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Abstract
Decentralized consensus protocols have a variety of parameters to be set during their deployment for practical appli-
cations in blockchains. The analysis given in most research papers proves the security state of the blockchain, at the
same time usually providing a range of acceptable values, thus allowing further tuning of the protocol parameters.
In this paper, we investigate Ouroboros Praos, the proof-of-stake consensus protocol deployed in Cardano and other
blockchains. In contrast to its predecessor, Praos allows multiple honest slot leaders that lead to fork creation and
resolution, consequently decreasing the block rate per time unit. In our analysis of dependence on protocol param-
eters such as active slot coefficient and p2p network block propagation time, we obtain new theoretical results and
explicit formulas for the expectation of the length of the longest chain created during the Praos epoch, the length
of the longest unintentional fork created by honest slot leaders, the efficiency of block generation procedure (the
ratio of blocks included in the final longest chain vs the total number of created blocks), and other characteristics
of the blockchain throughput.

We study these parameters as stochastic characteristics of the block generation process. The model is described
in terms of the two-parametric family bij of independent Bernoulli random variables which generate deformation
of the binomial distribution by a positive integer parameter—the delay (deterministic or random). An essential part
of our paper is a study of this deformation in terms of denumerable Markov chains and generating functions.

1. Introduction

The main purpose of this paper is to investigate the stochastic characteristics of the block generation
process in the Ouroboros Praos Proof-of-Stake protocol. The probabilistic model that emerged in this
study is a deformation of the binomial distribution with an additional positive integer parameter (inter-
preted as time delay), deterministic or random finitely distributed. This deformation seems interesting
in itself and is also systematically studied here.

Proof-of-Work (PoW) [17] and Proof-of-Stake (PoS) [19] (first discussion), [12], [11] are the most
wide-used approaches for reaching consensus in blockchain technology. Much research has been con-
ducted, mainly regarding their security properties, including resistance to double-spending attacks [21],
[18], [7], [13], [10] and splitting attacks [11].
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PoS has undoubted advantages in comparison with PoW, but at the same time, PoS requires an
advanced scheme for the fair election of block producers (which are called slot leaders). Properly
selecting such a scheme is crucial for the specific protocol properties and blockchain security.

The first provably secure PoS protocol is Ouroboros [11] that is followed by its advanced
generations—Praos [3], Genesis [1], Chronos [2], and others.

Ouroboros Praos uses a special block creation function, which helps to achieve desirable proper-
ties of the slot leader election procedure. A significant property achieved with this function is stake
union/splitting resistance: stakeholders have no incentive to unite or to split their stake because these
actions give them no significant influence on the probability of becoming a slot leader.

Though our paper also investigates Ouroboros Praos procedure for slot leaders’ election, its objec-
tives differ from previous articles (e.g., [10]). We are not building estimations of attack probabilities,
instead we concentrate on stochastic characteristics for block creation procedure in dependence on pro-
tocol parameters: active slot coefficient f, introduced in [3], and block propagation time X. Among the
most important stochastic characteristics of such a process, we may consider the following:

• the length of the longest chain created during the epoch;
• the number of slot leaders at one timeslot;
• the efficiency of block generation procedure, defined as the rate of useful blocks (i.e., those that

create the longest chain). Its complement to 1 is the rate of orphan blocks;
• the length of the fork.

Recommendations for Praos parametrization, including for active slot coefficient, in the environ-
ment with adversarial presence, are considered in [6]. But till this time, there were no explicit formulas
that allowed us to describe or at least estimate the resulting stochastic characteristics of protocols in
dependence on their initial parameters.

In this paper, we obtain explicit formulas for the average length of the longest chain, for the average
number of slot leaders in one timeslot, and give estimations for these values, which are rather accurate
(for sufficiently large epoch length) and do not depend on stake distribution among stakeholders. Next,
using these results, we create estimates for the efficiency of the block generation process and the number
of orphan blocks in an epoch.

We also did multiple numerical simulations of Ouroboros Praos operation, and they fully confirm
the obtained theoretical results (see GitHub - Roman-Oliynykov/PraosForksSimulation).

The paper is organized as follows. In Section 2, we introduce main notations and designations,
recall some facts about binomial distributions and their generalizations, and give a short description
of Ouroboros Praos, which we use in these investigations.

Section 3 is central to our paper. Here we study the mean value of the length of the longest chain
depending on the number n of timeslots in epoch, block propagation time X, and active slot coefficient
f. The whole construction is based on the infinite sequence (bj)j>0 of independent Bernoulli random
variables bj ∼ B(1, f ). In Subsection 3.1, (X, n)-chain is defined as an increasing sequence of indexes
of timeslots, such that two adjacent terms differ by at least the time delay. Then we consider a random
set ΓX,n of suitable (X, n)-chain depending on values of b j. It can contain several longest chains. A
natural formalization of the longest chain rule assumes that we choose the longest chain c with the
minimumpossible values of its elements ci. To describe this precisely, we introduce on the setCX,n a total
order <, a modification of the lexicographical order. The optimal random chain WX,n is the <-minimal
suitable (X, n)-chain. We describe probability distribution of WX,n and its length _X,n. In Subsection
3.2, the equivalent description is given in terms of the infinite Markov chain (see [15], [24]). This
Markov chain is X-periodic in the sense of (15). This allows to write recurrent relation (21) for the
Green function, that is the formal series (1 − tA)−1 :=

∑
n>0(tA)n of transition matrix A, and then

in Subsection 3.3 the recurrent relation for the ordinary generating function L(t) (see [22], [23], [14])
for expectations E_X,n of the lengths of random chains WX,n. Explicitly, L(t) is a rational function with
denominator (1−t)2 ·p∗

X, f (t). Partial and complete fraction decompositions of L(t) are calculated. Using
the Schur–Cohen test from Appendix A, it is shown that each root of pX, f (z) belongs to the open unit
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disk |z| < 1. This allows in Subsection 3.4 to obtain asymptotic formula for the expectation E_X,n for
n → ∞. For more refined asymptotics, it is necessary to study the dependence of the roots of pX, f (z)
on X and f. Numerical calculations show that the modules of these roots in the unit disk behave like
f

1
X−1 . In Subsection 3.5, alternative formula for E_X,n is obtained in two ways. In Subsection 3.6, we

get the mixed generating function for moments E_m
X,n and asymptotic for the variance Var_X,n. Note

that E_2
X,n ∼ n2, but Var_X,n ∼ n. In Subsection 3.7, a fixed delay parameter X is replaced by a random

finitely distributed variable. The corresponding Markov chain has a tree-like transition digraph glued
from repeated finite parts.We briefly describe generalizations of results from the previous section to this
more general context. The randommoment gr immediately preceding the appearance of the rth block in
the chain, shifted by the total delay during the creation of this chain, has a negative binomial distribution
NB(r, f ). Finally, we show that our construction can be applied to somewide class of stochastic digraphs.

Section 4 paysmore attention to the applied aspects. So, first, we summarize themain practical results
about the longest chain length from the previous section. In Subsection 4.1, we note that the expected
number of slot leaders is independent of the timeslot and has a Poisson binomial distribution. It depends
on stake distribution among stakeholders, but we can get rid of this dependency in the important limit
cases. The function Φf (U), given by (62), equals the expected number of slot leaders when all stakes
equal U. If all stakes are uniformly small the limit valueΦf (0), given by (63), gets a good approximation
for the expected number of slot leaders. A more general case of a small number of groups with equal
stake Ui for each ith group member leads to the linear combination of Φf (Ui). The exact lower and
upper bounds for the expected number of slot leaders are Φf (1) and Φf (1/|I |). In Subsection 4.2, we
introduce the notion of efficiency of the block creation process as the ratio of the expected number
of useful blocks to the expected number of all produced blocks during the epoch. Then, using results
from Section 3 and Subsection 4.1, we obtain estimations for the efficiency, from which we can also
estimate the number of orphan blocks. Under the assumption of long epoch n � 1 and uniformly small
stakes, we get the approximation of efficiency (68) depending only on f and X. Moreover, in the case
of the large propagation time X � 1, we get the approximative conservation law: the sum of efficiency
and the expected length of chain produced during the propagation time equals 1. The estimations for the
length of forks are considered in Subsection 4.3. Here we emphasize the importance of the following
additional rule: “among two valid equal-length branches of the fork the slot leader should choose the
one that is started in the earlier timeslot.” In Subsection 4.4, we conclude with an analysis of our results
and set directions for further investigations.

In Appendix A following [8] (see also [20]), we briefly describe the Schur–Cohen algorithm which
allows one to find the distribution of the roots of a complex polynomial with respect to the unit circle in
the complex plane. In Example A.3, we apply the Schur–Cohen test for a family of polynomials pX, f (z).
The fact that their roots lie in the unit disk |z| < 1 provides an asymptotic expression for the expectation
of the maximal length of chains LX,n in Corollary 3.23 from Section 3.

In Appendix B, we show how our results can be applied during the parametrization of the consen-
sus protocol in practical deployment, giving the numerical values calculated according to the obtained
formulas and comparing the efficiency of various settings.

2. Preliminaries

In this chapter, we introduce the main notations and give a short description of the Ouroboros protocol,
emphasizing its properties which we essentially use in the following results.

2.1. Notations and agreements

General notations

Z, R, C are rings of integers, reals, and complex numbers; Z>0 and Z>0 are the sets of nonnegative
integers and positive integers, respectively.
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d |n means that the integer d divides the integer n.
bxc :=max{n ∈ Z | n 6 x} is the floor, dxe :=min{n ∈ Z | n > x} is the ceiling, for x ∈ R,
<z and =z are the real and imaginary parts of z ∈ C; and z is its complex conjugate.( k
k1 k2 · · · kl

)
:= k!

k1!k2!· · ·kl!
is the multinomial coefficient, for ki ∈ Z>0, and k = k1 + · · · + kl.(x

k
)
:= xk

k! := x (x−1) ·· · (x−k+1)
k! is the binomial coefficient written in terms of falling factorial.(J

k
)
is the set of k-element subsets of the set J.

Notations for the model

X, f, n, (Ui)i∈I are the main numerical parameters and if (U), Φf (U), g = g(X, f ) are functions of these
parameters. (bij)i∈I,06j<n is the system of independent Bernoulli random variables generating the whole
probability space; (bj)06j<n and (aj)06j<n are function of them studied in two sections. The length _X,n
of the random optimal chain, its expectation (Ln = LX,n)n>0 depending on n and the generating function
L(t) = L (X ) (t) of this sequence are subject of the essential part of the investigation. Finally, the efficiency
Eff = Eff (X, f , n, (Ui)i∈I ) is considered. Other notations are used locally: Cl

X,n, (CX,n, <), ΓX,n, WX,n,
J0(c), J1(c), Δl

m for combinatorial description of a random chain; XX (k), A, S for Markov chain; pX, f (t),
p∗
X, f (t), rX, f (t), r∗

X, f (t), q1, q2, . . . , qX−1 to characterize the rational function L(t); we also consider the
case of random %, when (X, f ) is replaced by the family (Xk , fk)16k6s.

Note that recurrent formulas involving the probability f ∈ (0, 1) remain true for the limit cases f = 0
and f = 1, if we meet the usual in combinatorics agreement 00 = 1.

2.2. Binomial distributions and beyond

The notation b ∼ B(n, p) means that the random variable b has binomial distribution with parameters n,
p, that is Pr(b = k) =

(n
k
)
pk (1−p)n−k , k = 0, 1, . . . , n. The archetypal example is the sum b1+b2+· · ·+bn

of equidistributed Bernoulli random variables bj ∼ B(1, p) with success parameter p.
The sum b1+b2+· · ·+bn of Bernoulli random variables bj ∼ B(1, pj) with different success parameters

pj has Poisson binomial distribution. It is used in Subsection 4.1.
So-called Markov binomial distribution corresponds the sum b1+b2+· · ·+bn where b j form aMarkov

chain with two states 0 and 1. This idea was elaborated by A.A. Markov Sr. in his 1,907 paper, whose
extended version is included in the 3rd edition of his textbook [16].

Another deformation of binomial distributions studied in Section 3 can be also described in terms of
Markov chains. The additional positive integer (deterministic or random) parameter can be interpreted
as a time delay.

2.3. Short description of Ouroboros Praos

We will use the next series of assumptions, which are the standard for the PoS model, in what follows.
Thus, we assume that all epochs have the same duration, say T, and time interval T is divided into n
equal intervals [jT/n, (j + 1)T/n] indexed by j = 0, 1, . . . , n− 1 and called timeslots. We say that some
stakeholder Si, i ∈ I is a slot leader in jth timeslot if he was assigned for this timeslot, according to
slot leader election procedure, described in Ouroboros Praos paper [3]. The desirable properties of this
procedure, achieved in Praos, are the following:

• slot leaders are randomly selected, and the probability for stakeholder Si with stake ratio Ui to
become a slot leader in the jth time slot is proportional (with negligible deviation) to the ratio Ui
and does not depend on j;

• if Si is a slot leader in the jth timeslot, nobody (except Si) knows about this till the time when he
creates and propagates the block;

• after block creation, each participant can verify the validity of block creation (in particular, that
the block was created by the assigned slot leader);

https://doi.org/10.1017/S0269964825000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825000014


Probability in the Engineering and Informational Sciences 5

• the probability of becoming a slot leader is indifferent w.r.t. stake union or splitting (no sense in
uniting or dividing the stake, because it gives no extra profit).

The additional properties are:

• depending on protocol parameters, some ratio of timeslots may be empty (without a slot leader),
and some of them may have more than one slot leader;

• in the case of multiple slot leaders in one timeslot, we necessary have a so-called orphan block(s),
because only one block from one timeslot may be included in the chain.

Following the definitions and designations, introduced in [3], we consider the function

if (U) = 1 − (1 − f )U, (1)

depending on the active slots coefficient f ∈ (0, 1). The exponential function 1 − if = (1 − f )U is the
solution of the Cauchy’s characteristic identity E(x + y) = E(x) · E(y) (see [9, Ch. 1]), which turns into
the functional equation for if:

if (U) + if (V) − if (U) if (V) = if (U + V) , (2)

whence by induction for a finite set J ⊆ I we get the inequality:∑
i∈J

if (Ui) > if

(∑
i∈J

Ui

)
. (3)

We assume the existence of the finite set of stakeholders (Si)i∈I . Each stakeholder Si owns corre-
sponding stake ratio Ui. For J ⊆ I, denote UJ :=

∑
i∈J Ui. We assume that the total stake is taken as

one:

UI =
∑
i∈I

Ui = 1. (4)

We consider the blockchain during an epoch, consisting of n timeslots indexed by integers
0, 1, . . . , n − 1. The whole slot leader election in each timeslot can be described by the family of inde-
pendent Bernoulli random variables bij ∼ B(1, if (Ui)) attributed to stakeholder Si for i ∈ I and to jth
timeslot: bij = 1 iff stakeholder Si becomes jth slot leader.

For a subset Λ ⊆ I, denote jΛ : I → {0, 1} its characteristic function, that is jΛ(i) = 1 iff i ∈ Λ. So
the set of slot leaders in the jth timeslot is (Si)i∈Λ with the probability

Pr

(⋂
i∈I

b−1ij (jΛ(i))
)
=

∏
i∈IrΛ

(1 − f )Ui ·
∏
i∈Λ

if (Ui) =
by (4)

(1 − f )1−UΛ

∏
i∈Λ

if (Ui), (5)

which does not depend on j.

Remark 2.1. Due to (2), for any two stakeholders Si and Sj with stake ratios Ui and Uj, the probabilities
that at least one of them is a slot leader in some timeslot with number l and that some stakeholder with
stake Ui+Uj is a slot leader in this slot are equal. Thus, there is no reason for stakeholders to unite/divide
their stakes since the profit will be the same.

Usually, the set of stakeholders split into two classes of (H)onest and (M)alicious: (Si)i∈I = (Si)i∈IHt
(Si)i∈IM . Here we assume that all stakeholders are honest, that is act according to block production rules:
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• create blocks in each corresponding timeslot and only in them;
• in the case of a fork, support the longest chain.

In particular, they do not try to provide double spending or splitting attacks.
Note that in this case, forks may occur only due to two reasons—multiple slot leaders in one timeslot

(each of them creates a block of the same height) or time delay in the network (two or more slot leaders
refer to the same block).

3. The longest chain and binomial distribution with delay

In this section, we systematically study the probabilistic model related to the evolution of the longest
chain. At each time slot, all generated blocks form a rooted tree with the genesis block as the root, and
each other block stores the reference to its parent block. The subject of our interest is the longest chain in
this tree from the root to the leaf. Note that one of the stabilized blocks (already included in the longest
chain) can be considered the root of a new full subtree and its longest chain is a part of the whole longest
chain.

For each timeslot j and b ij described in Subsection 2.3, let introduce

bj = 1 −
∏
i∈I

(1 − bij).

Each bi ∼ B(1, f ) is a Bernoulli random variable. All (bj)06j<n are independent. The event bj = 1
means that the jth timeslot receives one or more slot leaders, and each of them extends the tree with a
new block.

From now and to the end of this section, we suppose that (bj)j>0 is an infinite sequence of independent
Bernoulli random variables, and n > 0 will be used as a discrete-time parameter. Another parameter
X ∈ Z>0 is interpreted as a block propagation time measured in timeslos, that is a block created in jth
slot becomes visible only in timeslot with index j + X.

3.1. Random chain WX,n

For our probabilistic model, X, n, l are just integers which in the context of Ouroboros Praos can be
interpreted as the time delay, the epoch length, and the chain length respectively. We define a (X, n)-
chain as an increasing sequence of indexes of timeslots, such that two adjacent terms differ by at least
the time delay:

Definition 3.1. For X, l ∈ Z>0 and n ∈ Z>0, a (X, n)-chain of length l is a sequence c = (ci)16i6l with
ci ∈ {0, 1, . . . , n − 1} such that ci + X 6 ci+1 for 1 6 i < l. In this case, we write ℓ(c) := l.

We denote Cl
X,n the set of all (X, n)-chain with fixed length l, and let CX,n be the disjoint union∐

l>0 Cl
X,n over all lengths.

During a random event that fixes the values of random variables (bj)06j<n, for a given (X, n)-chain
c = (ci)16i6l, it is possible to construct a chain of blocks created exactly in the time intervals indexed
by ci if and only if bci = 1 for all ci. This explains the following definition:

Definition 3.2. The random set ΓX,n ⊆ CX,n of suitable chains is defined by the following formula:

ΓX,n := {c ∈ CX,n | bci = 1, 1 6 i 6 ℓ(c)}.

Remark 3.3. Note that multiple blocks can be generated in a timeslot but only one can be included in
the longest chain. A suitable chain does not store information about a specific block but only about its
timeslot index.
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The random set ΓX,n of suitable chains can contain several longest chains. A natural formalization
of the longest chain rule assumes that we choose the longest chain c with the minimum possible values
of ci. To describe this precisely, we consider a total order < on CX,n, which is a modification of the
lexicographical order:

Definition 3.4. Let (A, >) be a totally ordered set, and (A∗, ·) be the free monoid of words a0a1 · · · an−1,
ai ∈ A, n > 0 in the alphabet A. One can also identify a word a0a1 · · · an−1 with a sequence (ai)06i<n.
The structure binary operation is concatenation:

(a0, a1, . . . an−1) · (b0, b1, . . . bm−1) := (a0, a1, . . . an−1, b0, b1, . . . bm−1);

the neutral element is the empty string ().

(1) The lexicographical order (or dictionary order) < on A∗ is the total order uniquely determined by
the following properties:
(1) the empty string () is the smallest element in A∗;
(2) if a> b in A, then (a, . . .) � (b, . . .) in A∗;
(3) for U, V, W ∈ A∗, if V � W then U · V � U · W.

(2) The Kleene–Brouwer order (or Lusin–Sierpiński order) < on A∗ is the total order uniquely
determined by the following property
(a) the empty string () is the greatest element in A∗;

and the above properties (b) and (c).

Now let take the alphabet A = {0 < 1 < · · · < n − 1} and consider the restriction < of the
Kleene–Brouwer order to the subset of (X, n)-chains CX,n ⊂ {0 < 1 < · · · < n − 1}∗.

Example 3.5. The totally ordered set (C2,5, <) is the following:

(0, 2, 4) ≺ (0, 2) ≺ (0, 3) ≺ (0, 4) ≺ (0) ≺ (1, 3) ≺ (1, 4) ≺ (1) ≺ (2, 4) ≺ (2) ≺ (3) ≺ (4) ≺ ().

In general, min< CX,n = ((i − 1)X)16i6dn/Xe .

Definition 3.6. The optimal random chain WX,n ∈ CX,n is defined as the <-minimal suitable chain:

WX,n := min< ΓX,n.

Directly from the definition of the total order on CX,n, we get the following lemma:

Lemma 3.7. The elements of the optimal random chain WX,n can be calculated sequentially:

• Let Ξ0 = {i | bi = 1}. If Ξ0 = ∅, then WX,n = (), otherwise (WX,n)0 = minΞ0.
• Let we know first k > 1 elements of WX,n. Put Ξk = Ξ0 ∩ [(WX,n)k−1 + X, n). If Ξk = ∅, then
ℓ(WX,n) = k, otherwise (WX,n)k = minΞk .

Corollary 3.8. The optimal random chain WX,n is one of the longest chains in ΓX,n, that is ℓ(WX,n) > ℓ(c)
for all c ∈ ΓX,n.
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For each c ∈ Cl
X,n, let consider two subsets in {0, 1, . . . , n − 1}:

J1(c) := {cj | 1 6 j 6 l},
J0(c) := [0, c1) ∪ [c1 + X, c2) ∪ · · · ∪ [ci + X, ci+1) ∪ · · · ∪ [cℓ + X, n).

(6)

Lemma 3.9. For c ∈ CX,n, WX,n = c iff bj = 1 for all j ∈ J1(c) and bj = 0 for all j ∈ J0 (c). Hence,

Pr
(
WX,n = c

)
= f #J1 (c) (1 − f )#J0 (c) =

f ℓ (c) (1 − f )n−ℓ (c) ·X , if cℓ (c) + X < n,

f ℓ (c) (1 − f )cℓ (c) , otherwise.
(7)

Proof. For c ∈ CX,n, c ∈ ΓX,n iff bj = 1 for all j ∈ J1(c). Under this assumptions, c = min< ΓX,n iff
bj = 0 for all j ∈ J0(c).

Two expressions for #J0(c) corresponds to the cases [cℓ + X, n) is empty or not. �

Definition 3.10. For l ∈ Z>0 and l-tuple k = (k1, . . . , kl) ∈ Zl
>0, we put |k | := k1 + . . . + kl, and for

m> 0, denote

Δl
m := {k ∈ Zl

>0 | |k | < m}. (8)

Note that the cardinality of this set is the number of weak (l + 1)-compositions of (m − 1) (see [22,
1.2])

#Δl
m =

((
l + 1
m − 1

))
=

(
m + l − 1

l

)
. (9)

Lemma 3.11. For each l > 0, there is a bijection

Δl
n−(l−1) X 3 k = (k1, k2, . . . , kl) ↦→ c(k) ∈ Cl

X,n, c(k)i = (i − 1)X + k1 + k2 + · · · + ki.

Proof. Both above sets are nonempty iff n > (l − 1)X.
The inverse map is Cl

X,n 3 c ↦→ ΔXc ∈ Δl
n−(l−1) X with (ΔXc)1 = c1 and (ΔXc)i+1 = ci+1 − ci − X for

i = 1, 2 . . . , l − 1. �

Lemma 3.12. For k ∈ Δl
n−(l−1) X , (7) can be rewritten as follows

Pr
(
WX,n = c(k)

)
=


f l (1 − f ) |k | , if k ∈ Δl

n−(l−1) X r Δ
l
n−lX

f l (1 − f )n−lX , if k ∈ Δl
n−lX .

(10)

In this section, we will study a random variable _X,n := ℓ
(
WX,n

)
, the length of the random chain WX,n,

its expectation

Ln = LX,n := E_X,n =
∑

c∈CX,n

ℓ(c) · Pr
(
WX,n = c

)
, n > 0, (11)

and describe the sequence (Ln)n>0 in terms of its ordinary generating series

L(t) = L (X ) (t) :=
∑
n>0

Lntn. (12)
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1 f

Figure 1. Transition digraph of the Markov chain XX (n).

Remark 3.13. In the case X = 1,

Pr
(
W1,n = c

)
= f ℓ (c) (1 − f )n−ℓ (c) , #Cl

1,n =

(
n
l

)
.

So we obtain binomial distribution for _1,n ∼ B(n, f ) with well-known expectation

E_1,n = nf , L (1) (t) :=
∑
n>0

E_1,ntn =
ft

(1 − t)2
.

3.2. Markov chains XX (n)

In this subsection, we give an equivalent description of random chains WX,n in terms of a family of
discrete-time and time-homogeneous Markov chains XX .

Definition 3.14. For X ∈ Z>0, the Markov chain XX (n) ∈ Z>0, n > 0 is defined by a random mapping
representation ([15, 1.2]):

XX (0) = 0, XX (n + 1) = XX (n) +
bn+1, if X |n
1, otherwise.

(13)

Hence, the transition matrix

Aij := Pr
(
XX (n + 1) = i | XX (n) = j

)
, i, j ∈ Z>0

has the following nonzero entries:

AXi,Xi = 1 − f , Ai+1,i =
f , if X |i
1, otherwise,

i ∈ Z>0. (14)

The graph of this Markov chain is shown in Figure 1.
We adopt Dirac bra-ket notation ([4], [5]) from linear algebra. A state i ∈ Z>0 is written as a

ket |i〉. Nonnegative affine combinations of states are distributions. A bra 〈f | is a linear form on lin-
ear combinations of states. 〈f |x〉 is a pairing, |i〉〈j | for i, j ∈ Z>0 is the matrix element. In this term, (14)
takes form

A =
∑
i∈Z

(
|i + 1〉〈i| + (1 − f ) ( |Xi〉〈Xi| − |Xi + 1〉〈Xi|)

)
.

Let S be a linear operator acting on states as a shift: S |i〉 = |i + 1〉. Note that our Markov chain is
X-periodic, that is:

ASX = SXA. (15)
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Proposition 3.15. The random chain WX,n and the family of random variables
(
XX (k)

)
16k6n are

recovered each from other:

_X,n = dXX (n)/Xe, (16)(
WX,n

)
k = max{m | X (m) = (k − 1)X}, 1 6 k 6 _X,n

XX (n) = X · _X,n −max
{
((WX,n)i + X − n)16i6_X,n , 0

}
.

Proof. For 0 6 k < n, XX (k + 1) = XX (k) + 1 iff k ∈ [0, n) r I0(WX,n). �

Expectations of random variables XX , _m
X,n can be expressed with the help of the corresponding linear

forms 〈XX | and 〈_m
X
|:

EXX (n) = 〈XX |An |0〉, 〈XX |i〉 = i,

E_m
X,n = 〈_m

X |A
n |0〉, 〈_m

X |i〉 = di/Xem. (17)

Compatibility with shift for 〈_m
X
| and for formal series in x takes the form:

〈_m
X |S

X =

m∑
k=0

(
m
k

)
〈_k

X |, (18)

〈e_Xx |SX = 〈e(_X+1)x |. (19)

Lemma 3.16. The transition matrix A satisfies the following recurrent formula:

An |0〉 = (1 − f )n |0〉 +
min{ X,n}∑

k=1
f (1 − f )n−k |k〉 +

n−X−1∑
k=0

f (1 − f )kAn−X−k |X〉. (20)

Or in terms of the generating function 1
1−tA =

∑
n>0(tA)n:

(1 − tA)−1 |0〉 = 1
1 − (1 − f )t |0〉 +

X−1∑
k=1

ftk

1 − (1 − f )t |k〉 +
ft X

(1 − (1 − f )t) (1 − tA) |X〉. (21)

Negative binomial distribution

For r ∈ Z>0, let the random time gX,r is such that XX (gX,r) = rX and XX (gX,r +1) = rX+1. Then gX,r −rX
has the negative binomial distribution:

gX,r − rX ∼ NB(r, f ), Pr(gX,r − rX = k) =
(
k + r − 1

k

)
(1 − f )kf r , k ∈ Z>0. (22)
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3.3. Generating functions for Ln

Lemma 3.17.

(1) The sequence (Ln)n>0 is determined by the following recurrent identity:

Ln = 1 − (1 − f )n + f
∑

06k<n−X

(1 − f )kLn−k−X , n > 0. (23)

(2) In terms of generating function L(t), the identity (23) takes the form

L(t) = L(t) · ft X
∑
n>0

(1 − f )ntn +
∑
n>0

(
1 − (1 − f )n)tn (24)

=
ft X

1 − (1 − f )t L(t) + ft
(1 − t) (1 − (1 − f )t) . (25)

Proof. Write Ln = E_X,n in the form (17). Apply 〈_X | to (20). Finally use 〈_X |An−X−k |X〉 =

1 + 〈_X |An−X−k |0〉, which follows from X-shift invariance (15). �

Theorem 3.18

(1) The generating function L(t) has the form:

L (X ) (t) = ft
1 − (2 − f )t + (1 − f )t2 − ft X + ft X+1

=
ft

(1 − t)2
(
1 + f (t + t2 + · · · + t X−1)

) =
L (1) (t)

1 + f (t + t2 + · · · + t X−1)
.

(26)

(2) The corresponding recurrent relation for coefficients is

Ln = (2 − f )Ln−1 − (1 − f )Ln−2 + fLn−X − fLn−X−1, n > X (27)

with the initial conditions

Ln = 1 − (1 − f )n, n 6 X. (28)

Proof. The formula (26) is an explicit solution of (25) with respect to L(t).
The formula (27) follows from (26) rewritten in the form

(1 − (2 − f )t + (1 − f )t2 − ft X + ft X+1)L(t) = ft.

The formula (28) for initial conditions can be easily obtained if taken into attention that in this case
the length of the chain 6 1. �

Corollary 3.19. The sequence (Ln)n>0 satisfies the recurrent relation:

Ln + f (Ln−1 + Ln−2 + · · · + Lmax{n−X+1,0}) = nf . (29)
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Proof. This follows from (26) rewritten in the form

(1 + ft + ft2 + · · · + ft X−1)L(t) =
∑
n>0

nftn.

�

Theorem 3.18 and the following Theorem 3.20 agree with the scheme of usage of rational generating
functions [22, Thm. 4.1.1] and partial fractions [8, Part 7].

Denote

g = g(X, f ) = f
1 + (X − 1)f . (30)

Let’s also consider two pairs of reciprocal adjoint polynomials (see Definition A.1)

pX, f (t) = t X−1 + f (t X−2 + t X−3 + · · · + 1),
p∗X, f (t) = 1 + f (t + t2 + · · · + t X−1);

(31)

rX, f (t) =
X−2∑
k=0

(
(k + 1) (X − 1) (X − k − 2)

2
f −

(
k + 2
2

))
tk ,

r∗X, f (t) =
X−2∑
k=0

(
k(X − 1) (X − k − 1)

2
f −

(
X − k
2

))
tk .

Theorem 3.20

(1) The generating function admits presentations

L(t) =
gt +

(X
2
)
g2(1 − t)

(1 − t)2
+

g2r∗
X, f (t)

1 + f (t + t2 + · · · + t X−1)
(32)

=
gt

(1 − t)2
+

(X
2
)
g2

1 − t
+ g2

X−1∑
k=1

Uk

1 − qkt
, (33)

where q1, q2, ..., qX−1 are the roots of the polynomial pX, f (t) from (31), and

Uk =
rX, f (qk)∏
j≠i (qk − qj)

, k = 1, 2, . . . , X − 1.

(2) The corresponding formula for the coefficient is

Ln = ng +
(
X

2

)
g2 +

X−1∑
k=1

Ukg2qn
k . (34)

Proof. We subsequently get two decompositions of (26) into partial fractions: firstly incomplete (32),
and then complete (33). In both cases, we can use the indeterminant coefficients method, solving
corresponding linear equations via substitutions t = 1 (two times) and t = qi respectively.

In the second step, the polynomial p∗
X, f (t) must have no multiple roots for f ∈ (0, 1). This follow

from the fact that the polynomial p(t) = (1 − t)p∗
X, f (t) = 1 − (1 − f )t − ft X and its derivative p′ (t) have
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no common roots. Indeed, for X > 1, the polynomial tp′ (t) − Xp(t) = (X − 1) (1 − f )t − X has the single
root X

(X−1) (1−f ) , but p
(

X
(X−1) (1−f )

)
< 0.

The equivalence of (33) and (34) becomes obvious if we represent all elementary fractions in (33)
as power series. �

Example 3.21. For X = 2, g = f /(1 + f ),

Ln = f
n−1∑
m=0

(n − m)(−f )m = gn + g2 − g2(−f )n.

Example 3.22. For X = 3, g = f /(1 + 2f ),

L(t) = gt
(1 − t)2

+ 3g2

1 − t
+ g2< U

1 − tq
Ln = ng + 3g2 + g2<(Uqn),

where q = −f /2 + i
√

f − f 2/4 and q are the roots of p3, f (z) = z2 + fz + f , and

U = 2
r3, f (q)
q − q

= −3 + i
1 − 5f /2√
f − f 2/4

.

3.4. Asymptotic for Ln

Corollary 3.23. For each fixed f ∈ (0, 1) and n → ∞,

Ln = ng +
(
X

2

)
g2 + o(1). (35)

Proof. For f ∈ (0, 1), in Example A.3 from Appendix A, it is shown that all roots of polynomial pX, f (z)
from (31) lie in the open unit disk |z| < 1. Hence from (34), we get (35). �

In Figure 2, the values of Ln/n and their approximations according (35) (up to O(1/n) and O(1/n2))
are shown depending on f. In Figure 2(a), we can see that even O(1/n)-approximation of L(n)/n with
only one term of (35) is very close to the value. Taking the first two terms of (35) improves this approx-
imation and is almost undistinguished from L(n)/n, especially for small values of f, till 0.62, usually in
practice.

Remark 3.24. Taking into account the negative binomial distribution (22) of gX,r − rX and asymptotic
(35) for E_, we get the equality

lim
n→∞

E_X,n

n
= g =

f
1 + (X − 1)f =

r
EgX,r

, (36)

which is true for each r ∈ Z>0.

To pay more attention to the last member in the asymptotic (35), let’s consider the behavior of roots
of pX, f (z) depending on f. For X > 2, the whole set

⋃
f ∈ (0,1) p−1

X, f (0) of root is described in terms of
variables x = <z and y = =z.
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Figure 2. The values of Ln/n and their O(1/n)−, O(1/n2) approximations g, g +
(X
2
) g2

n depending on
f. (a) Ln

n , g, and g +
(X
2
) g2

n for X = 7 and n= 50. (b) g for 1 6 X 6 5.

Proposition 3.25.

(1) For X > 2, R ∩ ⋃
f ∈ (0,1) p−1

X, f (0) =
(0, 1), if X is even,

∅, if X is odd.
(2) For X > 2, elements of

⋃
f ∈ (0,1) p−1

X, f (0) r R satisfy the following polynomial equation in x = <z
and y = =z of degree 2(X − 2)

<zX−1 ·
X−2∑
m=1

=zm

y
=
=zX−1

y
·
X−2∑
m=0

<zm, (37)

where

<zm =

bm/2c∑
k=0

(
m
2k

)
(−y2)kxm−2k ,

=zm

y
=

dm/2e−1∑
k=0

(
m

2k + 1

)
(−y2)kxm−2k−1.

Proof. For z = x + iy, we write pX, f (z) = 0 as a pair of equations <
= pX, f (z) = 0 and then exclude f. �

Example 3.26. For X = 3, Eq. (37) describes the circle (x+1)2 +y2 = 1 or in polar form d = −2 cos(i).
According to Example 3.22 for f ∈ [0, 4], roots of the polynomial p3, f (z) belong to this circle, moreover
in the case f ∈ (0, 1), they are on its arc in the open unit disk |z| < 1.

For X = 4, (37) turns into equation x4 + 2x2y2 + y4 + 2x3 + 2xy2 + 3x2 − y2 = 0 or in polar form
d2 + 2d cos(i) + 4cos2(i) − 1 = 0. So the pair of complex conjugate roots is described by the formulas

d = − cos(i) +
√
1 − 3 cos2(i), c/3 < i < c/2.

In Figure 3, the roots of the polynomial pX, f (z) in the unit disk for f ∈ (0, 1) are shown in two cases
X = 4 and X = 7.

Note that for the roots qk of the polynomial pX, f (t), the values |qk |/f
1

X−1 are close to 1. Moreover,
|qk |/f

1
X−1 = 1 for X = 2, 3; and for any X,
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Figure 3. The roots of pX, f (z) in the unit disk |z| < 1 for f ∈ (0, 1) and X = 4, 7.

Figure 4. The values |qk |/ X−1
√

f for the roots qk of pX, f (t) depending on f for X = 4, 7.

|qk |/f
1

X−1 → 1 whenever f → 0 or f → 1.

In Figure 4, the values |qk |/ X−1
√

f for the roots qk of the polynomial pX, f (t) are shown depending on
f for X = 4 and X = 7.

Proposition 3.27.

(1) The generating function L(t) is a product of two series

L(t) =
(∑

n>1
nftn

)
·
∑
m>0

(−f )m (t + t2 + · · · + t X−1)m

=

(∑
n>1

nftn
)
·

∑
k=(k1,k2,...,kX−1 ) ∈ZX−1>0

(−f ) |k |
(

|k |
k1, k2, . . . , kX−1

)
tk1+2k2+···+(X−1)kX−1 . (38)
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(2) The corresponding expressions of Ln as polynomials in f are the following:

Ln = f
n−1∑
m=0

anm (−f )m,

anm =
∑

k1,k2,...,kX−1>0
k1+k2+···+kX−1=m

k1+2k2+···+(X−1)kX−1<n

(n − k1 − 2k2 − · · · − (X − 1)kX−1)
(

m
k1, k2, . . . , kX−1

)
.

(39)

In particular, an0 = n.

Proof. The identity (38) rewrites (26) in terms of series, (39) is an equivalent form of (38). �

Proposition 3.28. Coefficient of series (39) for Ln admits the asymptotic

anm

n
↗

n→∞
(X − 1)m. (40)

Proof.

anm

n
↗

n→∞

∑
k1,k2,...,kX−1>0

k1+k2+···+kX−1=m

(
m

k1, k2, . . . , kX−1

)
= (X − 1)m.

�

Remark 3.29. The asymptotic (35) for Ln and the asymptotic (40) for its coefficients at f are consistent
within the circle of convergence f < (X − 1)−1.

Remark 3.30. For small/large f, we have the following approximations:

Ln ≈ fn, whenever f X � 1. (41)

Ln ↗ dn/Xe, whenever f ↗ 1. (42)

The fastest way to get (42) is to look on (45). The last formula (42) is illustrated in Figure 5 and the
values of Ln and Ln/n are shown depending on f for X = 7 and n = 7X + r, r = 0, 1, 2, 3, 4, 5, 6.

3.5. Alternative formula for Ln

The rest of this section is devoted to two alternative proofs of another formula for Ln (45).

Lemma 3.31. L(t) is the product of two series:

L(t) =
©«
∑
l>0

f l
∑

k∈Zl
>0

(1 − f )lX+|k | · t |k |
ª®®¬ ·

∑
k>0

(
1 − (1 − f )k )tk . (43)

Proof. Note that the ring R[[t]] of formal series is local whose maximal ideal m consists of the series∑
n>0 antn with a0 = 0. For each a ∈ m, (1 − a)−1 = ∑

l>0 al, where the infinite sum is defined because
expression for each its coefficient at tn turns into a finite sum.
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Figure 5. The values of Ln and Ln/n depending on f for X = 7 and 49 6 n 6 55. (a) Ln. (b) Ln/n.

From (24), we get

L(t) =
(
1 − ft X

∑
k>0

(1 − f )ktk
)−1

·
∑
k>0

(
1 − (1 − f )k )tk

=
©«
∑
l>0

(
ft X

∑
k>0

(1 − f )ktk
) lª®¬ ·

∑
k>0

(
1 − (1 − f )k )tk .

�

Lemma 3.32. For l ∈ Z>0, n ∈ Z>0, the following identity between polynomials from Z[f ] is true:

∑
k∈Δl

n

f l (1 − f ) |k | = 1 − (1 − f )n
l−1∑
m=0

(
n + m − 1

m

)
f m. (44)

Proof. By induction on l, we have: For l = 0, (44) takes the from #Δ0
n = 1. For l > 1,

∑
k∈Δl

n

f l (1 − f ) |k | =
∑

k′∈Δl−1
n

f l−1(1 − f ) |k′ |
n−|k′ |−1∑

k′′=0
f (1 − f )k′′

=
∑

k′∈Δl−1
n

f l−1(1 − f ) |k′ |
(
1 − (1 − f )n−|k′ | )

=
∑

k′∈Δl−1
n

f l−1(1 − f ) |k′ | −
(
n + l − 2

l − 1

)
f l−1(1 − f )n.

�

Proposition 3.33. Ln admits the following presentations:

Ln = dn/Xe −
dn/Xe−1∑

l=0
(1 − f )n−lX

l∑
m=0

(
n − lX + m − 1

m

)
f m. (45)
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Proof. The first way: In terms of coefficients (43) can be rewritten as

Ln =

dn/Xe−1∑
l=0

∑
k∈Δl

n−lX

f l (1 − f ) |k |
(
1 − (1 − f )n−lX−|k | )

=

dn/Xe−1∑
l=0

∑
k∈Δl

n−lX

f l (1 − f ) |k | −
dn/Xe−1∑

l=0

(
n − lΔ + l − 1

l

)
f l (1 − f )n−lX .

(46)

Then we can apply (44) to the first summand of (46).
The second way: The explicit formula for the expectation (11) together with expressions for proba-

bilities (10) gets

Ln =

dn/Xe−1∑
l=1

l
∑

k∈Δl
n−lX

f l (1 − f )n−lX +
dn/Xe∑

l=1
l

∑
k∈Δl

n−(l−1) XrΔ
l
n−lX

f l (1 − f ) |k |

=

dn/Xe−1∑
l=1

l
(
n − lX + l − 1

l

)
f l (1 − f )n−lX

+
dn/Xe∑

l=1
l

∑
k∈Δl

n−(l−1) X

f l (1 − f ) |k | −
dn/Xe−1∑

l=1
l

∑
k∈Δl

n−lX

f l (1 − f ) |k | .

Again we can apply (44) to the second and third summands. �

3.6. Moments and variance

Let consider the mixed generating function for moments of _X,n:

LX (t, x) :=
∑
n>0

tn
∑
m>0

E_m
X,n ·

xm

m!
.

Theorem 3.34 The mixed generating function for moments of _X,n is the following:

LX (t, x) =
1 + fex (t + t2 + · · · + t X−1)

1 − (1 − f )t − fext X
. (47)

Proof. We describe this generating function in terms of the transition matrix A of the Markov chain.

LX (t, x) = 〈e_m
X | (1 − tA)−1 |0〉

=
by (21)

1
1 − (1 − f )t 〈e

_m
X |0〉 +

X−1∑
k=1

ftk

1 − (1 − f )t 〈e
_m
X |k〉 + ft X

1 − (1 − f )t 〈e
_m
X | (1 − tA)−1 |X〉

=
by(15) ,(19)

1 + fex (t + t2 + · · · + t X−1)
1 − (1 − f )t + fext X

1 − (1 − f )t LX (t, x).

Finally, the obtained identity is solved with respect to LX (t, x). �
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Lemma 3.35. For a, b, c, d independent on x,

dm

dxm
aex + b
cex + d

����
x=0

=

n∑
k=1

k!(−c)k−1(ad − bc) · S(n, k)
(c + d)k+1 . (48)

Proof. We apply Faá di Bruno’s formula for mth derivative of the composition of the exponent with a
fractional linear function. Stirling numbers of the second kind appear here as the values Bn,k (1, . . . , 1)
of incomplete exponential Bell polynomials. �

Corollary 3.36. For m ∈ Z>0, the generating function for m-th moments of _X,n is the following∑
n>0

_m
X,ntn =

m∑
k=1

(−1)k−1k!S(m, k)f kt (k−1) X+1

(1 − t)k+1 (1 + f (t + t2 + · · · + t X−1)
)k . (49)

Example 3.37. The generating function for second moments of _X,n is the following∑
n>0

_2
X,ntn ==

ft(1 − t + ft + ft X)
(1 − t)3

(
1 + f (t + t2 + · · · + t X−1)

)2 . (50)

Theorem 3.38 The variance of _X,n admits the following asymptotic for n → ∞:

Var_X,n = n
f (1 − f )

(1 + (X − 1)f )3
+ o(n). (51)

Proof. Let’s consider a partial fraction decomposition of (50) in the form

A
(1 − t)3

+ B
(1 − t)2

+ C
1 − t

+ R(t)(
1 + f (t + t2 + · · · + t X−1)

)2 .
The values A =

2f 2
(1+(X−1)f )2 and B =

f −4f 2+(X−1) ( X−3)f 3
(1+(X−1)f )3 allow to obtain the asymptotic E_2

X,n = n2g2 +

n f −f 2+X (X−1)f 3
(1+( X−1)f )3 + o(n). From (35), we get (E_X,n)2 = n2g2 + nX(X − 1)g3 + o(n). Finally, Var_X,n =

E_2
X,n − (E_X,n)2. �

3.7. Binomial distribution with random delay

In this subsection, we generalize the longest chain distribution to the case of random delay.
Let Γ be a transition digraph of a finite Markov chain. We assume that Γ is a tree with additional

loops at the root and leaves. First, we will consider a special case of such a digraph, shown in Figure 6,
where the root has s > 1 children with weights fi > 0, i = 1, . . . , s and a loop with the weight f0 =

1 − f1 − · · · − fs > 0. Each other internal vertex has a single child with the weight 1 and the maximal
subchains have lengths Xi ∈ Z>0, i = 1, . . . , s.

Let Ts be the infinite s-ary tree considered as a digraph with all edges oriented from the root as
shown in Figure 7. Vertexes of this tree are labeled by elements of the free monoid {1, 2 . . . , s}∗, that
is by strings in the alphabet {1, 2 . . . , s}. The monoid {1, 2 . . . , s}∗ acts on Ts by endomorphisms:
{1, 2 . . . , s}∗ 3 w ↦→ Sw ∈ End(Ts). Restricted to the vertexes, this action is isomorphic to the left
regular action: Sw (w′) = ww′.

Let Γ̃ be an infinite transition digraph obtained if substitute each vertex in the infinite tree Ts by the
digraph Γ as shown in Figure 8. The vertices of Γ̃ are labeled by tuples i1, . . . , ik; j, where i1, . . . , ik are
elements of {1, 2, . . . , s} and j ∈ Z/XikZ. So |i1, . . . , ik; Xik 〉 = |i1, . . . , ik; 0〉.
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Figure 6. Finite transition digraph Γ.
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Figure 7. The infinite s-ary tree Ts.

Let (*n)n>0 be the sequence of independent random variables taking values 0, 1, 2, . . . , s, respectively,
with probabilities f0, f1, . . . , fs. The following random mapping representation generalizes Definition
3.14 and describes the Markov chain (X (n))>0 corresponding to stochastic digraph Γ̃.

Definition 3.39. X (0) = |; 0〉, and if X (n) = |i1, . . . , ik; j〉, then

X (n + 1) =


X (n), if j = 0 ∧ *n = 0,

|i1, . . . , ik , *n; 1〉, if j = 0 ∧ *n ≠ 0,

|i1, . . . , ik; j + 1〉, if j ≠ 0.

Negative binomial distribution

One can generalize (22): For r ∈ Z>0, let the random time gr is such that XX (gr) = |i1, . . . , ir; 0〉 and
XX (gr +1) = |i1, . . . , ir , *gr ; 1〉. Then gr −

∑r−1
r′=0 X*gr′

has the negative binomial distribution NB(r, 1− f0).
LetA be the transitionmatrix corresponding to the stochastic digraph Γ̃. The following generalization

of (21) is true.

Lemma 3.40. The Green function (1 − tA)−1 :=
∑

n>0(tA)n satisfies the following recurrent relation:

(1 − tA)−1 |0〉 = 1
1 − f0t

|0〉 +
s∑

i=1

Xi−1∑
k=1

fitk

1 − f0t
|i; k〉 +

s∑
i=1

fit Xi

(1 − f0t)
(1 − tA)−1 |i; Xi〉. (52)

The action of the free monoid {1, 2, . . . , s}∗ on Ts is carried over to Γ̃: In terms of generators, for
each i = 1, 2, . . . , s, there exists weight preserving endomorphism of the stochastic digraph Γ̃

Si : Γ̃ → Γ̃, |i1, . . . , ik; j〉 ↦→ |i, i1, . . . , ik; j〉.
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Figure 8. Transition digraph of the infinite Markov chain with random delay.

Hence, the corresponding linear operators commute with the transition matrix:

ASi = SiA. (53)

Let us consider a function on edges of Γ̃, which extends to linear functional, given by the formula

〈_ |i1, . . . , ik; j〉 = k. (54)

The subject of our interest is the random variables

_n := 〈_ |An |; 0〉. (55)

For 〈e_x | := ∑
m>0

xm

m! 〈_
m |, generalization of (19) is true:

〈e_x |Si = 〈e(_+1)x |. (56)

Theorem 3.41 The mixed generating function L( t, x) :=
∑

n>0 tn
∑

m>0 E_m
n · xm

m! is given by the identity

L(t, x) =
1 + ex ∑s

i=1 fi (t + t2 + · · · + t Xi−1)
1 − f0t − ex ∑s

i=1 fit Xi
.
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Proof.

L(t, x) = 〈e_x | (1 − tA)−1 |0〉

=
by (52)

1
1 − f0t

〈e_x |0〉 +
s∑

i=1

X−1∑
k=1

fitk

1 − f0t
〈e_x |i; k〉 +

s∑
i=1

fit X

1 − f0t
〈e_x | (1 − tA)−1 |i; Xi〉.

=
by (53), (19)

1 + ex ∑s
i=1 fi (t + t2 + · · · + t Xi−1)

1 − f0t
+

ex ∑s
i=1 fit Xi

1 − f0t
L(t, x).

�

Like in the proof of the special case, one can use the corollary (48) of Faá di Bruno formula to obtain
expressions for generating function for mth moments of _n very close to (49).

Theorem 3.42 The generating function L(t) = ∑
n>0 E_ntn is

L(t) = d
dx

L(t, x) |x=0 =
t
∑s

i=1 fi
(1 − t)2(1 + ∑s

i=1 fi (t + t2 + · · · + t Xi−1))
.

Its partial fraction decomposition takes the form

L(t) =
t
∑s

i=1 fi(
1 + ∑s

i=1 fi (Xi − 1)
)
(1 − t)2

+

(∑s
i=1 fi

) (∑s
i=1

(Xi
2
)
fi
)

(
1 + ∑s

i=1 fi (Xi − 1)
)2 (1 − t)

+ R(t)
1 + ∑s

i=1 fi (t + t2 + · · · + t Xi−1)
,

where

R(t) =

(∑s
i=1 fi

) (∑s
i=1

(Xi
2
)
fi
) ∑s

i=1 fi
∑Xi−2

k=0 (Xi − k − 1)tk(
1 + ∑s

i=1 fi (Xi − 1)
)2 −

(∑s
i=1 fi

) ∑s
i=1 fi

∑Xi−2
k=0

(Xi−k
2

)
tk(

1 + ∑s
i=1 fi (Xi − 1)

) .

Similarly to (33), one can get the full fraction decomposition of L(t) and generalization of (34) for
expectations E_n. According to Example A.3, all roots of the denominator 1+∑s

i=1 fi (t+ t2 + · · · + t Xi−1)
are out of the closed unit disc |t | > 1. So finally we get the asymptotic formula generalizing (35).

Theorem 3.43 For each fixed f ∈ (0, 1) and n → ∞,

E_n =
n
∑s

i=1 fi
1 + ∑s

i=1 fi (Xi − 1) +

(∑s
i=1 fi

) (∑s
i=1

(Xi
2
)
fi
)

(
1 + ∑s

i=1 fi (Xi − 1)
)2 + o(1). (57)

Let % be a random variable taking values Xi with probabilities fi/f for i = 1, 2, . . . , s, where
f = f1 + f2 + · · · + fs. Then the expression (57) can be rewritten in the form very close to (35)

Ln = ng + g2E
(
%

2

)
+ o(1), g =

f
1 + f E(% − 1) . (58)

Remark 3.44. We consider special stochastic digraphs: finite trees with loops allowed only at the root
and leaves, and where all edges are oriented from the root to the leaves. We say that two such stochastic
digraphs Γ and Γ′ are equivalent if
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• the bijection between leaves of Γ and leaves of Γ′ is given;
• for each path c in Γ from the root to a leaf and the path c′ in Γ′ from the root to the corresponding

leaf
• c and c′ have the same length,
• the products of the weights of all edges in c and c′ are equal.

For each such stochastic digraph Γ, there exists a unique equivalent stochastic digraph Γ′ where each
internal vertex has a single child with the weight 1 (i.e., similar to the one described at the beginning of
this section and shown in Figure 6).

If we apply the construction from this subsection to such a stochastic digraph Γ, then the distributions
of the resulting random variables _n will be independent of the representative Γ of the equivalence class.

4. Stochastic characteristics of block generation process

Let us summarize the main practical results of the previous section: two descriptions (7) and (10) of
the probability distribution of the longest chain WX,n; explicit formulas for expectation of the length _X,n
of the longest chain: (34) (exponential form) and (45), (39) (polynomial on f ); asymptotic formulas for
E_X,n when n → ∞: (35) (fixed delay X) and (57), (58) (random delay) and (51) for Var_X,n.

In this section, we find the average value of blocks created in one timeslot, depending on the active
slot parameter f. Using this result and results about the average length of the longest chain, obtained in
Section 3, we can estimate the efficiency of the block creation process.

4.1. The expected number of slot leaders in a timeslot

The random number of slot leaders in the fixed jth timeslot is the sum aj =
∑

i∈I bij of independent
Bernoulli random variables bij ∼ B(1, if (Ui)). Thus, all aj are independent, and regardless of the slot
index j, have the same Poisson binomial distribution:

Pr(aj = k) =
∑

I′∈( I
k)
(1 − f )1−

∑
i∈I′ Ui

∏
i∈I′

iUi (f ), (59)

and (as the expected value of the sum of independent random variables)

Eaj =
∑
i∈I

Ebij =
∑
i∈I

if (Ui). (60)

Lemma 4.1. For the above random variables aj with Poisson binomial distribution (59), the expectation
is represented by the polynomial series

Eaj = f +
∑
k>2

akf k , ak =
∑
i∈I

Ui

k
· (1 − Ui) (2 − Ui) · · · (k − 1 − Ui)

(k − 1)! (61)

convergent for |f | < 1.

Proof. We rewrite each summand in (60) using binomial series (1 − f )Ui =
∑

k>0
(Ui

k
)
(−f )k . �

For U ∈ (0, 1], let consider the function:

Φf (U) :=
if (U)
U

=
1 − (1 − f )U

U
. (62)
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It can be continued continuously:

Φf (0) := lim
U↘0

Φf (U) = − log(1 − f ). (63)

One can rewrite (60) as

Eaj =
∑
i∈I

UiΦf (Ui). (64)

In the case when all stakeholders have the stake ratio Uj = 1/|I | and each aj has the binomial distribution
B( |I |, if (1/|I |)),

Eaj = Φf (1/|I |). (65)

More generally, one can group stakeholders in (64) by its stake ratios:

Proposition 4.2. Suppose that I is the disjoint union
∐

k∈K Ik and for each i ∈ Ik the stake ratio Ui =

Vk/|Ik | depends only on k, with
∑

k Vk = 1. In this case:

Eaj =
∑
k∈K

VkΦf (Vk/|Ik |). (66)

Proposition 4.3. For the above random variables aj with Poisson binomial distribution (59), the
following inequalities hold:

Φf (1) = f 6 Eaj 6 Φf (1/|I |). (67)

The lower bound is reached when a single stakeholder owns the whole stake. The upper bound is reached
in the case (65) of equal stake ratios.

Proof. The first inequality follows from (60) using (3) and (4). The upper bound is found by the
Lagrange multipliers method. �

Proposition 4.4. The expected values Eaj admit the following limit cases:

(1) for fixed (Ui)i∈I and f ↘ 0,

Eaj = f + a2f 2 + O(f 3),

where a2 =
1−∑

i∈I U
2
i

2 and, in particular when all Ui are the same, a2 =
1−1/|I |

2 ;
(2) for fixed (Ui)i∈I and f ↗ 1,

Eaj ↗ |I |;

(3) for fixed f and maxi∈I Ui → 0,

Eaj → Φf (0) = − ln(1 − f ) =
∑
k>1

f k

k
.
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Figure 9. The values of Eaj = Φf (1/|I |) depending on f for equal stakes Uj = 1/|I |. (a) |I | = 1, 2, 3;
f ∈ [0, 1]. (b) |I | = 1, 2, 3, 5, 10,∞; f ∈ [0, .95].

Proof. Items (1) and (2) follow directly from (61) and (60) respectively.
To prove (3) put U = maxi∈I Ui. Then by (64) Φf (0) − Eaj 6 Φf (0) −Φf (U). �

On Figure 9, the values of Eaj = Φf (1/|I |) are shown depending on f in the case of equal stakes
Uj = 1/|I | for |I | = 1, 2, 3, 5, 10,∞. Here we can see that, in the case of equally distributed stake, the
average number of slot leaders in a timeslot for small f (less than 0.2) does not depend on the number
of stakeholders. But the difference between charts increases dramatically when f tends to 1.

4.2. Efficiency

Definition 4.5. The efficiency is the ratio of the expected number of useful blocks to the expected number
of all produced blocks during the epoch:

Eff :=
E_X,n∑
06j<n Eaj

=
LX,n

n · ∑i∈I i(Ui)
.

Note that the number of orphan blocks is
∑

06j<n Eaj − E_X,n and so the rate of orphan blocks is
1 − Eff .

If n � 1, one can use the asymptotic E_X,n ≈ ng from (35) or (58); for the case of small stakes
maxi∈I Ui � 1, we have Eaj ≈ Φf (0) = − log(1 − f ). So in this case, one can use the approximation

Eff ≈ g
Φf (0)

=
−f /log(1 − f )
1 + (X − 1)f . (68)

If additionally f � 1, one can replace the numerator in (68) by 1:

Eff ≈ 1
1 + (X − 1)f .

In both cases for the random delay presented by the data (Xi, fi)i=1,2,...,s, one should put f = f1+f2+· · ·+fs
and X = E% =

f1 X1+f2 X2+···+fs Xs
f . As was expected, the large X causes the smaller efficiency, but for all X

efficiency tends to 0 when f tends to 1.
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Figure 10. The asymptotic of efficiency. (a) Eff (f ) for X = 1, 2, 3, 5, 10. (b) Eff X (h) − Eff∞(h) for
X = 1, 2, 3, 5, 10.

One can inverse the identity (30) as

f =
g

1 − (X − 1)g , g ∈ [0, 1/X],

and substituting this value in (68), we express the efficiency depending on the new dimensionless
quantity h = X · g, the expected length of chain produced during the propagation time X

Eff ≈ Eff X (h) :=
h

X log
(
1 + h

X (1−h)

) . (69)

Note that Eff∞(h) := limX→∞ Eff X (h) → 1 − h. So we get an approximative conservation law:

Eff +h ≈ 1 for X � 1. (70)

The deviation Eff X (h) − Eff∞(h) from the linear law admits the following series expansion at h= 0

Eff X (h) − Eff∞(h) = h

X log
(
1 + h

X (1−h)

) + h − 1 =
h
2X

− h2

12X2
+ (1 − 2X)h3

24X3
+ O(h4).

On Figure 10 for X = 1, 2, 3, 5, 10 is shown (a) the asymptotic of Eff according to (68) depending on
f, (b) the deviation Eff X (h) − Eff∞(h).

4.3. About length of forks

Forks are much more dangerous in the PoS consensus protocol than in PoW. It is connected with the
procedure of slot leader election, which is strictly bound to the epoch. In this case, if the fork occurs
with a length more than epoch length, there will be many problems not only with canceled transactions
but also with protocol operation. So the probability distribution of fork length is also of significant
importance.

The notion of a fork is widely used but still lacks formalization, though intuitively one understands
its meaning. It causes additional difficulties in fork length estimation.
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In our model, a fork may occur because of two reasons:

(1) two (or more) blocks were created by different slot leaders in different timeslots during the time
which is less than block propagation time;

(2) there are two (or more) slot leaders at the same timeslot.

Note that the influence of the first reason may be reduced, if we add the new rule for choosing a valid
branch:

Among two valid equal-length branches of the fork the slot leader
should choose the one that is started in the earlier timeslot.

In this case, the forks that occur for the first reason may have only the length 1. If we consider the
second reason, we note that the length of the current fork may increase only in the case when the next
nonempty timeslot has more than 1 slot leader. In other words, the timeslot with only one slot leader
stops the fork.

For a fixed timeslot, let Λ ⊆ I be the random set such that (Si)i∈Λ is the set of slot leaders in the fixed
timeslot. As the special cases of (5), we get:

Pr(Λ = ∅) = 1 − f , (71)

and for each i ∈ I,

Pr(Λ = {i}) = (1 − f )1−Uiif (Ui) ' (1 − f )if (Ui). (72)

The symbol “'” in (72) means inequality “>” and approximation “≈” whenever all Ui � 1. From (71)
and (72), we get

Pr(Λ ≠ ∅) = f ,

Pr (#Λ = 1) =
∑
i∈I

Pr(Λ = {i}) ' (1 − f )
∑
i∈I

if (Ui) >
by (3)

(1 − f )if (UI ) = f (1 − f ).

Finally, we get the inequality for the conditional probability

Pr (#Λ > 1 |Λ ≠ ∅) = Pr (Λ ≠ ∅) − Pr (#Λ = 1)
Pr (Λ ≠ ∅) 6 f .

Lemma 4.6. The conditional probability that r fixed subsequent timeslots from the random chain WX,n
obtain more than 1 slot leaders is majorized by fr.

The value fr from the lemma above can be considered an upper bound on the probability that a new
fork of length r will begin in a fixed habitable timeslot.

Remark 4.7. Because the probability that a fixed timeslot obtains k slot leaders is ≈ f k (for small k),
with good approximation, we can assume that each of r slots has exactly two leaders. In each of r time
slots, slot leaders with probabilities 1/2 continue either two different branches or both the same branch.
So the value (f /2)r is a more closed approximation for the probability that a new fork of length r will
begin in a fixed habitable timeslot
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4.4. Conclusion

The paper’s results allow us to estimate different important parameters, connected with the operation
of Ouroboros-based blockchains. Within the framework of our mathematical model, explicit analytical
expressions for the quantities of interest to us are obtained, allowing convenient approximation. They
were nevertheless obtained under the following simplified assumptions:

• all slot leaders in the current epoch are honest and act according to the consensus protocol;
• block propagation time is either a constant or random variable with finite support;
• epoch length is sufficiently large to use the asymptotics.

Deviations from at least one of these assumptions cause additional analytical problems, which, in
turn, essentially complicate research. The most interesting and promising direction of the next research
may be an estimation of the longest chain length under the presence of an adversary, which tries to
split the blockchain. Note that this problem can’t be solved by simply reducing the value of the active
slot coefficient proportionally to the stake of honest slot leaders, because Adversary may try to use
honest stakeholders’ potential for splitting, by supporting the creation of chains of equal length. We
also have a conjecture that the presence of an adversary cannot decrease the speed of chain growing
by honest participants, though adversarial activity increases the length of forks and block stabilization
time together with the share of orphan blocks, as well as decreases chain quality.

Note that results characterizing blockchain behavior in a model without adversary are also of great
interest. In reality, most of the time the blockchain operates without any visible attacks. For example,
during Cardano’s work (since 2018), no double spending or splitting attacks were fixed—maybe because
of protocol security, which makes such attacks impractical. Moreover, knowing the expected character-
istics of the chain parameters (length of the longest fork, growth of the chain, number of lost blocks,
etc.) allows an observer to distinguish some deviations in the behavior of the chain that may be caused
by the activity of an attacker, and to be aware of his malicious actions.

The obtained results may also be used by developers to choose blockchain parameters, first of all,
active slot coefficient f, according to their preferences, such as to increase the speed of chain growing
or to minimize the orphan block ratio.
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Appendix A. Schur–Cohn test

Definition A.1. For a complex polynomial p of degree n, its reciprocal adjoint polynomial p∗ is defined
by p∗(z) := znp(z̄−1) and its Schur transform Tp by Tp := p(0)p − p∗(0)p∗.

Let consider the sequence Tp,T2p, . . . ,Tnp of iterated Schur transforms Tkp := T (Tk−1p), where
Tk−1p is to be regarded as a polynomial of degree n − k + 1 even if its leading coefficient is zero

The next theorem describes the Schur–Cohn test in its simplest form sufficient for our purposes:

Theorem A.2 [8, Thm. 6.8b] Let p ≠ 0 be a polynomial of degree n. All zeros of p lie outside of the
closed unit disk |z| 6 1 iff

Tkp(0) > 0, k = 1, 2, . . . , n. (A.1)
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Table A1. Ln/n ≈ g = f /(1 − (X − 1)f ).

X

f
0.050 0.100 0.250 0.333 0.500 0.632 0.667

1 0.050 0.100 0.250 0.333 0.500 0.632 0.667
2 0.048 0.091 0.200 0.250 0.333 0.387 0.400
3 0.045 0.083 0.167 0.200 0.250 0.279 0.286
4 0.043 0.077 0.143 0.167 0.200 0.218 0.222
5 0.042 0.071 0.125 0.143 0.167 0.179 0.182
8 0.037 0.059 0.091 0.100 0.111 0.117 0.118
10 0.034 0.053 0.077 0.083 0.091 0.094 0.095
15 0.029 0.042 0.056 0.059 0.063 0.064 0.065
20 0.026 0.034 0.043 0.045 0.048 0.049 0.049

Table A2. Eaj = Φf (1/|I |) = |I |
(
1 − |I |

√
1 − f

)
.

I
f

0.050 0.100 0.250 0.333 0.500 0.632 0.667

1 0.050 0.100 0.250 0.333 0.500 0.632 0.667
2 0.051 0.103 0.268 0.367 0.586 0.787 0.846
3 0.051 0.104 0.274 0.379 0.619 0.850 0.921
4 0.051 0.104 0.278 0.385 0.636 0.885 0.961
10 0.051 0.105 0.284 0.397 0.670 0.951 1.041
∞ 0.051 0.105 0.288 0.405 0.693 1.000 1.100

Note that the sign test in (A.1) for each k is based on the application of Rouché’s theorem [8, Thm.
4.10b].

Example A.3. Let p∗(z) = anzn + · · · + a1z + a0 ≠ 0 be a polynomial with real coefficients satisfying
the following inequalities

a0 > a1 > a2 > · · · > an > 0. (A.2)

Then coefficients of Tp∗ (and hence also Tkp∗, k = 1, 2, . . . , n) satisfy the same inequalities, that is

a0a0 − anan > a0a1 − anan−1 > · · · > a0an−1 − ana1 > 0.

So Tkp∗(0) for k = 1, 2, . . . , n, all zeros of p∗ lie outside of the closed unit disk, and all roots of its
reciprocal adjoint p(z) are the images under inversion in the unit circle and lie in the open unit disk
|z| < 1.

Appendix B. Numerical results

In this subsection, we give numerical values calculated according to the obtained formulas, to show
how our results may be used during parametrization of the consensus protocol.

Table A1 shows the ratio between the longest chain and the number of timeslots in this epoch Ln/n ≈
g = f /(1 − (X − 1)f ) defined by (30), Figure 2(b), thus showing the practically achievable active slot
coefficient g. As can be seen from the table, this value drops with the increased network delivery delay.
For example, suppose f = 0.05, the timeslot duration is set to 1 second, and the network propagation
time is 8 seconds (i.e., X = 8). Then the practical average block time is 1/0.037 = 27 seconds, which is
7 seconds greater than the assumed value for the expected average block time of 1/f = 20 seconds.
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Table B1. Eff ≈ −f /log(1 − f )/(1 + (X − 1)f ).

X

f
0.050 0.100 0.250 0.333 0.500 0.632 0.667

1 0.975 0.949 0.869 0.822 0.721 0.632 0.607
2 0.928 0.863 0.695 0.617 0.481 0.387 0.364
3 0.886 0.791 0.579 0.494 0.361 0.279 0.260
4 0.848 0.730 0.497 0.411 0.289 0.218 0.202
5 0.812 0.678 0.435 0.353 0.240 0.179 0.165
8 0.722 0.558 0.316 0.247 0.160 0.117 0.107
10 0.672 0.500 0.267 0.206 0.131 0.095 0.087
15 0.573 0.395 0.193 0.145 0.090 0.064 0.059
20 0.500 0.327 0.151 0.112 0.069 0.049 0.044

Table A2 shows the average number of slot leaders per timeslot depending on the number of stake-
holders Eaj = Φf (1/|I |) = |I |

(
1 − |I |

√
1 − f

)
(65), Figure 9, keeping the assumption that stake is equally

distributed among all stakeholders. It can be seen that relatively big values of f lead to the increased
number of stakeholders per timeslot with respect to the increased number of consensus participants (i.e.,
this gives more active timeslots than are expected with the given f ).

Finally, Table B1 shows the efficiency—the ratio of blocks included in the longest chain to all blocks
generated during the epoch Eff ≈ −f /log(1 − f )/(1 + (X − 1)f ) (68), Figure 10(a). As expected, the
orphan block ratio increases with network delivery delay. For example, for X = 1 and f = 0.1, the ratio
of orphan blocks is 1−0.949 = 0.051; when delivery delay increases to X = 5, the orphan block ratio
reaches 0.322—thus, almost 1/3 of all generated blocks are lost.

Table B1 allows the selection of more optimal combinations of f, X, and timeslot duration. Let us
have block propagation time over the network as 5 seconds, and we expect the average block generation
time of 20 seconds. In this case, we can select a timeslot duration of 1 second, so f = 1/20 = 0.05, and
X = 5. The orphan block ratio is 1−0.812 = 0.188. At the same time, the timeslot duration can be set to
5 seconds, so f = 1/4 = 0.25, and X = 1. The latter gives us the orphan block ratio of 1− 0.869 = 0.131.
Thus, having the same p2p network characteristics, we increased the longest chain density by 5% just
having other numerical parameters.

Let us remember that we consider the model with 100% honest participation, so all cells in the
tables are filled, even with impractical combinations where values in the table for delivery delays X

greatly exceed 1/f . For example, f = 1/2 = 0.5 and X = 20 mean that during one block propagation
time, on average, there will be generated nine more blocks not seen by the next slot leaders. At the same
time, with only honest participation, eventually, there will be reached the longest chain view, and for
this set of parameters, the ratio of orphan blocks reaches 1 − 0.069 = 0.931.
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