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FINITE DIMENSIONAL REPRESENTATIONS
OF Uy(d (2)) AT ROOTS OF UNITY

XIAO JE

AsstracT.  All finite dimensional indecomposable representations of Ui(dl (2)) at
roots of 1 are determined.

1. Introduction. Quantum group or quantum enveloping algebraUq(g) isacertain
(Hopf algebra) deformation of the universal enveloping algebraU(g) of acomplex sim-
plefinite-dimensional Lie algebra g, introduced by Drinfeld [Dr1], [Dr2], Jimbo [Ji] and
Kulish-Reshetikhin [Kr] in their study of the quantum Yang-Baxter equation. The sim-
plest and most important example is that of the simple Lie algebra gl (2). An important
problem is to describe finite dimensional representations of the algebra Uq(g). Now it
iswell-known that: (1) when gisnot aroot of 1 the (finite dimensional) representation
theory of Uy(g) is essentially the same asthat of U(g), namely representations of Ug(g)
are deformations of representations of U(g), so that the latter are obtainedasq — 1
[Lu], [Ro]; (2) whenqgisaroot of 1, then the situation changes dramatically and finite
dimensional representations of Uq(g) are not completely reducible in general, however,
al simple modules of Uq(sl (2)) are classified (for example, see[DCK]); (3) avery pro-
found application of the representation theory of Uq(sl (2)) isthat Reshetikhinet al. (see
[KiR], [RT1], [RT2], [KM]) construct some new topological invariants of compact ori-
ented 3-manifolds and of framed links in those manifolds. The aim of the present noteis
to determine all finite dimensional restrictable modules of Ug(sl (2)). Thanksto [RT2],
all projective and injective objectsin the category of finite dimensional restrictable mod-
ules of Uq(sl (2)) are implicitly given. Therefore, we can apply the BGG philosophy
[BGG] to reduce the problem of classifying all restrictable modules of Uq(sl (2)) into
that of modulesover afinite dimensional algebra. In our situation, it is not difficult to see
that the corresponding algebra is just one of tame representation type. It is interesting
to us that this gives us a close relationship between the restrictable representations of
Uq(sl (2)) and those of some tame quivers and their trivial extensions (see [Ri], [Hal).
Theapproachin thisnotenot only allowsusto construct all finitedimensional restrictable
modules of Uq(sl (2)) , but also to arrive at a position to understand their category com-
pletely; for example, we provide an Auslander-Reiten formulato compute Extbq(g @G )
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2. Simplesand projectives. We mainly adopt the notationsasin [RT2]. For given
g € C, the quantum group Uq(sl (2)) is the associative algebra over the cyclotomic field
Q(qY/?) with 4 generators K, K—1, X, Y subject to the following relations:

K2 _ K—Z
(2.1.2) XK = q"Y2KX, YK =qg¥?KY, KK 1=K K=1.

Since we want to consider the restrictable representations of Uq(sl (2)) at q aroot of
1 lett = exp(m/—_lm/ 2r), where m, r are coprime integers with odd mand m > 1,
r > 2,q = t*. We define the quotient algebra Uy (sl (2)) of Uq(sl (2)) © Q(t) over the
cyclotomic field Q(t) with generators K, K=, X, Y subject to the following relations

K2 — K2
(2.1.4) XK =t72KX, YK =1tKY, KK1=KIK=1
(2.1.5) K¥=1 X=Y=0

where o' = t = 1. A representation of Uq(sl (2)) over Q(t) is called restrictable if
it satisfies the relations (2.1.3), (2.1.4) and (2.1.5). The algebra Uy(sl (2)) also has the
structure of a Hopf algebra; the action of comultiplication A, counit e and the antipode
w are given by the following formulas:

(216) AX)=X@K+K1eX AY)=Y®K+K1oY, AK)=K®K
p(K) =K, u(X) ==X, p(Y) = —t2Y
eK)=1 eX)=¢(Y)=0.

However we don’'t need to use the Hopf structure.
The following notation is often used in consideration for representations of quantum
groups
2" — 2" sin(rmn/r)
[n] = = =
t2—t sin(mm/r)

and [n]! = [n][n—1]-- - [1].

Fora € {1,—-1,v/—1,—v/—1}and 0 < i < r — 1, we definea (i + 1)-dimensional
Uy(sl (2))-module Vi(«) as follows. This module has a basis €)(«), €,(a), ..., €(c) and
the actions of the generators are given by the following rules

(2.1.7) Ke (o) = at~2'd ()
Xel(@) = o?[n][i + 1 — n]é,_;(c)
Ye () = €y(a)

wheren = 0,1,...,i and € ,(a) = d,,(@) = 0. It is easy to see that V/(e) for
0 <i < r—1isasmple Ut(sl (2))-modu|e. It is well-known now that all
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{Vi(@) | « € {1,-1,v/=1,—v/~1}and 0 < i < r —1} form acomplete non-redundant
list of simple Uy(sl (2))-modules over Q(t).

Let U and Uy be the subalgebras of Uy(sl (2))~generated by K, X and K, Y respec-
tively. We also have the VermamodulesW (o) and W (o) which are free over U;” and Uy
respectively, where o € {1, —1,v/=1,—v/~1} and 0 < j < r — 1; s0 dimgg) Wi(e) =
dimgy Wi(a) = r. They are given by the following rules:

W(a):  Ké(a) = at~"d\(a)
(2.1.8) Xeh(@) = o?[n][j + 1 —n]e, ,(a)
Ye() = €,,(e)

Wi(a):  Kfl(a) = atT*f)()
(2.1.9) Xfl(a) = 11, ()
Yfi() = o[n][j +1—nlf) (o)

wheren=0,1,...,r — land f/(a) = &(a) = 0,€_,(a) = f1, () = 0.
We have the following extensions:

(2.1.10) 0— V' I2(at™) — W(a) — VI(a) — 0
0— VI72(at") — W(a) — Vi(ar) — 0.

It is obvious that
W) » Wa) ~ V7 a).

It is convenient to use a graphical representation for the structure of Ut(sl (2))
-modules. Every vertex stands for a vector from our chosen basis; arrows and dotted
ones show the actions of X and Y respectively; more precisely, an arrow may be labeled
by a scalar corresponding to the action of X or Y and a vertex labeled by its weight (i.e.
eigenvalue for K); the absence of arrows coming out of a vertex means that the corre-
sponding vector is annihilated by one of X or Y. The example below isfor r = 5.

t2 t4 t
@y My v
| | Tv
2 J 12103 T |
Vi | |
Y ey @,
3 TV }VZ(tS)

\j
[4, -2,
|

W!(l)
VA1) = WA(D)
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LEMMA 2.1.11.  V'~%(a) ~ W(«) isa projective Uy(sl (2))-module.

PrROOF. AssumeM tobeafinite dimensional Ut(sl (2))-moduleand asurjectivemor-
phism F:-M — V'~Y(a). Then M has a decomposition M = @,A M,, where My, =
{x € M| (K= X)"x = 0for somen > 0} (we don't need to assume that M has
a decomposition into a direct sum of its weight spaces under K-action). Takex € M
such that Fx = €;Y(«), then X € M1 by (2.1.8). Because the maximal common
factor of (T — at™ )" and T¥ — 1is T — o™, Kx = at™Ix. Takey = Y ~1x; then
Fy = Y IFx = Y&} (a) = €-3(a), Yy = 0and Ky = KY"Ix = at~(Vy by
(2.1.4); dso Ke~}(a) = at~~De}(a). Therefore there exists a unique Uy (sl (2))-
morphism G: V'~}(a) — M such that GE~}(a) = y since W ~1(«) is a Vermamodule.
So F is a split surjective morphism, i.e., V'~1(«) is a projective Ut(sl (2))—module. ]

Also V'~X(«) is an injective Uy(sl (2))-module by a similar discussion. We denote:
P () = VI~ Y().

2.2. The indecomposable extensions of the Verma modules W («) for j # r — 1, con-
structed in [RTZ2], are fundamentally important to generate other modules. For any 0 <
j < r—2wedefinethesemodules, denotedby P"~1~2(a), by thefollowing rules. Thebasis
of P=I=2(ar) is {bly"%(a), ah 7 ¥(ar), n = 0,...,r —j — 2, and eh(a), fi(a), n = 0,...j}
and the actions of K, X, Y are given by the following rules:

(2.2.1) Kbl 1=2(ar) = at™ 1727200 1=2( )

Xof, 17%(cr) = 2[n][r —j — 1 — nlb[ 7 %(e) + & %(a)
Yb17%(a) = b} (@)

n=0,....,r—j—2

Kfl(c) = at " *2f)(cr) Kel(a) = ot™2"d (a1)
Xfi(e) = fl,1(c) Xeh () = o2 [n][j + 1 — nle,_(e)
Yfi(@) = 22 [nlfj + 1 — nlfl_ () Yeh() = €,,4(e)
n=0,...,] n=0,...,j

Ka,rfjfz(oc) — atr7j7272nar7j72(a)
Xal 17%(a)) = o2[n[r — j — 1 - njal ), (a)
Ya (o) = a7 (@)
n=0,....,r—j—2
where b~ =3(@) = f)(a), fl,1(@) = a77%(@), (@) = &7 0) and a7 () =
g(a). .
Obviously dimP"=2(a) = 2r.
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P2(1)

The structure of P 172(ar) (0 < j < r — 2) isindicated above (we taker = 5, = 1,

a=1).

P =2(r) has aunique maximal submoduleand the quotient of P'~2(«) modulo this
submoduleis
(2.2.3) topP 1 2(ar) = V()

and P"1=2(«r) has aunique minimal submodule, it is
(2.2.4) socP 1 2(a) = V().
We also have the following extensions

(2.2.5) 0— W(at") — P 172(q) - W 2(a) — 0
0—W(at™) — P (a) > WT2%(a) > 0

LEMMA 22.6. P1=2(a)for 0<j <r—2 a € {1,-1,v/—1,—/—1} areprojec-
tive Uy (sl (2))-modules.

PROOF.  Wewant to prove Ext'(P™~2(a), V) = Ofor any simple Uy(sl (2))-module
V. Assumethere is a non-split exact sequence

0—V—M— P 2a)—0.

Then M has a decomposition M = @yca My, whereM, = {x e M | (K = A)"x =0
for somen > 0} and A € A satisfies \* = 1. Moreover, for any x € M,, the maximal
common factor of (K — \)" with \* = 1and K¥ — 1isK — ), therefore Kx = \x,
and M = @,ca M, is the weight space decomposition. Consider M as Q(t)[K]-module
we have M = V @ PI~2(ar). We use the basic fact that non-split extensions of simple
U(sl (2))-modules must be Verma modules W or W (0 < | < r — 1). Fix the basis of
P"=2(a) asin (2.2.1). So we only have the following casesin M:

(1) 0 # Xby7%(a) — () € V; thisimplies that V = Vi(at") and M /Wi(at™) is
indecomposable. However now Vi (at") & Vj(at") is asubmodule of M/ Wi(at™")
with the quotient V'—I=2(«); thisis a contradiction to our basic fact.

(2) 0+ Yo[_I=3(c) — f)(c) € V. Similar discussion asin (1).

(3) 0+ Xel(a) € V; because dy(cr) = X0~ =%(c), this contradicts X' = 0.

(4) 0+# Yf\(e) € V. Similar discussion asin (3).
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(5) 0 # Xf(a) — dJ3() € V; thisimplies that V = V~1=%(a); now M has a
submodule N generated by f}(); but V'=i=2(ar) ® V'-1-2(«) isasubmodule of N
with the quotient Vi(at™"), a contradiction to the basic fact.

(6) 0+ Yel(a) — 8y () € V. Similar discussion asin (5).

(7) 0% Xay %) € Vor 0 Yo ZI~2 € V, contradicting X' = 0 or Y' = 0 again.

Therefore the extension is split, hence P"1?(«) is projective. .

By asimilar discussionweknow that P"~1=%(a) is aninjective Uy (sl (2))-module, too.

REMARK. Because Ut(sl (2)) isfinite dimensional over Q(t), every indecomposable
projective Ut(sl (2))—modu|e is finite dimensional; and since the tops of Pi(a) (0 < j <
r—1a € {1,—-1,v/-1,—/—1}) are just al simple modules Vi(), so Pi(a), 0 <
j<r—1,ac{1,-1,v/-1,—/—1} isacomplete list of indecomposable projective
Uy(sl (2))-modules up to isomorphism.

COROLLARY 2.2.7. Every Uy(sl (2))-module (possibly infinite dimensional) has a
decomposition into a direct sum of its weight spaces under the action of K.

PROOF.  Every Uy(sl (2))-module N has aprojective cover P— N — 0. SincePisa
direct sum of Pl(«)’s, so P, hence N, has such decomposition. ]

3. Blocksof U(sl (2)).
3.1. Before we decompose U; (sl (2)) into the direct sum of blocks (up to Morita equiv-
alence), we should introduce some basic notions widely used in the representation theory
of finite dimensional algebras (see [G] or [Ri]).

Given afinite dimensional algebra A over afield k, mod A denotes the category of all
finite dimensional A-modules. A non-split exact sequencein mod A

0—L—M-—7N—70

with L, N decomposable, is called an Auslander-Reiten sequence provided: for any mor-
phism h: L — L’ which is not asplit injection, thereexistsi: M — L’ suchthatiof = h;
and for any morphism j: N’ — N which is not a split surjection, there exists|: N’ — N
suchthat go | = j. It is easy to see that Auslander-Reiten sequences, if they exist, es-
sentially are unique for given L or given N; sowe denoteL = 7N and N = 77 L (in
fact 7 = DTr and 7~ = TrD; these functors are defined in [AR]). We say that A has
Auslander-Reiten sequences provided that for any indecomposable non-injective mod-
ule L there exists an Auslander-Reiten sequence starting with L, and to any indecompos-
able non-projective module N there exists an Auslander-Reiten sequence ending in N.
According to a famous theorem due to Auslander-Reiten [Ar], we know that A always
has an Auslander-Reiten sequence. A morphismf: M — N with M, N indecomposableis
said to beirreducibleif f isnot an isomorphism and given any factorizationf = f' o f"":

M —— N

f \ /‘ f
\%
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then f’ isa split surjection or f” isa split injection.

Given an Auslander-Reiten sequence0 — L iR MLN— 0, the irreducible mor-
phism starting with L or ending in N can easily be determined: those starting with L are
of theformf’: L — M’ where M’ isanon-zero direct summand of M, say M = M’ $ M”,
andf = (ff) for some f”’; those ending in N are of the form g’: M’ — N, where again
M=MaoM"andg = (d,g"), for someg"”.

Let M, N beindecomposable A-modul es; denote by rad(M, N) the set of non-isomorph-
isms from M to N. If M, N are not necessarily indecomposable, say with decomposi-
tionsM = @; M;, N = @; N; where M;, N; are indecomposable, define rad(M, N) =
@i rad(M;, N;) and rad?(M,N) = {f € Homa(M,N) | f = f' o f”, ' € rad(l .N),
f” € rad(M,1) for some A-module I}. f:M — N is irreducible if and only if f is
non-zero in rad(M, N) / rad?(M, N). Now we could define the Auslander-Reiten quiver
s of A: T'a has [M] of the isomorphic class of indecomposable module M € modA
as a vertex. Two vertices [M] and [N] are linked together by n arrows [M] — [N] if
n = dimyrad(M, N)/ rad?(M, N) > 1. Let usdenote by P and I, the subset of ' corre-
spondingto projectiveand injective modulesrespectively; we havethe Auslander-Reiten
translation 7: s \ Pa Sra \ la suchthat 7[N] = [7N]. In this sense, I'4 is atranslation
quiver.

A possible form of acomponent of I'a is ZA,, /n, which is called atube; it is given
by the following translation quiver and by making an identification along x with 73} for
any vertex Xx.

VAV

where dotted lines stand for 7-orbits. n is called the rank of the tube. A rank 1 tubeis
said to be homogeneous.

If Ais a hereditary algebra of tame type, the classification of the indecomposable
modulesin mod A is finished (see [DR] or [Ri]); modA is divided into three parts, the
first is the component of preprojective modules; the second part consists of aP;k-family
of componentswhich are tubes and among those almost are homogeneoustubes; the third
is the component of preinjective modules. The corresponding Auslander-Reiten quiver
can be drawn by hand.

3.2. In representation theory, a quiver A is just a directed graph. Write A = (Ao, Ay);
here /g is the set of vertices and A; the set of arrows. A representation V = (Vy, Vj) of
A over k is given by finite dimensional vector spaces Vi, for all x € Ag, and linear maps
Vs: Ve — Vy, for any arrow 8:x — y. If V, V/ are two representations of A over k, a

https://doi.org/10.4153/CJM-1997-038-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-038-4

REPRESENTATIONS OF Uy(dl (2)) 779

map f = (f,):V — V' isgiven by mapsf,:Vx — V, (X € Ag) such that V/fy = f,V;.
In this way we obtain the category of representations of A. Now assumethereisgiven a
representation V of A over k. If p = (a3, . .., 31|b) isadirected path in A, we denote by
V, the composition V, = Vg 0 -+ 0 V3,1 Va — V. We say that V satisfies the relation
r=3pApP (A € K), provided >p \pV, = 0 (Note that we may require that all paths p
occurring in one relation have a fixed starting point, say a, and afixed end point, say b;
thus all V,, are linear maps from V, to V,, and we form the linear combination >, ApVp
in Homy(Va, Vb)). A basic theorem (due to Gabriel) in the representation theory of finite
dimensional algebrasclaimsthat, if kisalgebraically closed, mod A isalways equivalent
to the category of representation of afinite quiver A with acertain set | of relations. We
also say that A is given by quiver A and relations .

Operating an algebra A by the dual functor D = Hom(, k), we get a new algebra
T(A), called thetrivial extension of A. The underlying vector space of T(A) = A@® D(A)
and the multiplication is given by

(a,d)@,d) = (aa,da’ + ad’)

fora,a’ € A, d,d’ € D(A), since D(A) admits an A— A-bimodule structure in an obvious
way.

Because T(A) is a sdlfinjective algebra, we could form the stable category modT(A)
likethis: objectsof modT(A) arethose of mod T(A) and giventwo objectsM, N, the set of
morphisms from M to N is defined as Homy ) (M, N) = Homra)(M, N) /P(M, N) where
P(M,N) = {f € Hom(a) (M, N) | there exists projective T(A)-module P and morphisms
g:M — P, h:P — Nsuchthatf = hog}. SomodT(A) isaquotient category of mod T(A).
The structure of modT(A) can be derived from that of mod A if Aisatilted algebra (see
[Hal]). Particularly, if Aisahereditary algebra of tame type, not only modT(A), but also
mod T(A) is clearly displayed. The aim of this section is just to fit mod Uy (sl (2)) into
this kind of category.

REMARK. The meaning of “graphical representations’ and “representation of
quiver” is totally different. The first is used to represent the structure of an Ut(sl (2))-
module under the actions of K, X, Y firstly by Kirillov-Reshetikhin [KR], the latter was
introduced by Gabriel and is widely used in the representation theory of finite dimen-
sional algebras.

3.3. We come back investigating the structure blocks of Uy (sl (2)) . Following methods
introduced by Brauer in the modular representation theory of finite group (see[A]) and
by Bernstein-Gelfand-Gelfand in the study of the category O for complex semisimpleLie
algebra (see [BGQ]), we can decompose Uy (sl (2)) into the direct sum of its blocks. The
structure of every block is determined by that of the corresponding projective Ut(sl (2)) -
modules which are linked to each other. Let Py, Py, ..., P, be al non-isomorphic pro-
jective Uy (sl (2)) -modules which are linked; then the corresponding block is defined as
B = Endy,s (2 (P1 @ - - - & Py). Since any endomorphism of a Verma module or simple
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module is a multiplication by a scalar, so, by the proof of the Gabriel theorem (see 4.3
of [G]), the algebra of every block can be given by its quiver and relations over Q(t).

3.3.1. (1) Because the blocks corresponding to projective modules P'~Y(a), o €
{1,—1,v—=1,—v—1} are dways trivial (Lemma 2.1.11), Us(sl (2)) contains 4 blocks
isomorphic to Q(t). In view of (2.2), the structure of P"1=2(a) (0 < j < 2) isclearly dis-
played: Note that, along the way of the canonical morphisms P"—2(a) — Pl(at™) —
Pi=2(a) and P"=(a)) — Pi(at") — P172(q), the vector by ~?(a) goesto &y 7~ %(a).
By a standard technique for representations of quivers with relations, we have: (2) if
t* = 1, then the block corresponding to the projective modules P—1-2(«) and Pi(«) is
isomorphic to the algebra A, given by the following quiver and relations

y
s 2y =
o it 2 £r—2.
o, Xy =yx=0

y
or isomorphic to the algebraA; given by

XX —y*=0
@ Y if2j=r—2

) Xy=yx=0

y
(3) if t" = —1, then the block corresponding to the projective modules P'1~2(«) and
Pi(—a) (0 < j < r—2)isisomorphicto A, too; (4) if t" = v/—1or —/—1, thentheblock
corresponding to the projective modules P™1=2(a), Pi(at"), Pi(at™) and P"I2(at?) is
isomorphic to A4, given by the following quiver and relations

P20 G
WA w=wn=o

By adetailed counting we have the following:

THEOREM 3.3.2.  The blocks of Uy (sl (2)) over Q(t) consist of 4 blocks isomorphic
to Q(t) and one of the following situations:
(i) 2(r — 1) blocksisomorphicto A, if " = 1andr isodd.
(i) 2(r — 2) blocksisomorphicto A, and 4 blocksisomorphicto Ay ift" = 1andr
is even.
(iii) 2(r — 1) blocksisomorphicto A, if t" = —1.
(iv) r — 1 blocksisomorphicto Ay if t = v/—1 or —/—1.

We easily know that there are good coverings Ay — Az and A, — Aq. A4 isthetrivia
extension of the hereditary algebra

Az -
NS

https://doi.org/10.4153/CJM-1997-038-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-038-4

REPRESENTATIONS OF Uy(dl (2)) 781

and /\; is the trivial extension of the Kronecker algebra - — .. After the work of
Tachikawa-Wakamatsuand Happel (see[Ha3]), the categoriesof finite dimensional mod-
ules over those algebras A1, A\, and A4 can be very well displayed. Their Auslander-
Reiten quivers are pictured above.

P 5P
NN NN INIANIN E

2P
NN

E—

{
|

I

B —
-—
= i
R al=
C S

AN

A P1Q(t) family of homogeneous tubes

The Auslander-Reiten quiver "5, of Az is obtained by identifying along P with 6P,
and I, of A\, by identifying along P with §2P.
5P1 52!31

W x

Py
YN D B Yoy N T YR Yo N
RN Y X

Two tubes of ZA,, /2 and aP; Q(t)* family of homogeneous tubes

0
- e

The Auslander-Reiten quiver I, of A is obtained by identifying along (E;) with
(gigg). Up to now we have reslized all finite dimensional indecomposable Uy (sl (2))-
modules as representations of the corresponding quivers.

4. Constructing of indecomposables. Reducing the problem of representations of
Ui(sl (2)) to those of A1, A, and A4 means that the category mod Uy (sl (2)) is very
clear now. However we will give the structure of all finite dimensional indecomposable
Ui(sl (2))-modules by their chosen basis and the actions of generatorsK, X, Y.

We consider only the case of g aprimitiveroot of 1i.e., thecase(iv) of Theorem 3.3.2.
The other cases can be easily deduced from this one.

4.1 Indecomposable modules Vi(a, n). Thebasis of Vi(a, n) is
{a7"2(a,m—1),d(a,m) | 0<mM<NO0<u<r—j—20<v<ij}
and the actions are given by:
Ké,(ar,m) = at™t~2e (o, m)
Xel (e, m) = PP [V][j + 1 — 16, 4(or, M) +6108 | 5, m+ 1)
Ye (o, m) = €,,,(, M)
and
Ka[77%(ar,m — 1) = ot™ D172 2g0 "2 (0, m — 1)
Xal 12 (a,m— 1) = 2™ [U][r —j — 1 — ula X (e, m— 1)
Yal 2 (@,m— 1) = a1 (@, m— 1)
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wherea]/~%(ar, —1) = 0,87 *(ar,n) = 0,8/ "*(a, m— 1) = &} (o, m—1) = Oand
e,4(,m) = ) 1~%(cr,m — 1). The graphical representations of Vi(a, n) are asfollows:

- . - - -

r=5j=1n=3.

4.2 IndecomposablemodulesVi (o, n).  ThebasisVi(a, n) is {al, (o, m—1), &,(cr, m) |
0<m<n0<u<r—j—20<v<j}andtheactionsaregiven by:

Kel,((x, m) = octmrtjfzvé;,(a, m)
Xel (o, m) = 2™ V[j + 1 — V]€, (e, m)
Ye"\,(a, m) = el/+1(05’ m)
and
Kal 2o, m— 1) = o™ Drir=i-2-20571-2(o m — 1)
Xa[ 1 7%(c,m— 1) = PPV [U][r — j — 1— g, X, m— 1) + 6108l (or, )
Yol I 2(a,m— 1) = &} (e, m— 1)

where a7 %(ar,—1) = a7 ¥(a,n) = O, eifl(a, m = e]i+1(a, m = 0 and

a1 3o, m—1) = éy(a,m—1).
The graphical representations of Vi(an) are as follows:

I3 \\ y \ 3 \\

- - - -

r=5j=1,n=3.
Theinduced Auslander-Reiten sequencesare;

(4.3) 0— Vi(e,n) = Vi(a,n+ 1) ® Vi(at¥ ,n+1) — VI(at? ,n+2) — 0
0— Vi(et? ,n+2) — Vi(e,n+1) @ Vi(et? ,n+1) — Vi(er,n) — 0

and 0 — Vi(a, 1) — Vi(a) & Pi=2(at") @ Vi(at?) — Vi(ar, 1) — 0.
The Auslander-Reiten translation is defined by

™M(at?,n+2) = Vi(e,n), ™Vi(e,n) = Vi(at¥ ,n+2), n>0,
and 7Vi(e, 1) = Vi(«, 1), where Vi(e, 0) = Vi(at, 0) = Vi(a).

4.4 The indecomposable modules Wi(a,n) and Wi(e,n).  The basis of Wi(a,n) is
{ei(a,m) |0<m<r—1,1<m<n}andtheactionsof K, X, Y asfollows:

Kel,(a, m) = et -2 (o, m)
Xel(o,m) = oP[ul[j + 1 — ule,_,(c, M) +60€l_; (o, m+ 1)
Ye, (o, m) = €, (o, m)
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whereé,(a,n+1) = 0and é(a, m) = 0 for 1 < m < n. Thegraphical representation of
Wi (a, n) is asfollows

r=5j=1n=3.
The basis of Wi(ar, n) is {f)(e,m) | 0 <u<r—1,1 < m< n}andtheactionsof K,
X, Y asfollows
Kfi(a,m) = ot D320 (o m)
Xt (e, m) = £l (o, m)
Xfh(et,m) = oP[U][j + 1 — ulfl (@) +8y0f (@, m—12)

Wherefﬂ'i(oc, 0) = 0 for any uand fl (or,m) = O0for 1 < m < n. Thegraphical representa-
tion of Wi(«, n) is asfollows

- \ - \ - \
-—»-4»-' —»-—»'

r=5j=1,n=3.
Theinduced Auslander-Reiten sequencesare

0— W(at?,n) — W(a,n+1) W (at¥,n— 1) — W(a,n) — 0

and

0— Wi (at?, n) — Wi(a,n+ 1) & W (at¥,n— 1) — W(a,n) — 0
and 7Wi (a, n) = Wi (at?, n), WA (o, n) = Wi (at?, n) where Wi (at?', 0) = W (at?, 0) =
0.

4.5 The indecomposable modules T!(er, A, n) and Ti(er, A, n). The basis of T, A, ) is
{eli(a,m),&(a,m) |0 <u<r—1,1<m< n}andtheactionsof K, X, Y are given as

follows:
Kel,(or, m) = at=2el (o, m)
Xel, (e, m) = o?[u][j +1— u]ejufl(a, m) + A16y08 (e, m— 1)
Yel (o, m) = €,y (cr, M)
and

Kd&,(ar,m) = ot~ 28 (o, m)
X8 (c, m) = o?[ul[j + 1 — uld, ,(cr,m) + \2buoel (o, M) +uo€ (o, m— 1)
Ve (e, m) = &, (o, m)

where é,(cr,0) = &,(c,0) = 0, (e, m) = &(e,m) = 0and A = (A, \2) € Q)" x
Q).
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The graphical;epresentation of T (oc,A)_\, n) isshown above, r =5,j = .
The basis of Ti(a, A, n) is {fi(a,m),fli(ac,m) | 0 <u <r—1,1 <m < n}. The
actions of K, X, Y asfollows:

Kl (a, m) = at 2] (or, m)
Xt (e, m) = £l (o, m)
Y (e, m) = oP[ullj + 1 — ulfl_ (, m) + Aadoof! (M) +Suof! 4 (cr,m— 1)
and
Kl (or, m) = at® t71724F) (o, m)
Xfi(ee,m) =11, (o, m)
Yii(a, m) = Q2[ulfj + 1 — ulf)_; (e, m) + Aabuof!, (er, m) +Ey0f) (@, m— 1)

wherefl(a, 0) = fi(a, 0) = 0, fl(cr, m) = fl(ar,m) = 0and A = (A1, \2) € Q)" x Q)"
The graphical representation of Ti(, A, n) is asfollows:

r=5j=1,n=2
It is easy to see that T/(a, A\, n) ~ Ti(a, \'n) if and only if thereisac € Q(t) with
X = c\; soisit for Ti(a, A, n). Sowewrite A € P;Q(t)* to denotethose \.

REMARK. In the definition of T/(«, A, n), one can changethe action of X on éd(a, m)
by X&li(ar, m) = o2[u][j+1—u]&, ,(cr, M)+ A2b0€_, (e, m), also obtain anindecompos-
able Ut(sl (2))-m0dule; however, we claim that this module isisomorphic to Ti(a, A, n).
Similarly for T!(«, A, n).
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Theinduced Auslander-Reiten sequencesare

0— T(a,\,n) — T(a,\,n+1) & T(,A\,n—1) — T(er, \,n) — 0
0— T, A n) — T(a,\,n+1) @ T (e, \,n—1) - TI(a,A\,n) — 0

and 7Ti(a, \,n) = Ti(a,\,n), 7T, A\,n) = Ti(e, A\, n), where Ti(a, A,0) =
Ti(a, A,0) = 0.

Now we have given all finite dimensional indecomposable modules of Ut(sl (2));
however we find some modules in Subsection 4.5 are isomorphic, so we give the fol-
lowing identifications.

PROPOSITION 4.6.  T(at?, A%, n) ~ Ti(er, A, n) =~ Ti(er, A1, n) =~ Ti(at®, A, n) for
any A € P1Q(M)*andn>1,0<j<r—2

REMARK. If A = (A1, \2) € P1Q(t)*, we denote (A2, \1) € P1Q(t)* by A71; also

=LA inPQ)”.

PROOF. (1) Ti(a, A,n) ~ Ti(at®, A7%,n). Define o: Ti(a, A, 1) — T(at*, A7, 1)
as: p(ei(er,m) = &(et®, m) and (&, m) = e,'J(ozt2r m). We only check that,
p(Xeli(ar,m) = (aP[ull +1—ule,_y (e, M)+ Aadyo8) (M) +6408 (o, m—1)) =
o?[ul[j +1— &, (o, m) + Asbuo€_y (™, m) + ol (at?, m—1) = X&,(t?, m).
So ¢ induces Ti(ar, A, n) = TH(at®, A~1, n). Similarly Ti(a, A1, ) = Ti(at™, A, ).

(2) Definey: Ti(a, A\71,1) — Ti(a, A, 1) asfollows:

g [P=r=j=2'
(J+l+|(a l)) _( 1) 2[ 1—|]|[r—]—2—|]|elr_|_1(a'l)
for0<i<r—j—
L
() = g g o
foro<i <j.
o, (@, D) = (-1) [r=1-i'fr—j—2 —']! @.1)

2(“1’[1]' [0t fr =1t r - 2]' Gt
for0<i<r—j—2
(- 1)r—J =2 2Ar+i—j— 2)[r = [r—j—2'i [j]' .
Aofj + 1M [j —1]!

b(f(e 1) = & (1)

for0<i <j.

It can be checked that v preserves the actions of X and Y. Therefore we have
Tia, A1, 1) ~ Ti(er, A, 1).

(3) SinceTi(e, A, 1) and Ti(e, A1, 1) are corresponding to the simpleregular modules
over Ag and dimgq Ext'(Ti(a, A, 1), T(er, A, 1)) = 1, T, A,n) ~ Ti(a, A%, n) for
n > 1inview of (2).

Comparing with the Auslander-Reiten quiver of A4, we can summarize the work of
this section into the following result.

https://doi.org/10.4153/CJM-1997-038-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-038-4

786 XIAOJE

THEOREM 4.7. The modules (i) P'(a), @ € {1,—1,v/—1,—/—1}and0 < i <
r—1, (i) Vi(e,n) and Vi(a,n), @ € {1,-1,v/=1,—/=1},0<j <r—2,n> 0,
(i) Wi(ar,n) and Wi(er,n), @ € {1,—1,v/—1,—/-1},0<j <r—2,n> 1and
(iv) Ti(a, \,n), @ € {1,4/=1}, A € P,Q(1)*, n > 1, form a complete list of all finite
dimensional indecomposable modules of Uy (sl (2)) over Q(t) up to isomorphism.

By [AR], we have the following Auslander-Reiten formula.

COROLLARY. There exist canonical isomorphisms Extyys 2))(M, N) ~
DHomy 4 (2,(N, 7M) for any indecomposable U (sl (2))-modules M and N, where D =

Hom@(t) ( , Q(t))
REMARK. All statementsin this note are valid over thefield C of complex numbers.
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