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FRACTIONS OF THE PERIOD OF THE CONTINUED
FRACTION EXPANSION OF QUADRATIC INTEGERS

A . J . VAN DER POORTEN

Dedicated to George Szekeres on his eightieth birthday

The elementary nature and simplicity of the theory of continued fractions is mostly
well disguised in the literature. This makes one reluctant to quote sources when
making a remark on the subject and seems to necessitate redeveloping the theory
ab initio. That had best be done succinctly. That is done here and allows the
retrieval of some amusing results on pattern in the period of the continued fraction
expansion of quadratic integers.

1. A FUNDAMENTAL CORRESPONDENCE

A continued fraction is an expression of the shape

1
ao

which we denote in a space-saving flat notation by

[ao, Oi, o j , a s , . . . ] .

PROPOSITION 1.

/ao l \ / « i 1\ /an 1\ fPn pn_

if and only if

— = [ao, ai, . . . , an] for n = 0, 1, 2, . . . , .
9
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156 A.J. van der Poorten [2]

PROOF: This formal correspondence is easily established by a thoughtful inductive
argument on the number of matrices, using

[a0, a i , . . . , on] =00
i, o2, . . . , an]

D
We will not need to be reminded of the approximation properties of continued

fractions for the present discussion. I shall remark, however, that these properties
follow readily from taking determinants in the correspondence, thus seeing that

( i \n—1

Pn9n-1 ~ Pn-lVn = \~*•) wucnce = 1 .
9n qn-l 9n-l?n

If 7 = [a0,oi, o2, . . . ] ,

I write — = [a0, ai, ..., an]

to denote the convergent* pn/qn of 7. The an are known as the partial quotients of 7
and the quantities yn defined by

7 = [a0, o j , . . . , on_i,7n]

are called its complete quotients.

Below, almost invariably, but not always — many of the arguments are formal
— the partial quotients (other than ao ) will be positive integers. This, the case of
admissible partial quotients, and thence of regular continued fractions (we omit the
qualifying adjective in the sequel), is our principal concern.

It is an interesting exercise to apply the correspondence and to see that the complete
quotients have an expansion given by

-Tn+l = = P. On, <*n-l, . . ., Oi, Oo - 7 .
9n7 — Pn

It will be convenient to note that a periodic expansion

7 = [ao, oj , . . . , Or_i, oP ]

is just

7 = [ao, 01, . . . , ar-i, ar + 7-ao].
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[3] Fractions of the period 157

2. CONTINUED FRACTIONS OF REAL QUADRATIC IRRATIONALS

In the sequel 7 denotes a real quadratic irrational with conjugate 7 ' .

P R O P O S I T I O N 2 . 'Pell's Equation'

Norm (X - 7Y) = {X - 7Y)(X - 7'Y) = X2 - (7 + f')XY + 77'Y2 = 1

has solutions in nonzero integers (X, Y).
PROOF: There is some integer d so that d-y is an algebraic integer; hence we

may suppose that 7 is an integer and afterwards replace Y by dY. Recall that by
the box principle one readily sees that there are infinitely many (x,y) £ Z2 so that
\x — yy\ < 1/j/, and therefore

Thus there is an integer k with \k\ < 7 — 7' + 1 so that Norm (a: — yy) — k has
infinitely many solutions and, again by the box principle, that equation has pairs of
solutions (x,y) and (x',y') so that x = x', y = y' mod k.

Then

1 = Norm (-^OL) = Norm (**—*&+ +) + ** *±Z±}L
x'--ry'J

where the congruences

xx' — xj/'(7 + 7') + yy'77' = Norm (a: — 71/) and xy' — x'y = 0 mod k

entail that X and Y are integers as required. U

PROPOSITION 3 . (Continued fraction algorithm) A unimodular matrix

with nonnegative integer entries satisfying a ^ b and a ^ c has a unique decomposi-
tion

l Oj\l O

with positive integers ao, a i , . . . , an .

PROOF: Either U — I (and the product is empty); or, as is easily seen, ad — be =
±1 and a > c entails that 6 > d (dually, a > b entails c > d). Thus the top
row dominates the other and since that property persists in the course of applying the
Euclidean algorithm to the rows of a unimodular matrix — until the process terminates
— we obtain the decomposition as asserted. D
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REMARK. Similarly, any unimodular integer matrix has a finite decomposition of the
given shape, but, of course, the ah may not all be positive and the decomposition is
not unique.

Now let M be the matrix of the Q-linear map 'multiplication by X — yY ' with
respect to the Q-basis {7 ' , !} of the Q-vector space Q(7). Then

Set

X-{7 + 7')Yj'

-CD-
It follows from Proposition 3, and the remark, that we may decompose MJ, ob-

taining, say,
MJ <—• [a0, 01, ..., o r ] .

REMARK. It is instructive to confirm that if and only if

a o - 7 ' > l > 7 - a o ,

we may choose X and Y so that the matrix

V-77'J
Y '

X - a0Y J

satisfies the conditions of Proposition 3 and there is a unique decomposition correspond-
ing to a continued fraction with admissible partial quotients.

From this point on we suppose that 7 = /? = \fD or 7 = a = ( l + \ZD\/2, with
D a positive integer = 1 mod 4, and not a square. Then the conditions of Proposition
3 hold for MJ.

Because
(-rr'Y X

x Y )

is symmetric we see (by transposition of the matrix product and uniqueness of the
decomposition) that the word

aooi.. .or_ior ' with oP' = ar + (7 + 7')

is a palindrome [a palindrome is never even; it is a toyota.].
Now consider the periodic continued fraction

8 =[a0, 01, . . . , or_i,2a0 - ( 7 + 7')]

=[o0, 01, . . . , ar_!, 2a0 - (7 + 7') + 6 - a0 ].
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It corresponds to

s = ^L-"'Y

or S2 - (7 + 7')* + 77' = 0 since Y ^0. Since 6 > 0 we have 6 = 7. Thus

PROPOSITION 4 . If M is unimodular then

MT=

it and only if

= [ao,ai, ..., ar_!

Of course, by the correspondence, [ao> ai» • • •» Or-i]

COMMENT. If we make no special assumption about the real quadratic irrational 7
then the same formal argument — omitting the remarks on symmetry — yields

7 = [ao,ai, ..., ar-lt ar + a0 -

It can be shown that a periodic continued fraction can always be transformed to a
periodic continued fraction with admissible partial quotients; so one obtains an eccentric
proof of Lagrange's theorem: Every quadratic irrational has a periodic regular continued

fraction expansion. Of course, in general, the transformation to admissible partial
quotients may yield a preperiod of different length and may destroy the symmetry
of the period. In fact, one obtains a preperiod of length at most 1 if and only if
ao —) ' > 1 > 7 — oo and then symmetry as described occurs if and only if 7 + 7' £ Z.
One obtains a pure symmetric period

7 = [ « 0 , O.1, ••; O r - l , Or] ,
< •

if and only if 7 > 1 and 77' = —1.

3. HALF THE PERIOD

We shall synthesise the period of 7 from half its period and detail the nature of
the complete quotients at the centre of the period.
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COMMENT. For 7 = /? = \/D this material is well-known but in more general cases

it seems only implicit in the literature. We have in mind just the additional case

7 = a = ( l + vDj/2 but our remarks remain valid whenever the matrices decompose

uniquely to yield admissible partial quotients. In particular, the condition 7 + 7 ' € Z

is essential.

The following useful lemma plays an important role:

P R O P O S I T I O N 5 . Given [a0, a i , . . . , a^] — ph/qh , set

Ph - 7 7 '

Pk-(T
Then

M = (

/oo IN (ax 1\ fah 1\ fPh+1 1\M h J = ( i o J U oj (1 oJU+1 0)
where

7 +

yields the complete quotient 7^+1 defined by 7 = [ao, oi, ..., a^, 7A+I] .

REMARK. Notice that the assertion defines Qh+i by

Norm(P h-79,0 = (-l)fc+1Qk+i.

Moreover, it is easy to confirm by induction — in effect this is the inversion in the
continued fraction algorithm — that

- Norm (7 + Pk+1) = QhQh+i.

PROOF: The first allegation of the Proposition is

Vh W-

and that the final matrix in the decomposition is of the alleged shape is now easy to
verify. To see the principal claim multiply MhJ on the right by

Qh+1

0

and apply the correspondence appropriately: Namely, we obtain

< > (i{Ph - qhf')/Qh+i Ph
7 \ {Ph ~ qh-r')/Qh+i q

'=(ao l \ ( a i 1 \ fah 1 \ ((f + Ph+J/Qh+i 1 \
\i 0A1 0) \ i o)\ 1 0)

7 + - 1

7"]-
D
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To compose two initial parts of the period we note that a product M^Mk is the
matrix of multiplication by

(Ph ~ iqh)(Pk - 79*) = (PkPh - 77'9*9fc) - 7(P*9fc - PhQk - (7 + 7')9*9fc)

and thus, for certain integers x, y the product MhMkJ has shape

/ -77'y x \

\ x - (7 + i')y y ) '

In the sequel it will be useful to set

Later, we will need to notice that

Multiplication on the right by L7"1"7 adds 7 + 7' times the second column of the

multiplicand to its first column. Thus MicJL"l+"t is symmetric, which is to say that it

equals its transpose R^+"''jtMk = JL~l+m)'tMk. Hence

MhMkJL^W = MhJL~'+-''tMk

= fa0 l W a , 1\ fah 1 \ /Ph+1 + (7 + 7') l W 1 0 \
\l OJ\1 OJ"\1 0j\ QK+I 0j\Pk+1 Qk+1J

(ak lWo f c _! 1\ fao l\

= fa0 l \ / a i 1\ fah 1\ /pfc+1 + P f c + 1 +( 7 + 7 ' ) Qk+1\
\ l O j \ l O j " \ l 0 j \ Q h + 1 0 J

Now suppose that both

Qh+i = Qk+i and Ph+i + Pk+i + (7 + 7') = aQh+i, some integer a.

Then, and only then, the symmetric matrix Q^1MhMkJL'y+'1 is unimodular and has

a decomposition

fa0 l \ / a , 1\ (ah l W a 1\ / « t ^Z"1*"1 M /"a° Y

\ \ o j \ i o y ' U 0J I1 0 A 1 o A 1 o j " l i 0
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displaying, according to Proposition 4, the periodic continued fraction

7 = [o0, ox , . . . , ak,a, a t ,a*_i, . . . , oi, 2a0 - ( 7 + 7')]-

In particular, the word a\ .. .ah aatak-i...ai is a palindrome.

We denote the length h + k + 2 of the period of 7 by {(7).

The conditions

Qh+i = Qk+i and Ph+i + Pt + i + (7 + 7') = aQh+i, some integer a,

. . 7 + Ph+i 7' + Pk+iamount to yh+i = — = 0 = a - +

But this is just a step in the continued fraction expansion of 7 and says both

a = ah+i and j ' h + 2 = f'k+1.

There are two cases according to the parity of

If {(7) is odd, which is necessarily {(7) — 2h + l, then the symmetric part of the
period is of even length 2h so k = h — 1 and the central steps of the period are

1 + Ph 7' + Ph+i

and its conjugate equation

7 +

Symmetry is occasioned by selfconjugacy of the pair of equations, signalled by

Qh+i = Qh , which is Nonn(7 + Ph+i) = -Q\ .

If 7(7) is even, which is necessarily {(7) = 2h + 2, then the symmetric part of the period
is of odd length 2h + 1 so k = h and the central step of the period is

7 + Ph+i 7' +
Qh+l Qh+1

Symmetry is occasioned by selfconjugacy of the equation, signalled by

Ph+i = Ph+2 •

PROPOSITION 6 . In the case of period of even length, the partial quotient

central to the symmetric portion of the period is odd whenever 7 + 7' is odd.

PROOF: We have 2Ph+1 + (7 + 7') = ok+i Qh+1. D
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4. A THIRD OF THE PERIOD

Recall that we have set

P = VD and a = (l + >/I>)/2,

where D > 0 is an integer such that D ^ • and D = 1 mod 4. We show that a 'non-
trivial' solution — that is, one with y odd — to the diophantine equation x2 —Dy2 = ±4
signals a 'third' of the period of /? and, in effect, 'corresponds' to the period of a:

K (P»9) G 2 2 and Norm(p - aq) = ±1 then

p2 - (o + a')pq + aa'q2 = ±1 which is (2p - q)2 - Dq2 = ±4.

Write x = 2p — q and y = q.

Notice that /3 +/?' = 0 and /?/?' = -£>. Accordingly, set

and recall that detTV = ±4. It follows that det N*J = ^64. Indeed, JVSJ has shape

( DY X\
j with integers X and K .

This is clear because (x - (3yf = xs + 3Dxy2 + /3'(3x2y + Dj/S) entails

8X = x(x2 + 3£>y2) = x((x2 - Dy2) + 4Z>y2) = 0 mod 8

8y = y(3x2 + Dy2) = y(3(x2 - £>y2) + 4Dy2) = 0 mod 8.

Since (JVS J) /8 is unimodular, by Proposition 4 we have the correspondence

bo 1 W 1 , 1 \ (br 1

<—> /3 = [6o> bi, ..., br-i, 260 ] •

Suppose now that q = y is odd. Then, by Proposition 5, for some index t and
integer Pt+i we have

-(? Ott D-tt
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Now, recalling that NJ is symmetric so NJ = J*N, and noting that J2 = I,

N3J = NJ.JN.JfN =

(b0 1\ fh 1\ (bt 1\ (Pt+1 I W J / * \ /P«+1 4

(bt 1\ /t^i 1\ (b0 1\

H i oJt i o j - ( i oj
1\ (bt 1

+ Pt+iy) 4(a; + Pt+1y) \
4(x + Pt+ly)

/6 t 1 \ /&«_! 1\ /60 1 \
\1 0 A 1 0 / " U OJ'

X

By previous remarks we know that each element of the central matrix is divisible by 8.
We thus see that the central third of the period of 3 = \/D is given by

x + Pt+iy _ „ b ... i l
4y *+1 *+2 '

One adds Pt+i to x/y = [6o >•••>&*]> divides by 4 (see my notes [4]) and recalls that
by symmetry 6 r - t - i = 6«+i •

All this becomes trivial if y is even. For then x is also even, NJ is just 2MJ,

with MJ corresponding to a period of 3. So (iVsj)/8 corresponds to a period of 8

comprising three times the given period.

If y is odd then so is x. The equation x2 — Dy2 — ±4 is

2 " 4 "

and displays the shorter period of a = f 1 + y/Dj/2 relative to that of 8 = y/D.

I now set

The relationship between the respective periods of a and of 8 can then be sum-
marised by noting that, whilst the unimodular matrix

8 \Y X ) \Y X-{B + p')Y)

yields the period of /3 = \/D, the unimodular matrix

7°°''7 ,
p-{a + a')q

provides the period of a = ( l + \/D)/2.
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5. A SIXTH OF THE PERIOD

I prove a consequence of the well-known identity 2 x 3 = 3 x 2 . The principal result
is an ingenious observation of Kaplan and Williams [1] giving a criterion for the equation
x2 — Dy2 = —4 to have a solution in odd integers x, y given that X2 — DY2 = — 1 has
a solution in integers X, Y.

THEOREM. Given a quadratic irrational 7, let l(j) denote the length of the period
of its continued fraction expansion. Let D > 0 be a nonsquare integer = 1 (mod 4).
Tien

I{/D) = l(\(l + v/*>)) (mod 4)

unless the equation X2 — DY2 = —1 lias a solution in integers X,Y but the equation
x2 — Dy2 = —4 A as no solution in odd integers x,y.

PROOF: AS at Section 3, write

Pk-K q J - \ l 0){l 0) \ l o)\Qk+1 0

for k = 0, 1, . . . and set

D q " ) •- qk)

In the sequel it will be useful to recall the following transition formulae:

AR = R2A A'L = L2A'

AL2 = LA A'R2 = RA'

ALR = RLA' A'RL = LRA.

Suppose that a has period of odd length l(a) — 2h + 1. Then

ThTh^J = TfcJ'Tfc-! = R-1AMhA'R.J.LA'tMh-1AL-1

= 2R-1AMkJLtMh-1AL~1 = 2Qh+1R-1AM2hJLAL-1

= 2Qh+1R-1AM2KA'RJ = 2Qh+1 (Dy *\
\ x y)

= 2Qh+1NJ.

Here we use the easily established identities A'R.J.LA' = 2JL and JLAL'1 — A'RJ.

Since MhM^-iJ produces 2h + 2 partial quotients of a, the matrix ThTh-i J = NJ
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produces a unimodular matrix Uih i say, corresponding to 2h + 1 (mod 2) partial quo-
tients of /3 and a final factor of the shape

(

and it displays a third of a period of /3 in the sense described at Section 4. Namely,
Ns J is 8 times a unimodular matrix corresponding to a period of /3. So much for 3x2.

Thus, a period of /? corresponds to

%-*N3J = N.N.NJ = N.N.J*N

= (8Qh+i Y^J.JR-^A.MHJL ^ - i .AL-1 J.J

But we have just been reminded that the central matrices yield

Mh.JL. *AfJt_1 = QK+XMH *MK •

Hence the period of /3 corresponds to

^ ^ ^ - 1 *N

and is neat ly displayed as i ts apparen t halves; this is 2 x 3 .

We now s tudy the half period: We have

= U2h (

noting that P — 1 is even because, as remarked at Section 3, 4 | (£> — P2) .

It remains to implicitly apply the transition formulae and to write

as a product of matrices, W say, corresponding to 3h + 2 (mod 2) partial quotients
and a matrix of determinant 2. By the transition formulae the possibilities for that
last matrix are A, A', AL or A'R.

But neither A nor A' is possible. If, for example, that matrix were A then we
would have the period of /3 corresponding to
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whereas A A is not divisible by 2. Dually, neither is A'A'. However

AL.RA = RLA'A = 2RL = 2 Q J j l j M

and dually A'R.LA' = LRAA' = 2LR yields the same matrices.

Thus the given period of /3 corresponds to

-G D-G l h
This period has odd length 2p + 1, say, with the last equation revealing that

p + 1 = Zh + 3 (mod 2); thus 2p + 1 = 2h + 1 (mod 4) .

If x2 — Dy2 = —4 has a nontrivial solution, that is with y odd, then we have

obtained the primitive period of /? and its length /(/?) satisfies l((3) = 2 p + l = 2h + l =

l{a) (mod 4).

However, if x2 — Dy2 = ±4 entails y even then we have been dealing with three

times a period and have shown that 3/(/3) = 2p + 1. In this case we obtain /(/3) =

2 p - l = (2/i + l ) - 2 (mod 4).

If a has only periods of even length then we may apply a similar argument with

Mfc replacing Mh-i • Other than for

Mh.JL.*Mk = Qh+1 Mh. (°fc
i
+1 I) • *Mk

the argument proceeds as above until we come to determine which of the products

AL ( ah^ J j RA = JA'RL'w RA,

and so forth, is divisible by 2. A computation shows that the only admissible configu-
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ration is:

Of course we do have

A' (a™ M A' = JAL'»+*A' = JL^^AA1 = 2 ( J

and

("V1 ) = JA'RLah+lRA =

-•(I DG I X T 1 1 ) G 1)0 D-
Each of these last three cases is applicable provided that fflfc+i is even. But by Propo-
sition 6 the central partial quotient is odd. Thus the apparent half period of /?, which
is of length 3h + 3 (mod 2), is not augmented by any partial quotients. We have

p + 1 = 3h + 3 (mod 4) which is /(/?) = 2p+2 = 2/i + 2 = /(a) (mod 4).

Moreover, it is not now relevant that x2 — Dy2 — ±4 have a solution with y odd.
For if 1(0) is even then 3I(/3) = /(/?) (mod 4). D

REMARK. The present results are remarkable because one expects to be able to report
at most on the parity, but not on behaviour (mod 4) of periods of continued fractions.
One succeeds here by using symmetry and working with the parity of the half periods.

CONFESSION. It is easy to be sloppy and to presume that it suffices to count the parity of
the apparent half-period, without bothering to perform the transitions and to compute
their consequence. To obtain the Kaplan and Williams [1] result one has to miscount
the parity. I found that no obstacle until a referee detected that my miscounting had
led me to an additional observation that was palpably false. I no longer believe that
the present argument is all that much simpler than that of [1].

6. COMMENTS AND ACKNOWLEDGMENTS

The bible of the subject is Perron's Kettenbriche [2]. Its language makes it inac-
cessible to many.
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There is little in my remarks that is not well-known, but much of it is not widely
known. I hope to have shown that all of it can be known readily from first principles.
The reader will find it of interest to compare the proof in [1] of the Theorem with
that given here. I am indebted to Hugh Williams for challenging me to discover the
results of Sections 4-5 armed with no more than an ability to multiply 2 x 2 matrices.
Rick Mollin showed me the symmetry of a toyota. Harold Stark's treatment [3] of
continued fractions influenced my thinking. I am grateful to P. Majstrenko for some
helpful questions about details in a draft of this note. Ross Talent has helped me to
avoid some of the sloppiness to which I am prone.

It is natural to ask whether one may usefully find yet smaller natural fractions of
the period. I believe that the fractional parts shown are the only ones detectable from
the complete quotients, thus from the Pn and Qn, alone. If one knows the convergents,
that is: the pn and qn, a little more can be said; I make some laboured remarks on
that subject in [4]. I do not think that those results are of computational or algebraic
significance.

This paper is the refined and revised text of a talk given at the 2nd Conference of
the Canadian Number Theory Association, Vancouver, 1989. The author's attendance
at that meeting was assisted by the University of Calgary.
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