approaches for defect detection often use thresholding techniques to segment images and 

identify regions of interest. These techniques rely on statistical measures such as data distribution to 

determine appropriate thresholds. Such measures are commonly used in image processing applications 

(Yang et al., 2022; Chrysochoos and Louche, 2000). Additionally, Cao et al. (2020) proposed a 

similarity measure that uses pixel intensity, which can be compared against a hard-coded threshold to 

determine the similarity between image regions. Whereas, traditional motif-based approaches have 

relied on threshold measures, often failing to detect defects accurately. Artificial intelligence has solved 

this problem, but methods such as convolutional neural networks (CNN) are limited by their need for 

extensively labelled data and their inability to handle varying surface geometries (Heslehurst, 2014). 

The wavelet detection algorithm was developed to overcome these limitations. This flexible algorithm 

considers the surrounding geometry and can highlight anything that stands out, making it an efficient 

and precise defect detection tool (Stopjakova et al., 2005). Unlike traditional methods, the wavelet 

detection algorithm doesn't consider surface geometry, including sharp curves, as defects, making it 

even more efficient (Ying and Chen, 2013). The wavelet detection algorithm's accuracy, flexibility, and 

efficiency make it an ideal choice for defect detection in various industries (Shi et al., 2004). From 

design to manufacturing, the wavelet algorithm can help ensure the quality and safety of products. 

Upon conducting an extensive literature review on gap detection within point clouds, the current 

research in this field primarily focuses on addressing gaps in structural data. Studies rarely consider gap 

detection as a separate and crucial aspect of point cloud analysis. When gap detection is discussed, it 

typically involves creating triangular meshes to identify the boundaries of the gaps within a dataset. To 

address this gap in this research, various techniques to identify and assess gaps within point clouds are 

considered. One such technique is the density-based approach, which employs a nearest-neighbor 

technique within a kd tree (Eberly, 1999). This approach calculates the average density of the point 

cloud and using it as a threshold to compare against the points within the entire point cloud within a 

certain radius (Jones, 1995). This approach has emerged as a fundamental method for gap detection 

within point clouds, forming the foundation of the methodology outlined in this paper. In addition to the 

density-based approach, K-means clustering is explored, a widely used method for partitioning data into 

clusters (Lee et al., 2023). 

2. Methodology 
This section follows a practical and systematic design research technique for investigating defect 

detection in a formed part using point cloud-based inspection and wavelet algorithms. This research 

follows the Design Research Methodology (DRM) by Blessing and Chakrabarti (2009) over other 

frameworks because it provides a thorough and structured approach to planning and executing 

investigations that involve different research methodologies tied to this work. Within the broad DRM, 

seven different types of design research are suggested by Blessing and Chakrabarti (2009) and this 

research follows the review-review-comprehensive-initial approach as illustrated in Table 1. This 

research follows the comprehensive literature review and highlights the gaps in the inspection methods 

used to detect the defects. Based on the comprehension of the research, another comprehensive literature 

review is carried out to find the existing methods to inspect the defects in a formed part. Based on the 

detailed research review, the initial framework is proposed, tested and evaluated on ten different formed 

parts for a concrete conclusion. 
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Table 1. Design research project types and their primary objectives (Blessing and Chakrabarti, 2009) 

 

2.1. Research Clarification 

The Design Research Methodology's Research Clarification (RC) phase involves conducting a review 

of recent literature to clarify the research context, identify any existing challenges, and establish a solid 

foundation for the research as explained in Section 1.3. In this research, the RC phase focuses 

specifically on addressing the first part of RQ - " In what way can point cloud-based inspection be 

effectively used to detect induced forming defects?" which is to carry out the literature review on the 

existing inspection approaches to detect defects. To answer this part of the question, the review examines 

various algorithms that support the defect detection in design, including their accuracy, efficiency, and 

effectiveness. Moreover, the RC highlights the importance of defect detection in the early phase of 

design during forming process and can help minimize waste and improve product quality. 

2.2. Descriptive Study 1: understanding the literature and identifying gaps 

Defects in manufacturing processes are a common occurrence that can cause significant issues for 

processes (Marani and Campos-Delgado, 2023). Unfortunately, detecting these defects can be 

challenging until the process is complete and all the parameters have been assessed. To address this 

challenge, the research addresses the second part of the RQ, "How point cloud-based inspection can 

assist in detecting defects in a formed part?", which is focused on the effectiveness of PC-based 

inspection for defect detection in forming processes, the Descriptive Study 1 (DS-I) has been designed 

to follow the RC comprehensively. However, there is a solution: point cloud-based inspection for defect 

detection in forming processes.  

After conducting a comprehensive review of the current literature on defect detection approaches, this 

research has identified certain inherent limitations of existing methods and established the prerequisites 

for an effective and precise techniques. The analysis has highlighted the need for a robust and accurate 

method that can handle intricate and irregular forming defects with ease (Jovančević et al., 2017; Lee et 

al., 2023; Marani and Campos-Delgado, 2023) that cannot be assessed through other inspection methods 

such as eddy current, xrays and thermography. The investigation results indicate that while statistical and 

structural approaches are precise to the geometry of the dataset, they are less adaptable when applied to a 

diverse range of datasets (Ma et al., 2023). Furthermore, they are sensitive to data quality and often suffer 

from overfitting issues, which reduces their effectiveness. Several approaches, such as Machine Learning 

and Deep Learning, have been predominantly tested on pictorial representations, leading to qualitative 

accuracy. However, these models require significant amounts of labelled training data, often challenging 

to acquire (Márquez, 2013). Additionally, the training and deployment of machine learning models 

necessitates substantial computational resources, including robust hardware and memory (Zimmerling et 

al., 2020). Therefore, the literature recommends the development of a robust and accurate technique that 

can handle intricate and irregular forming defects with ease while being adaptable to diverse datasets. The 

proposed approach should address the limitations of existing methods and ensure that the defect detection 

process is effective and precise (Zimmerling et al., 2022). 
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Regarding identifying defects, some methods use complex thresholding techniques capable of detecting 

both significant and minor defects with greater accuracy (Zhang et al., 2016). However, these techniques 

often focus solely on detection and fail to consider the critical aspect of quantifying the precise extent 

of the defects (Lee et al., 2023). This can lead to the rejection of entire components, even when only a 

tiny portion of the component is defective. One defect in a formed part that needs to be widely discussed 

in the literature is 'bridging,' which refers to the formation of tiny connections between different parts 

of a component during the forming process. The available techniques for identifying bridging rely on 

manual inspection, which is often highly unreliable (Croft et al., 2011; Senthil et al., 2013). The results 

can vary significantly depending on the data and the inspection's skill level, leading to inconsistencies 

and inaccuracies (Woigk et al., 2018; Zöcke, 2010). To overcome these issues, an in situ real-time 

approach has been proposed to detect defects in the PC (Woigk et al., 2018; Zöcke, 2010). This method 

involves capturing data during the manufacturing process and analyzing it in real-time to identify defects 

as they occur. By doing so, it is possible to detect defects more accurately and quickly, minimizing the 

risk of rejections and improving overall quality control. After a thorough review on defect detection in 

point clouds, 'gaps' have emerged as a common defect within point cloud data caused during forming. 

Current methods lack clarity in explaining and dealing with these gaps. To address this gap, this research 

propose clustering methods to categorize similar defects within point clouds, making them easier to 

understand and manage. By focusing on defect-specific characteristics, clustering can lead to more 

precise and adaptable detection techniques, improving the accuracy and consistency of identifying and 

addressing gaps in point clouds. 

2.3. Prescriptive Study: proposed framework 

The prescriptive study (PS) is the third stage of the design research methodology, following DS-1, as 

outlined by Blessing and Chakrabarti (2009). The focus of the PS stage is to follow the comprehension-

based facilitation in decision-making during the early stages of design and manufacturing. The PS stage 

builds on the previous stages, RC and DS-I. 

The proposed approach for identifying defects is a highly advanced and nuanced method based on physical 

properties as illustrated in Figure 3. The approach incorporates input properties into a hybrid algorithm 

that combines spectral and statistical approaches, which are precisely fine-tuned to a point cloud to ensure 

accuracy. This algorithm is highly generic and designed to detect any geometry that stands out, whether 

wrinkles or carbon fibre threads. The proposed algorithm overcomes the limitations of spectral approaches, 

which often require graphs, by breaking down the 3D data into 2D slices. 

Additionally, the algorithm's most notable feature is its ability to detect defects on multiple scales, 

providing highly detailed results for various applications. In the case of the 'Bridging' defect, the proposed 

algorithm relies on the simulated or CAD file of the ideal geometry. By aligning the defected PC and the 

CAD geometry, the defected region can be classified as the 'bridged region.' This method also incorporates 

statistical techniques to improve its results further and complement the 'Wrinkle' wavelet algorithm, 

enhancing the results even further. It ensures that major and minor defects are detected with greater 

accuracy. The DBSCAN clustering technique has emerged as an efficient and effective approach for 

handling large datasets (Bártová and Bína, 2019). One of its key advantages is using density-based 

thresholds, which are more effective than other clustering methods such as K-means. Determining the 

number of clusters can be challenging with K-means clustering, often requiring the elbow method. 

However, this approach tends to be time-efficient when dealing with extensive datasets. In contrast, 

DBSCAN clustering utilizes density-based thresholds, significantly improving its efficiency and accuracy. 

Additionally, DBSCAN clustering is adaptable, making it an ideal approach for a wide range of 

applications. 

 
Figure 3. Proposed flowchart to detect the defects 
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2.4. Descriptive Study 2: evaluating the proposed approach 

The final stage of the Design Research Methodology is the Descriptive Study 2 (DS-II), which involves 

the validation assessment of the support created in the PS (Blessing and Chakrabarti, 2009) as shown in 

Figure 4. This stage presents promising techniques that confidently target the defects on the simulated 

and the formed parts and segment them, accordingly, surpassing any other existing method in terms of 

precision and accuracy by mapping them. This research iteratively tested the proposed framework on 

different parts for double dome geometry formed under different process and material parameters. These 

formed parts are compared with the simulations to have reliability. The proposed wavelet algorithm at 

the core of this approach is evaluated through a series of meticulously designed experiments conducted 

on diverse point clouds as explained in Figure 3. The results of these trials demonstrate the effectiveness 

of the proposed wavelet algorithm in detecting and segmenting defects, making it an indispensable tool 

for handling a wide range of real-world scenarios. 

2.4.1. Wrinkles 

To identify wrinkles and defected points precisely and comprehensively within the data (Boisse et al., 

2018), this research has implemented the robust Wavelet Algorithm, primarily used for standard signal 

processing. Although typically used for 2D signals, the algorithm is tailored to the 3D PC data, resulting 

in an effective approach as shown in Figure 5. 

 
Figure 4. Real part that has the defects in comparison with the point-cloud image 

The process segments the point cloud into 2D planes using the Wavelet Algorithm. This simplifies the 

representation, then compared to the original signal to identify deviations beyond a threshold. Statistical 

techniques like mean and standard deviation play a essential role, resulting in highly accurate identification 

(Kim et al., 2010). The holistic algorithm is unique in that it not only integrates the Wavelet Algorithm 

but also incorporates various techniques based on the physical properties of the defects. This approach 

helps identify regions based on the type of defect they exhibit. The algorithm uses the multi-resolution 

capabilities of the Wavelet Algorithm and physical property-based classification to differentiate between 

normal and defective regions. Systematically dividing 3D point cloud data into 2D slices along each axis, 

the algorithm inspects the entire point cloud for irregularities. It also uses the Wavelet Algorithm's multi-

resolution capabilities to identify fine-scale details and irregularities within the point cloud data. The 

approach offers flexibility to adjust the level of decomposition and variable thresholds inherent in the 

Wavelet Algorithm, resulting in highly accurate defect identification. 

 
Figure 5. Original point cloud using cloud compare 

2.4.2. Gaps 

The gap detection (Boisse et al., 2018) method is an essential tool for precise 3D spatial analysis within 

intricate point cloud datasets as illustrated in Figure 6. The authors use the DBSCAN algorithm to cluster 
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nearby data points and identify isolated regions as noise. They transform the raw data into a structured 

NumPy array format for efficient data handling. The DBSCAN algorithm relies on two crucial parameters, 

epsilon (eps) and minimum samples (min_samples), to determine the radius for point clustering and the 

threshold for recognizing dense clusters. A KDTree is incorporated for optimized computational 

efficiency. The method systematically analyses each data point's neighbourhood to assess local density. 

The DBSCAN label assigned to each point is evaluated, and the local point density is compared to a user-

defined density threshold (Margret et al., 2021). The method yields a comprehensive compilation of gap 

points, indicating gaps within the point cloud dataset, and provides valuable support for defect 

characterization and in-depth analysis. The methodology is highly efficient and customizable to suit 

specific analytical objectives. 

 
Figure 6. Detected gaps on original point clouds 

2.4.3. Bridging 

During the process of forming composites, a defect known as bridging can occur as shown in Figure 7. 

When this happens, the surface of the material being formed does not adhere properly to the tool being 

used, resulting in a measured distance between the surface and the tool (Boisse et al., 2018). A bridging 

defect happens when the fibres or other reinforcing materials do not take on the desired shape as 

illustrated in Figure 7. This results in an unsupported area or gap between adjacent layers or within the 

composite structure. Bridging defects appear as low-density regions or irregular surface topology, 

indicating gaps or voids. Significant deviation may indicate their presence with a distance that 

determines the conformity of the surface, which is an essential factor in the overall quality of the formed 

product. Bridging is caused by the friction forces that prevent the material from sliding correctly, 

combined with high vacuum pressures that increase the forming force. These factors result in a defect 

that can compromise the structural integrity of the composite. 

 

 
Figure 7. Illustration of bridging defect in 3D formed part 
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The proposed algorithm for defect detection is based on a research paper and involves six fundamental 

steps (Zhang et al., 2016), 

• Select three or more corresponding points with defects and the ideal point cloud from the PC. 

• Employ the Singular Value Decomposition (SVD) technique to generate an initial 

transformation matrix to align the two-point clouds. 

• Refine with the Robust Iterative Closest Point (ICP) algorithm to enhance the alignment 

accuracy. 

• Project the ideal and defected area in the PC dataset onto the x-y plane and isolate points below 

or above the defected PC dataset. 

• Use the K Nearest Neighbours (KNN) concept to identify the three nearest points in the ideal 

PC corresponding to each point in the defective point cloud. 

• Calculate the Z-axis differences between the two-point clouds to detect defects in 3D-formed 

parts accurately. 

The proposed algorithm provides a reliable and robust method for defect detection. 

3. Validations and discussion 
The algorithms proposed for the particular problem have undergone rigorous and detailed validation, 

including multiple steps and iterations. These algorithms were carefully designed to address the 

challenges of the problem at hand and were validated using original PC data obtained from formed parts. 

The experiments conducted to evaluate the performance of these algorithms were carried out in a 

simulated practical setting, making it possible to assess their effectiveness in real-world scenarios as 

illustrated in Figure 8. To ensure that the proposed algorithms met the highest standards of accuracy and 

reliability, a quantitative analysis was conducted. This analysis involved comparing the results obtained 

through the proposed algorithms with the ground truth values, allowing for a high specificity level. A 

Statistical Outlier Filter was also applied to the algorithms to ensure they could handle noise in the data. 

This filter ensured the algorithms could deliver consistent and accurate results even in noise. 

 
Figure 8. Comparison of defects in point cloud based scanned data 

The proposed algorithms' robustness is a testament to their ability to provide accurate and reliable 

results, making them ideal for practical applications. Furthermore, these algorithms were tested on ten 

formed parts of dataset to ensure their efficiency and scalability in real-world scenarios. The results 

obtained through these experiments indicate that the proposed algorithms perform exceptionally well 

and can be considered a promising solution to the problem at hand.Overall, the validation process of 
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these algorithms was thorough, and the results obtained are promising. These algorithms have been 

designed to deliver robust and reliable results in real-world scenarios, making them an ideal solution for 

practical applications. 

The primary objective of identifying, classifying and detecting these defects techniques is to provide a 

cost-effective method while preserving the original properties of the double dome research geometry. 

In this regard, a statistical methods have been developed to support Figure 8, which can detect and 

classify defects without causing irregularities in the evaluation as illustrated in Table 2. However, the 

effectiveness of these techniques is significantly challenged when dealing with composite materials 

characterized by complex geometries, inhomogeneities, and intricate structures. 

Table 2. Qualitative and quantitative analysis of the formed part 

DEFECT COLOR QUALITATIVE QUANTITATIVE 

WRINKLE GREEN 3.2% 35107 

BRIDGING RED 23.9% 360734 

GAPS BLUE 0.07% 1107 

 

Notably, the results of these approaches are based on four likely outcomes, collectively referred to as 

the confusion matrix of detection. These include true positives, false positives, and false negatives. True 

positives indicate that the method accurately detects defects in the double dome geometry, while false 

positives indicate that the method identifies defects that do not exist. True negatives denote that the 

method correctly identifies the absence of defects, whereas false negatives indicate that the method fails 

to detect the presence of defects despite their existence. Figure 9 illustrates the confusion matrix, which 

displays the algorithm's performance in detecting defects. The wrinkles were manually extracted from 

the point cloud and used as a benchmark to assess the algorithm's accuracy. The results demonstrate a 

high level of accuracy, as evidenced by the True Positive and True Negative values. It's worth noting 

that the accuracy of the results is expected to be more qualitative despite the quantified values. 

 
Figure 9. Confusion matrix of defects in PCD 

4. Conclusion and outlook 
The research paper outlines a novel and highly efficient approach for detecting forming defects in point 

cloud data. The proposed wavelet algorithm has demonstrated exceptional results in identifying and 

characterizing wrinkles as a defect with high accuracy. The algorithm can identify high and low wrinkle 
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defects, exceeding the performance of other existing approaches. This makes it a reliable solution for 

quality control processes in forming. Furthermore, the algorithm can accurately detect the 'bridging 

defect' and refine wrinkle results to increase detection accuracy further.  

This research significantly contributes to advancing the field of point cloud-based quality control in 

forming processes, providing a promising solution for manufacturers to improve their quality control 

processes and reduce waste. Although the algorithm's lack of quantitative accuracy is noted, the research 

proposes an alternative approach to supplement it. The proposed algorithm can be optimized for real-

time applications, and an automatic method to vary the thresholds can be introduced in future research 

to enhance the algorithm's performance. 

Overall, the proposed wavelet algorithm is highly effective for detecting forming defects in point cloud 

data. Its ability to accurately identify and characterize wrinkles and other defects in forming processes 

makes it a valuable tool for quality control processes in manufacturing. The research provides critical 

insights for future research and development in point cloud-based quality control, and the proposed 

algorithm can serve as a foundation for further innovation in the field. 
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