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Abstract
Many science phenomena are modelled as interacting particle systems (IPS) coupled on static networks. In reality,
network connections are far more dynamic. Connections among individuals receive feedback from nearby individ-
uals and make changes to better adapt to the world. Hence, it is reasonable to model myriad real-world phenomena
as co-evolutionary (or adaptive) networks. These networks are used in different areas including telecommunication,
neuroscience, computer science, biochemistry, social science, as well as physics, where Kuramoto-type networks
have been widely used to model interaction among a set of oscillators. In this paper, we propose a rigorous formu-
lation for limits of a sequence of co-evolutionary Kuramoto oscillators coupled on heterogeneous co-evolutionary
networks, which receive both positive and negative feedback from the dynamics of the oscillators on the networks.
We show under mild conditions, the mean field limit (MFL) of the co-evolutionary network exists and the sequence
of co-evolutionary Kuramoto networks converges to this MFL. Such MFL is described by solutions of a generalised
Vlasov equation. We treat the graph limits as signed graph measures, motivated by the recent work in [Kuehn, Xu.
Vlasov equations on digraph measures, JDE, 339 (2022), 261–349]. In comparison to the recently emerging works
on MFLs of IPS coupled on non-co-evolutionary networks (i.e., static networks or time-dependent networks inde-
pendent of the dynamics of the IPS), our work seems the first to rigorously address the MFL of a co-evolutionary
network model. The approach is based on our formulation of a generalisation of the co-evolutionary network as
a hybrid system of ODEs and measure differential equations parametrised by a vertex variable, together with an
analogue of the variation of parameters formula, as well as the generalised Neunzert’s in-cell-particle method
developed in [Kuehn, Xu. Vlasov equations on digraph measures, JDE, 339 (2022), 261–349].

1. Introduction

This paper studies the mean field limit (MFL) of the following general co-evolutionary Kuramoto
network:

φ̇i = ωi(t) + 1

N

N∑
j=1

Wij(t)g(φj − φi), (1.1)

Ẇij = − ε(Wij + h(φj − φi)), (1.2)
where φi is the phase of the i-th oscillator, ωi(t) is the time-dependent natural frequency of the i-th oscil-
lator, Wij is the signed coupling weight of the edge between node i and node j, g is the coupling function,
and h the adaptation rule. We also include a parameter ε > 0, which is often assumed to be small in
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applications so that the particle dynamics is much faster than the timescale of the network/graph adap-
tation. In addition, the feedback of the phase on the underlying graph is assumed to be local. The weight
function of a given edge depends only on the edge itself as well as the phases of the two nodes associated
with the edge. In particular, when g is a trigonometric function (see Section 6), the above model was
proposed to describe the dynamics of a co-evolutionary network of FitzHugh–Nagumo neurons coupled
through chemical excitatory synapses equipped with plasticity [15, 27, 42, 45] (see also the references
therein).

1.1. Macroscopic limit of interacting particle systems

Before presenting the main result of this paper, let us first review briefly the literature on macroscopic
limits of Kuramoto-type networks. One type of macroscopic limit is the so-called MFL, that is, a (weak)
limit of the empirical distributions composed of Dirac measures of equal probability mass at the solu-
tions of each node of the network, as the number of nodes of the network tends to infinity. Heuristically,
the MFL captures the statistical dynamics of large networks. The pioneering works date back to as
early as the 1970s, by Braun and Hepp [17], by Dobrushin [22], and by Neunzert [41], where the
underlying coupling graph is complete, the interaction kernel is Lipschitz, and the underlying metric
induces the weak topology. The techniques have led to a quite complete derivation of the MFL for the
Kuramoto model for all-to-all coupling by Lancellotti [37]. Later, MFL of Kuramoto oscillators on a
sequence of dense heterogeneous (deterministic or random) graphs with and without Lipschitz con-
tinuity were studied, for example, in [20, 21, 24, 30–32]. Recently, results were extended to sparse
graphs using different approaches [24, 28, 31, 32, 35, 43]. So far, all the above network models are
given on a static network. It is worth mentioning that the approaches in [28, 35, 43] dealing with spar-
sity are more graph-theoretic, the ones in [30] are based on analysis of Lp-functions while restricted
to graphon type graph limits, the one in [24] is more operator-theoretic combined with harmonic anal-
ysis techniques, and [32] more measure-theoretic. It is noteworthy that results for graph limits of a
sequence of intermediate/low density are also covered by the approaches in [24, 32]. The fast devel-
opment of mean field theory of interacting particle system (IPS) coupled on heterogeneous networks
owes much to the development of graph limits [8, 13, 34, 38]. The MFL of large networks coupled
on static graphs, when they are viewed as a probability measure, is generally absolutely continuous
with respect to a certain reference measure (provided the initial distribution is so) [30, 41]. The den-
sity of the MFL is captured by the solution of a transport type PDE, the so-called Vlasov equation,
cf. [24, 30–32, 41].

In contrast to the many aforementioned works on MFLs of IPS on statics networks, few works con-
sider particle systems on a dynamic network/graph. In [7], the MFL of a network model characterising
the collective dynamics of moving particles with time-dependent couplings among nodes is investigated.
However, these time-dependent graphs satisfy that each node has the same edge weight to all the other
nodes. Hence, the graph is N-dimensional rather than O(N2)-dimensional, and hence this makes it pos-
sible to treat the time-dependent weight function as a second component of an lifted particle system
parametrised by the node variable. Hence, it reduces to the MFL of an IPS on a static graph, where a
classical approach suffices (cf. [30]). However, when the weights are not ‘uniform’, rigorous works are
lacking. MFLs of IPS were discussed also in [18], where kinetic equations for large finite population
size were obtained, but the MFL was not rigorously characterised. Letting the number N of population
size tend to infinity and the small timescale ε tend to zero simultaneously for sparse co-evolutionary
networks using fast-slow arguments, a non-MFL result was investigated in [10], where the underlying
graph is assumed to be independent of the dynamics of the particle system and hence the dynamics
of the particle system plus the weights of the underlying graph is decoupled. Moreover, evolution of
graphon-valued stochastic processes motivated from genetics was lately investigated in [6]. To our best
knowledge, there seems to have been rather rare rigorous work on the MFL of co-evolutionary networks,
where the dynamics of the network depends on the dynamics on the network and vice versa. This paper
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is a first step to investigate rigorously the MFL of such networks by studying the co-evolutionary model
(1.1)–(1.2).

Another type of macroscopic limit frequently encountered in the literature is the so-called continuum
limit, defined as a ‘pointwise limit’ of the network model. Essentially, when taking each vertex of the
underlying graph of the network as a location in a metric space, as the number of vertices increases to
infinity, the ODE modelling the network tends to a (possibly non-local due to some potentially long-
range interactions) parabolic PDE, a model with a continuum spatial structure. One uses the �∞-norm
to quantify the distance between the solution of the ODE and that of the PDE so that the error is mea-
sured pointwise by taking an essential supremum over errors of trajectories at all different locations.
In contrast, the MFL is a limit in a statistical sense (from the perspective of sampling), which reflects
the distribution of solutions of each node (e.g., phases of the oscillators) on the graph/network of a
sufficiently large size. For a more precise and clearer description of the continuum limit, we refer the
reader to, for example, a companion work [25]. Continuum limits of the Kuramoto model were investi-
gated in [40] on random sparse static networks and more recently investigated in [25] on deterministic
co-evolutionary networks. We mention that continuum limits of collective dynamics models with ‘uni-
form’ time-varying weights (e.g., the Cucker–Smale model) were also recently studied in [7], which is
restricted to the case where the approach for particle systems coupled on static networks remains valid.
In contrast, such a restriction was removed in [25]. We refer the reader to [1] for a more comprehensive
review on the topic of MFL of non-exchangable systems.

1.2. Highlights of this paper

Our approach of analytically obtaining the MFL of the Kuramoto-type model (1.1) rests on the idea
that the co-evolutionary system can be decoupled (the weights of the time-dependent graph can be
represented in terms of those of the initial graph as well as the added weights from the feedback of
the phase state of the IPS). Therefore, we equivalently represent the Kuramoto model as an integral
equation coupled on a static initial signed graph that allows both positive and negative coupling man-
ners. Then one may be able to utilise similar techniques in establishing the MFL of an IPS on a graph
limit (e.g., [24, 30, 32]), except that the graph limit here is allowed to be a graph with signed weights.
Some special care needs to be taken regarding the approximation of the signed graph measures. We
prove the well-posedness and approximation of the MFL as solutions to a so-called generalised Vlasov
equation.

Nevertheless, it is not obvious if the absolute continuity of the solution of the MFL still follows
from that of the initial distribution, as in the classical case where the underlying graph is positive
and static. Indeed, it seems challenging to obtain the absolute continuity of the MFL. A high-level
heuristic conjecture is that the underlying mean field process becomes no longer Markovian due to
the co-evolving nature. For this reason, even if the MFL is absolutely continuous (with respect to a
reference measure, e.g., the Lebesgue measure of a Euclidean space), the corresponding PDE account-
ing for the density of the MFL may not be a transport-type PDE on a finite-dimensional state space,
but rather on an infinite-dimensional state space of functions. Technically, the standard technique by
Gronwall inequalities fails owing to the added effects coming from the co-evolutionary terms. In this
context, as there are second-order non-local terms in the equation of characteristics ((3.10)), a reverse
second-order Gronwall inequality would be desirable to tackle this issue, which unfortunately fails in
general, as shown by a simple example (see Appendix A). A special case where the underlying graph
evolves but not coevolves with the oscillators (i.e., the adaptation function h is constant) was studied
in an earlier version of the manuscript [4], and it is shown that the absolute continuity of the MFL
is preserved provided the initial distribution was absolutely continuous. We leave this general ques-
tion on absolute continuity of the MFL as well as the PDE accounting for the density for our future
study.
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Figure 1. Schematic diagram of the approach of deriving MFL.

1.3. Main results and sketch of the proof

Now, we present an informal statement of the main result of this paper.

Theorem A. Under certain conditions, there exists a unique mean field limit of the Kuramoto-type
model (1.1)–(1.2), provided the signed graph sequence {Wi,j(0)}N∈N as well as the sequence of initial
empirical measures { 1

N

∑N
i=1 δφi(0)}N∈N converge in a suitable weak sense. More precisely, the mean field

limit is a weak limit of the sequence of time-dependent empirical measures { 1
N

∑N
i=1 δφi(t)}N∈N for t over

a finite time interval.

For a detailed and precise statement, see Theorem 4.2 (well-posedness) and Theorem 5.6
(approximation).

We are going to apply the result to investigate the MFL of an example of a binary tree Kuramoto-type
networks, where the sequence of initial underlying graphs are sparse (see Section 6).

There are basically five steps to achieve the well-posedness as well as the approximation of the MFL
of the co-evolutionary Kuramoto model (see Figure 1 for a flow chart on how these steps and the relevant
results are linked).

Step I. Formulation of a generalised co-evolutionary Kuramoto network ((3.1)–(3.3)). We treat signed
graph limits as measure-valued functions (so-called signed digraph measures, see Definition 2.4), and
hence (1.1)–(1.2) can be regarded as special cases of a hybrid system ((3.1)–(3.3)) of ODEs and measure
differential equations (MDEs). To do this, we introduce the derivative of a family of parameterised (by
‘time’) measures in the Banach space of all finite signed measures equipped with the total variation
norm. Well-posedness of the hybrid system is then obtained (Theorem 3.4), by applying the Banach
contraction principle to a suitable complete metric space, in the spirit of the standard Picard–Lindelöf
iteration for ODEs.
Step II. We establish an analogue of the variation of parameters formula for the MDE, in analogy to
the Duhamel’s principle for PDEs in finite-dimensional state spaces [29] (Proposition 3.8). Thanks to
this formula, we can decouple the dynamics of the oscillators from the dynamic graph measures and
successfully reduce the hybrid system ((3.1)–(3.3)) to a one-dimensional integral equation (IE) ((3.10))
indexed by the vertex variable coupled on the prescribed initial graph measures as well as prescribed
time-dependent measure-valued functions (i.e., the MFL to be determined). Such IE can be viewed as
the equation of characteristics [32].
Step III. We establish continuous dependence of the solutions to the IE (Proposition 3.10) and show
the existence and the Lipschitz regularity of the semiflow forward in time generated by the IE
(Proposition 3.12), using a Gronwall type inequality.
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Step IV. We construct a generalised Vlasov equation (VE) ((4.1)) – a fixed point equation induced by
the pushforward of the semiflow generated by the IE, in the sense of Neunzert [41]. Then we are able to
apply the Banach contraction principle again to show the unique existence of solutions to the generalised
VE (Theorem 4.2).
Step V. We establish the approximation by the MFL (solution to the generalised VE) of the empirical
distributions generated by a sequence of ODEs like (1.1)–(1.2) (Theorem 5.6). To do this, we rely on
the continuous dependence of the semiflow (Propositions 4.1 and 4.4). Such an approximation result is
also based on the discretisation of a given initial signed digraph measure as well as the initial distribu-
tion (i.e., the initial condition of the generalised VE), which further is a consequence with calibration
(due to that the digraph measure may not be positive) of the recent results of probability measures by
finitely supported discrete measures with equal mass on each point of the support (so-called uniform
approximation [48], or deterministic empirical approximation [12, 19]) [12, 19, 48].

1.4. Organisation of this paper

We first provide necessary preliminaries on measure theory to introduce MDEs in Section 2. Next, we
propose a generalised co-evolutionary Kuramoto model and investigate its well-posedness in Section 3.
We construct a generalised Vlasov equation and study the well-posedness of this equation in Section 4
and address the approximation of its solutions in Section 5. To demonstrate the applicability of the main
results, we provide a simple example in Section 6. Proofs of the main results are given in Section 7.
Further in-depth discussions on limitations and extensions of the results and the approach of this paper
together with some outlooks including other types of evolutionary network models are provided in
Section 8.

2. Preliminaries

A table of notation is provided in Appendix G for the reader to check back and forth whenever neces-
sary through reading this paper. Let (Y , dY) be a complete metric space. For υ ∈M(Y), define the total
variation norm1

‖υ‖TV := sup
f ∈B1(Y)

∫
f dυ = υ+(Y) + υ−(Y),

where υ+ and υ− are the positive and negative part of υ, respectively, owing to the Hahn decomposition
[16]. Recall from [16, Chapter 8] that M(Y) with the total variation norm ‖·‖TV is a Banach space. Let
dTV be the metric induced by ‖·‖TV. For υ1, υ2 ∈M(Y),

dTV(υ1, υ2) = ‖υ1 − υ2‖TV = sup
f ∈B1(Y)

∫
fd(ν1 − ν2)

For every υ ∈M(Y), let

‖υ‖BL := sup
f ∈BL1(Y)

∫
Y

f dυ,

the bounded Lipschitz norm of υ. Let dBL be the bounded Lipschitz metric induced by ‖·‖BL, which
admits the following supremum representation: For υ1, υ2 ∈M(Y),

dBL(υ1, υ2) = sup
f ∈BL1(Y)

∫
fd(υ1 − υ2)

1This definition we give is twice as large as the standard one. We use it for the ease of exposition, particularly for its induced
metric in comparison with the bounded Lipschitz metric, in the light of their supremum representation.
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Note that both M+(Y) and P(Y) with the bounded Lipschitz metric are complete metric spaces [16].
Moreover, if the cardinality of Y is infinite, then the topology induced by the bounded Lipschitz norm
is strictly weaker than that induced by the total variation norm, and hence by Banach’s theorem, M
equipped with the bounded Lipschitz norm is not complete since the two norms are not equivalent [16].
In addition, if the complete metric space Y is compact, then the bounded Lipschitz metric metrizes the
weak topology, and convergence in dBL also ensures the convergence in all finite moments.

The following properties of measure-valued functions from [25, 32] will be used to define the
evolution of weights of a generalised co-evolutionary Kuramoto network in the next section (see (3.1)).

Definition 2.1. Let (ηt)t∈R ⊆M(Y). Equip M(Y) with the strong topology induced by the total variation
norm. If

lim
ε→0

ηt+ε − ηt

ε
∈M(Y)

exists, then
dηt

dt
= lim

ε→0

ηt+ε − ηt

ε

is called the derivative of ηt at t.

Remark 2.2. If f ∈ C1(R, (0, ∞)) and ξ ∈M(Y), then ηt = f (t)ξ ∈M(Y) satisfies
dηt

dt
= f ′(t)

f (t)
ηt,

c.f. [25]. Moreover, not all families of parameterised measures are differentiable (e.g., {δt}t∈R [25]).

Recall the following fundamental theorem of calculus for measure-valued functions [25].

Proposition 2.3. LetN be a compact interval ofR containing a point t0 ∈R. Assume η· ∈ C(N , M(Y)).
Then ξt =

∫ t

t0
ητdτ ∈M(Y), understood in the weak sense,∫

Y

gdξt =
∫ t

t0

(∫
Y

gdητ
)

dτ , ∀g ∈ Cb(Y),

is differentiable at t for all t ∈N , where the derivative is understood as one-sided at the two endpoints
of N .

Let X be a compact set of a Euclidean space Rr for some r ∈N. Equipped with the metric induced by
the �1 of Rr, X becomes a complete metric space. Throughout this paper, Y = X or Y =T.

Definition 2.4. A signed measure-valued function η ∈B(X, M(X)) is called a signed digraph measure
(SDGM).

We remark that this definition extends the one (where the SDGM is positive and called DGM) introduced
in [32].

Next, we introduce duality of sets and measures from [32], which will be used to state properties on
the symmetry of digraph measures2 (see Proposition 3.6 below).

Definition 2.5. Given a set A ⊆ X2, the set A∗ = {(x, y) ∈ X2 : (y, x) ∈ A} is called the dual of A.

Definition 2.6. Given a measure η ∈M(X2), the measure η∗ defined by

η∗(A) = η(A∗), ∀A ∈B(X2),

is called the dual of η.

Definition 2.7. A measure η ∈M(X2) is symmetric if η∗ = η.

2Here, ‘digraph measure’ refers to a measure-valued function, regarded as a generalisation of graphon as a graph limit [32].
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Definition 2.8. An SDGM is symmetric if, viewed as a signed measure3 on M(X2), it is a symmetric
measure.

We remark that SDGM is a natural way to embed a graph into a dynamical network [11, 32, 33, 36].
This is because the dynamical network is indexed by the node variable. Since the graph is directed, the
weights of adjacent outward edges from a node i is associated with a vector with entries being weights
(aij)1≤j≤N , and such vectors can be naturally treated as a fibre measure [8]. For this reason, we introduce
SDGM (see also [32]). Here, X stands for the space of vertices, and we choose X to be abstract rather
than the commonly used unit interval [0, 1] since in some cases due to the geometric feature of the
underlying signed graphs, the space of vertices should be chosen different from [0, 1]. For instance, if
the signed graphs are rings, then the space X is naturally chosen to be T to encode the cyclic nature.
For more diverse interesting graph limits with different density captured by different X, the reader is
referred to [32, Section 2 and Section 4].

For any η, ξ ∈B(X, M(Y)), let

‖η‖ = sup
x∈X

‖ηx‖TV,

d∞,TV(η, ξ ) := sup
x∈X

dTV(ηx, ξ x)

The other metric d∞,BL for space B(X, M(Y)) is defined analogously.
Let N ⊆R be a non-empty subinterval. For any η·, ξ· ∈B(N , B(X, M(Y))), let

‖η·‖N = sup
t∈N

‖ηt‖
be the uniform total variation norm of η· and let

dN
∞,TV(η, ξ ) = sup

t∈N
dTV,∞(ηt, ξt), dN

∞,BL(η, ξ ) = sup
t∈N

dBL,∞(ηt, ξt)

the uniform total variation metric and uniform bounded Lipschitz metric, respectively.
We will use the convergence in uniform total variation distance to prove the existence of solutions

to the generalised co-evolutionary Kuramoto network (3.1)–(3.3). In comparison, we will use the uni-
form bounded Lipschitz distance inducing the uniform weak topology for the approximation result in
Section 5.

Next, we introduce the notion of uniform weak continuity, which will be used to define solutions of
the VE.

Definition 2.9. Let Y = X or Y =T. Given

B(X, M+(Y)) � η :

{
X →M+(Y),

x 
→ ηx,

we say that η is weakly continuous in x if for every f ∈ C(Y), we have

C(X) � η(f ) :

{
X →R,

x 
→ ηx(f ) := ∫
Y

f dηx.

Definition 2.10. Let I ⊆R be a non-empty compact interval, and Y = X or Y =T. Given

η· :

{
I →B(X, M+(Y)),

t 
→ ηt,

we say that η· is uniformly weakly continuous in t if for every f ∈ C(Y), t 
→ ηx
t (f ) is continuous in t

uniformly in x ∈ X.

3η is understood as η(A × B) = ∫A η
x(B)dx for A, B ∈B(X) [32].
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Proposition 2.11. Let N ⊆R be a non-empty compact interval.

(i) Let η· : N →B(X, M+(Y)). Then η· is uniformly weakly continuous in t if and only if η· ∈
C(N , B(X, M+(Y))).

(ii) Assume η·, ξ· ∈ C(N , B(X, M+(Y))), then ‖η·‖<∞ and t 
→ d∞,BL(ηt, ξt) is continuous.
(iii) Assume η ∈ C(X, M(Y)). Then η is weakly continuous in x.

Proof. The proofs of (i)–(ii) are analogous to that of [32, Proposition 2.9] (see also [33,
Proposition 2.3]) and hence are omitted. For (iii), similarly, one can first show that if η ∈ C(X, M+(Y)),
then η is weakly continuous in x. Note that η ∈ C(X, M(Y)) implies η+, η− ∈ C(X, M+(Y)), where
ηx = (η+)x − (η−)x is the Hahn decomposition of ηx for each x ∈ X. Hence, η is weakly continuous in
x since so are both η+ and η−. It is completely analogous as for the case of real-valued functions to show
that η+ and η− are continuous and we leave it to the interested reader (indeed the positive part and the
negative part as maps between two metric spaces are Lipschitz-1 and hence as a composition, η+, η−

are also continuous).

3. Generalised co-evolutionary Kuramoto network

We first reformulate several assumptions of this paper, which we are going to use in the paper. Let

B∞ :=
{
ξ ∈B(X, M+(T)) :

∫
T

ξ x(T)dx = 1

}
and

C∞ :=
{
ξ ∈ C(X, M+(T)) :

∫
T

ξ x(T)dx = 1

}
As we will set, the solutions of the generalised Vlasov equations (see Section 4) in will take values in
these two sets, both of which are closed subsets of B(X, M+(T)), and hence are complete under the
uniform metric d∞,BL.

(A1) X ⊆Rr is a compact subset of unit Lebesgue measure for some r ∈N.
(A2) g : T→R is Lipschitz continuous:4 For φ, ϕ ∈T,

|g(φ) − g(ϕ)| ≤ Lip(g)dT(φ, ϕ).

(A3) h : T→R is Lipschitz continuous: For φ, ϕ ∈T,

|h(φ) − h(ϕ)| ≤ Lip(h)dT(φ, ϕ).

(A4) ω : R× X →R is continuous in the first variable t and for every compact interval N ⊆R,

‖ω‖N ,∞ := sup
s∈N

‖ω(s, ·)‖∞ := sup
s∈N

sup
x∈X

|ω(s, x)|<∞.

(A5) η0 ∈ C(X, M(X)).
(A6) ν· ∈ Cb(R, B∞).
(A4) ω : R× X →R is continuous in the second variable x.
(A6) ν· ∈ Cb(R, C∞).

We make some comments on the above assumptions. (A1) ensures the vertex space is compact. Such
compactness is important in establishing estimates in general for the main results [32]. For the ease of
exposition, here we choose the Lebesgue measure λ of Rr as the reference probability measure. One can
simply relax the assumption (A1) so that (X, B(X), λ) is a compact probability space equipped with an

4Equivalently, g can be extended to be a period-1 (coordinate-wise) Lipschitz continuous function on R. Similarly for h.
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arbitrary reference Borel probability measure μX on X. For instance, one can choose (X,μX) to be the
unit sphere Sr−1 with the normalised Haar measure on Sr−1. Assumptions (A2)-(A6) as well as (A4)’
and (A6)’ are the regularity conditions of the model. Among them (A5) is used for the approximation
result, which can be relaxed to η0 ∈B(X, M(X)) particularly for the results on the well-posedness [32].
Nevertheless, for the ease of exposition, we will prefer not to distinguish the subtle difference.

The following well-posedness of the co-evolutionary Kuramoto network (1.1)–(1.2) is an easy
consequence of the Picard–Lindelöf iteration.

Proposition 3.1. Assume (A2)-(A4). Then there exists a global solution to the initial value problem of
(1.1)–(1.2).

The reader may refer to Appendix B for a proof of Proposition 3.1.
Next, we investigate the properties of a generalised co-evolutionary Kuramoto model, which naturally

extends (1.1)–(1.2). For the ease of exposition, we choose the initial time to be 0 and let (φ0, η0) ∈
B(X, T×M(X)). Consider the following generalised co-evolutionary Kuramoto network:

∂φ(t, x)

∂t
= ω(t, x) +

∫
X

∫
T

g(ψ − φ(t, x))dνy
t (ψ)dηx

t (y), t ∈ I, x ∈ X, (3.1)

∂ηx
t

∂t
( • ) = − εηx

t ( • ) −
(
ε

∫
T

h(ψ − φ(t, x))dν•
t (ψ)

)
λ( • ), t ∈ I, x ∈ X, (3.2)

φ(0, x) = φ0(x), ηx
t |t=0 = ηx

0, (3.3)

which is interpretated in a (weaker) sense as an integral equation. For t ∈ I, x ∈ X,

φ(t, x) = φ0(x) +
∫ t

0

[
ω(τ , x) +

∫
X

∫
T

g(ψ − φ(τ , x))dνy
τ
(ψ)dηx

τ
(y)

]
dτ mod 1, (3.4)

ηx
t ( • ) = ηx

0( • ) −
(
ε

∫ t

0

ηx
τ
dτ
)

( • ) −
(
ε

∫ t

0

(∫
T

h(ψ − φ(τ , x))dν•
τ
(ψ)

)
dτ
)
λ( • ), (3.5)

where by Proposition 2.3, the equation (3.5) is understood in the weak sense∫
X

f (y)dηx
t (y) =

∫
X

f (y)dηx
0(y) − ε

∫ t

0

(∫
X

f (y)dηx
τ
(y)

)
dτ (3.6)

− ε

∫ t

0

(∫
X

f (y)
∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ)

)
dydτ , ∀f ∈ C(X).

The above equation (3.6) for measures ηx
t is well defined. Indeed, since h is continuous and φ(t, x)

is continuous in t (to be shown in Theorem 3.4 below), by Proposition 2.11(i) and (A6)’, we have
h(· − φ(t, x)) is integrable w.r.t. νy

t , ε
∫
T

h(ψ − φ(t, x))dνy
t (ψ) is continuous t and is integrable w.r.t. λ so

that
(
ε
∫
T

h(ψ − φ(t, x))dν•
t (ψ)

)
λ( • ) defines a measure in M(X) absolutely continuous w.r.t. λ.

It is easy to verify that one can recover the co-evolutionary network (1.1)–(1.2) by substituting specific
X, λ, φ, η·, and ν· into the characteristic equation (3.1)–(3.3) (see Appendix B for details). Indeed, (3.1)–
(3.3) is an analogue of the McKean stochastic differential equation (SDE) when noise is added, where νt

(i.e., the collection of fibre measures {νx
t }x∈X) that induces the charateristic equation corresponds to the

distribution of the system. In the SDE case, it precisely corresponds to the distribution of the McKean
SDE; in the ODE case in our paper, it would correspond to the empirical distribution (see (6.4) in
Section (6)).

The rationale of using (3.2) to describe the evolution of weights naturally is motivated by [8], where
fibre measures are generalisations of vectors of weights of a vertex of a graph. Such a family of MDEs
are parameterised by vertices naturally appear in the context of dynamical networks [11, 32, 36].

Definition 3.2. A pair (φ, η·) ∈ C(R, B(X, T×M(X))) is called a global solution to the initial value
problem (IVP) of (3.1)–(3.3) if it satisfies (3.4)–(3.5) for all x ∈ X and t ∈R.
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Definition 3.3. Let T > 0 and I = [0, T]. A pair (φ, η) ∈ C(I, B(X, T×M(X))) is called a local
solution to the IVP of (3.1)–(3.3) if it satisfies (3.4)–(3.5) for all x ∈ X and t ∈ I.

The following result provides well-posedness of the generalised co-evolutionary Kuramoto network
(3.1)–(3.3).

Theorem 3.4. Assume (A1)-(A6). Let (φ0, η0) ∈B(X, T×M(X)). Then there exists a unique global
solution Tt(φ0, η0) = (T 1

t (φ0, η0), T 2
t (φ0, η0)) in B(X, T×M(X)) to (3.1)–(3.3). In particular, if (A4)′

holds and (φ0, η0) ∈ C(X, T×M(X)), then Tt(φ0, η0) ∈ C(X, T×M(X)) for all t ∈R.

The proof is provided in Subsection 7.1.

Remark 3.5. Note that the digraph measures may not be regular enough so that the convolution of the
test function with the fibre measure may not be smooth but rather just measurable. Hence, the bounded
Lipschitz metric will not be a good choice while the total variation norm seems to be a natural choice as
measurability of test functions suffices. Nevertheless, such norm is only well suited for the existence of
solutions to the characteristic equation. As will be seen below, in contrast, bounded Lipschitz metric is
used to establish the well-posedness and approximation of solutions to the generalised Vlasov equation
(see Section 4).

The following property demonstrates that the symmetry of the evolving graph measure is preserved
over time under certain symmetry condition on h and ν·.

Proposition 3.6. Assume (A1)-(A6). Additionally assume h and ν· satisfy the following symmetry
condition:∫

T

h(ψ − φ(t, x))dνy
t (ψ) =

∫
T

h(ψ − φ(t, y)dνx
t (ψ), ∀t ∈ I, λ⊗ λ-a.e. (x, y) ∈ X2, (3.7)

where λ⊗ λ is the Lebesgue measure on R2r. Let (φ, η·) be the solution to the IVP (3.1)–(3.3) on t ∈ I.
Then, ηt is symmetric for all t ∈ I provided η0 is symmetric.

Proof. Since η0 is symmetric, in the light of (3.9) below and Fubini Theorem, it suffices to show for
each A ∈B(X2), ∫

A

∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ)dxdy =

∫
A

∫
T

h(ψ − φ(τ , y))dνx
τ
(ψ)dxdy,

which holds provided (3.7) holds.

Example 3.7. Let X = [0, 1] and h with its natural extension (still denoted h) being an even 1-periodic
function on R, and νx

t = δφ(t,x) for t ∈ I and λ-a.e. x ∈ [0, 1]. Then h(u) = h( − u) for all u ∈R and hence
for all t ∈ I and x, y ∈ [0, 1],∫

T

h(ψ − φ(t, x))dνy
t (ψ) =

∫
T

h(ψ)dνy
t (φ(t, x) +ψ) = h(φ(t, y) − φ(t, x))

= h(φ(t, x) − φ(t, y)) =
∫
T

h(ψ)dνy
t (φ(t, x) + ·) =

∫
T

h(ψ − φ(t, y))dνx
t (ψ),

that is, (3.7) holds. Let N ∈N and W = (Wi,j)1≤i,j≤N be a symmetric signed matrix (Wij = Wji ∈R) and
Ii = [ i−1

N
, i

N
[ for i = 1, . . . , N. Let φ(t, x) = φi(t) for x ∈, i = 1, . . . , N. Define

η0 : x 
→
N∑

i=1

1Ii (x)
N∑

j=1

Wijλ|Ij ,
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where λ|Ij is the Lebesgue measure restricted to Ij. Then for any A ∈B(X2),

η0(A) =
N∑

i=1

N∑
j=1

∫
A∩Ii×Ij

dηx
0(y)dx =

N∑
i=1

N∑
j=1

Wij(λ⊗ λ)(A ∩ Ii × Ij)

=
N∑

i=1

N∑
j=1

Wji(λ⊗ λ)(A ∩ Ij × Ii) =
N∑

i=1

N∑
j=1

Wij(λ⊗ λ)(A ∩ Ij × Ii)

=
N∑

i=1

N∑
j=1

Wij(λ⊗ λ)(A∗ ∩ Ij × Ii) = η0(A
∗),

where the fourth equality uses the symmetry of (Wij)1≤i,j≤N . By Definition 2.8, η0 is a symmetric SDGM.

We have an equivalent characterisation of the solutions to the characteristic equation (3.1)–(3.3) by
an integral equation.

Proposition 3.8 (Variation of constants formula). Assume (A1)-(A6). Then (φ, η) is a local (global,
respectively) solution to (3.1)–(3.3) if and only if (φ, η) is a local (global, respectively) solution to

φ(t, x) =
(
φ0(x) +

∫ t

0

(
ω(s, x) + e−εs

∫
X

∫
T

g(ψ − φ(s, x))dνy
s (ψ)dηx

0(y)

−ε
∫ s

0

e−ε(t−τ )

∫
X

(∫
T

g(ψ − φ(s, x))dνy
s (ψ)

·
∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ)

)
dydτ

)
ds
)

mod 1, x ∈ X, t ∈R, (3.8)

ηx
t ( • ) = e−εtηx

0( • ) −
(
ε

∫ t

0

e−ε(t−s)

∫
T

h(ψ − φ(s, x))dν•
s (ψ)ds

)
λ( • ), x ∈ X, t ∈R. (3.9)

The proof is given in Appendix C.
From (3.9), the graph measure is composed of two parts, the dilated initial measure with

time-dependent dilation e−εt, and an absolutely continuous measure with time-dependent density
−ε ∫ t

0
e−ε(t−τ )

∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ)dτ , y ∈ X.

By Theorem 3.4, let Tt[ν·,ω] = (T 1
t [ν·,ω], T 2

t [ν·,ω]) denote the solution map of the integral equa-
tions (3.8) and (3.9), emphasising the dependence on ν· and ω. From Proposition 3.8, we immediately
get the properties of T .

Corollary 3.9. Assume (A1)-(A6). Then the solution map of (3.1)–(3.3) is given, for x ∈ X and t ∈R,
by

T 1,x
t [ν·,ω](φ0, η0) =

(
φ0(x) +

∫ t

0

ω(s, x)ds

+
∫ t

0

e−εs
∫

X

∫
T

g(ψ − T 1,x
s [ν·,ω](φ0, η0))dνy

s (ψ)dηx
0(y)ds

− ε

∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

(∫
T

g(ψ − T 1,x
s [ν·,ω](φ0, η0))dνy

s (ψ)

·
∫
T

h
(
ψ − T 1,x

τ
[ν·,ω](φ0, η0)

)
dνy

τ
(ψ)
)
dydτds

)
mod 1,

T 2,x
t [ν·,ω](φ0, η0)( • ) = e−εtηx

0( • )

−
(
ε

∫ t

0

e−ε(t−τ )

∫
T

h(ψ − T 1,x
τ

[ν·,ω](φ0, η0))dν•
τ
(ψ)dτ

)
λ( • ).
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To investigate the mean field behaviour of the co-evolutionary Kuramoto model on heterogeneous
networks, one typically needs to construct a Vlasov-type equation via some fixed point equation [41]. A
simple look into the generalised co-evolutionary Kuramoto network reveals that such MFLs may have
support on an infinite-dimensional space (some measure space, for the sake of the second component
– the graph measure). In order to get around this difficulty/complexity, in the following we decouple
the characteristic equation using Corollary 3.9 so that we embed the dynamic nature of the underlying
graph measure into the dynamics of the oscillators. In this way, we come up with a one-dimensional
integral equation on the circle and can turn to study the MFL for this integral model coupled on static
initial graph measures.

Furthermore, for every fixed initial SDGM η0 ∈ C(X, M(X)), for any given T > 0 and I = [0, T], we
define a family of parameterised operators. For every t ∈ I,{

St[η0, ν·,ω] : B(X, T) →B(X, T)

Sx
t [η0, ν·,ω](φ0) = T 1,x

t [ν·,ω](φ0, η0), x ∈ X,

that is, the solution map of the following integral equation:

φ(t, x) =
(
φ0(x) +

∫ t

0

(
ω(s, x) + e−εs

∫
X

∫
T

g(ψ − φ(s, x))dνy
s (ψ)dηx

0(y)

− ε

∫ s

0

e−ε(t−τ )

∫
X

∫
T

g(ψ − φ(s, x))dνy
s (ψ)

·
∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ))dydτ

)
ds
)

mod 1 (3.10)

We remark that (3.10) is one-dimensional, which makes it possible to generate a fixed point equation
induced by the semiflow of (3.10), and we can use this to study the mean field dynamics of the original
coupled hybrid characteristic equation (3.1)–(3.3). Note that (3.10) is generally referred to as equation
of mean field characteristics [26], and in case it generates a flow, such flow is named as ‘mean field
characteristic flow’ [26]. Nevertheless, the semiflow of (3.10) may not necessarily be a flow, unless in
special cases, for example, when h is a constant, that is, when coevolution disappears despite evolution
of the underlying graph. Indeed, it is possible that multiple different initial graph measures η0 contribute
to the same phase at future time.

In order to fully investigate the well-posedness of solutions to a fixed point equation, we need to rely
on some continuity properties of the operator S .

Proposition 3.10. Assume (A1)-(A6). Let T > 0 and I = [0, T].

(i) Sx
t [η0, ν·,ω] is continuous in x. For φ0 ∈ C(X, T),

lim
|x−y|→0

|Sx
t [η0, ν·,ω](φ0) − Sy

t [η0, ν·,ω](φ0)| = 0,

provided (A4)′ holds.
(ii) Sx

t [η0, ν·,ω] is Lipschitz continuous in t. For φ0 ∈B(X, T), for t1, t2 ∈ I,

|Sx
t1

[η0, ν·,ω](φ0) − Sx
t2

[η0, ν·,ω](φ0)| ≤ L1(ν·)|t1 − t2|,
where L1(ν·) = ‖ω‖∞ + ‖g‖∞‖ν·‖I‖η0‖ + ( 1

2
T2 + 1)ε‖g‖∞‖h‖∞(‖ν·‖I)2.

(iii) Sx
t [η0, ν·,ω](φ0) is Lipschitz continuous in φ. For φ0, ϕ0 ∈ C(X, T),

sup
x∈X

|Sx
t [η0, ν·,ω](φ0) − Sx

t [η0, ν·,ω](ϕ0)| ≤ eL2(ν·)t‖φ0 − ϕ0‖∞,

where L2(ν·) = C1(ν·) + ε‖g‖∞Lip(h)(‖ν·‖I )2

C1(ν·) and C1(ν·) = Lip(g)‖ν·‖I (‖η0‖ + ‖h‖∞‖ν·‖I).
(iv) Sx

t [η0, ν·,ω] is Lipschitz continuous in ω. Assume ω̃ also satisfies (A4) with ω replaced by ω̃, then

|Sx
t [η0, ν·,ω](φ0) − Sx

t [η0, ν·, ω̃](φ0)| ≤ TeL2t‖ω− ω̃‖∞,I .
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(v) Sx
t [η0, ν·,ω] is continuous in η0. Let (ηk)k∈N0 ⊆ C(X, M(X))5 be such that

lim
k→∞

d∞,BL(η0, ηk) = 0.

Assume additionally (A6)′. Then

lim
k→∞

sup
t∈I

sup
x∈X

|Sx
t [η0, ν·,ω](φ0) − Sx

t [ηk, ν·,ω](φ0)| = 0.

(vi) Sx
t [η0, ν·,ω] is Lipschitz continuous in ν. For ν·, υ· ∈ C(I, B∞),

|Sx
t [η0, ν·,ω](φ0) − Sx

t [η0, υ·,ω](φ0)| ≤ L3eL4t

∫ t

0

d∞,BL(νs, υs)ds,

where L3 = L3(ν·, υ·) = BL(g)(‖υ·‖I‖h‖∞ + ‖η0‖) + ‖g‖∞BL(h)‖ν·‖IεT and L4 = L4(ν·, υ·) =
‖ν·‖I

(
Lip(g)(‖η0‖ + ‖h‖∞‖υ·‖I) + ‖g‖∞Lip(h)‖ν·‖IεT

)
.

The proof of Proposition 3.10 is provided in Appendix D.

Remark 3.11. From dT(x, y) ≤ |x − y| for any x, y ∈T it follows that the results in Proposition 3.10 still
hold when |· − ·| is replaced by the distance dT on the circle. However, the (stronger) upper estimates
will be used in the proof of further results in Section 4.

The following result on existence and Lipschitz continuity of the semiflow is a direct consequence of
Proposition 3.10.

Proposition 3.12. Assume (A1)-(A6) and (A4)′. Let T > 0 and I = [0, T]. Then for every t ∈ I,
S ·

t [η0, ν·,ω] is a Lipschitz operator from C(X, T) to C(X, T).

4. Generalised Vlasov Equation

To study convergence of (1.1)–(1.2) to some limit in a distributional sense, based on the standard
approach of deriving MFL [26], it is tempting to construct a fixed point equation based on the equa-
tion of characteristics (3.1)–(3.3). Nevertheless, (3.1)–(3.3) is not a (fibre) finite-dimensional ODE, so
one may expect one has to study a Vlasov-type PDE in an infinite-dimensional spatial domain. It seems
the usual approximation schemes used in the literature, for example, [30, 32], all collapse.

To get around this barrier caused by infinite dimensionality, our plan is to use (3.10) in place of
(3.1)–(3.3), as the equation of characteristics, for the former is a finite-dimensional (integral) equation.
Then we instead use the solution map of (3.10) to construct the fixed point equation and study the
convergence of (1.1)–(1.2). To do this, we investigate the Lipschitz continuity of the solution ν to the
generalised Vlasov equation (VE) in the sense of Neunzert [41]:

νx
t = νx

0 ◦ (Sx
t )−1[η0, ν·,ω], x ∈ X, (4.1)

with respect to η0 and ν0, where (Sx
t )−1[η0, ν·,ω](φ(t, x)) is the pre-image6 ofφ(t, x) under the operatorSx

t ,
for t ∈ I = [0, T] with T fixed while to be determined below. We remark that a variant of the generalised
VE seemed to be first introduced in [30] to investigate MFLs of IPS coupled on heterogeneous static
networks.

To obtain the existence of solutions to the generalised Vlasov equation, it is standard to apply Banach
fixed point theorem to a given complete metric space, for example, B(I, B∞) or C(I, B∞).

To prepare for the existence result of the generalised Vlasov equation as outlined above, we will first
establish some continuity properties of the map on the right-hand side of (4.1). Define F[η0,ω] by

(F[η0,ω]ν·)
x
t = νx

0 ◦ (Sx
t [η0, ν·,ω]

)−1
, t ∈ I, x ∈ X.

5Here, we slightly abuse ηk , which does not refer to ηt at time t = k ∈N.
6Note that Sx

t [η0, ν·,ω] may not have an inverse.
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The result on existence as well as approximation of solutions to the generalised Vlasov equation rests
on the properties of F , which we will establish below, is as follows.

Proposition 4.1. Assume (A1)-(A5). Let T > 0 and I = [0, T]. Assume ν· ∈ C(I, B∞). Then F[η0,ω]νt

is7

(i) continuous in t: t 
→F[η0,ω]νt ∈ C(I, B∞). Moreover, the mass conservation law holds:

(F[η0,ω]νt)
x(T) = νx

0(T), ∀t ∈ I, x ∈ X.

In particular, if (A4)’ holds and ν0 ∈ C∞, then F[η0,ω]ν· ∈ C(I, C∞).
(ii) Lipschitz continuous in ω: Assume ω̃ satisfies (A4) with ω replaced by ω̃. For all t ∈ I,

d∞,BL(F[η0,ω]νt, F[η0, ω̃]νt) ≤ T‖ν·‖IeL2(ν·)t‖ω− ω̃‖∞,I ,

where L2(ν·) is defined as in Proposition 3.10(iii).
(iii) continuous in η0: Assume (A6)’. For all t ∈ I, and ηk ∈B(X, M(X)) for k ∈N0 such that

limk→∞ d∞,BL(η0, ηk) = 0,

lim
k→∞

d∞,BL(F[η0,ω]νt, F[ηk,ω]νt) = 0.

(iv) Lipschitz continuous in ν·: For all t ∈ I, and ν·, υ· ∈ C(I, B∞),

d∞,BL(F[η0,ω]νt, F[η0,ω]υt) ≤ eL2(υ·)td∞,BL(ν0, υ0)

+ L3(ν·, υ·)‖ν·‖IeL4(ν· ,υ·)t
∫ t

0

d∞,BL(νs, υs)ds,

where L2(υ·), L3(ν·, υ·) and L4(ν·, υ·) are as defined in Proposition 3.10.

The proof of Proposition 4.1 is provided in Appendix E.
Next, we will provide well-posedness of the generalised Vlasov equation.

Theorem 4.2. Assume (A1)-(A5). Let T > 0 and I = [0, T]. Assume ν0 ∈B∞. Then there exists a unique
solution to (4.1). In particular, if ν0 ∈ C∞, then ν· ∈ C(I, C∞).

The proof of Theorem 4.2 is provided in Section 7.2.

Remark 4.3. Although we successfully decouple the dynamics of the edges from the dynamics of the
nodes and thus achieve an analogue of equation of characteristics in the classical sense, the classical
technique via equation of characteristics by interchanging derivative in time with derivative in state
fails, since the vector field not only depends on the current state but also on the entire trajectory (as well
as the mean field limit) from initial time to present. This makes it impossible to obtain a characterisation
of the MFL, when it is absolutely continuous, via a Vlasov PDE on the finite-dimensional phase space
T. We believe such MFL may share similar properties as that for a delay IPS [10].

The next proposition provides continuous dependence of the solutions to the generalised VE, which
is useful to obtain the approximation result later.

Proposition 4.4. Assume (A1)-(A5). Let T > 0, I = [0, T]. Then solutions to (4.1) have continuous
dependence on

(i) the initial conditions:

d∞,BL(ν1
t , ν2

t ) ≤ eL5td∞,BL(ν1
0 , ν2

0 ), t ∈ I,

where ν i
· is the solution to (4.1) with initial condition ν i

0 ∈B∞ for i = 1, 2, and L5(ν1
· , ν2

· ) =(
L3(ν1

· , ν2
· )‖ν1

· ‖ + max{L2(ν1
· ), L4(ν1

· , ν2
· )}
)

7Here, we simply denote F [η0,ω]νt for (F [η0,ω]ν·)t .
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(ii) ω: Let ν i
· be the solution to (4.1) with functions ωi for i = 1, 2 and the same initial condition ν1

0 =
ν2

0∈B∞. Then

d∞,BL(ν1
t , ν2

t ) ≤ T‖ν1
· ‖IeL5(ν1· ,ν2· )t‖ω1 −ω2‖∞,I ,

where L5(ν1
· , ν2

· ) is given in (i).
(iii) η0: Let {ηk}k∈N ⊆B(X, M(X)). If limk→∞ d∞,BL(η0, ηk) = 0, then

lim
k→∞

dI
∞,BL(ν·, ν

k
· ) = 0,

where νk
· is the solution to (4.1) with initial SDGM ηk for k ∈N and the same initial condition

ν0 ∈ C∞.

The proof of Proposition 4.4 is provided in Appendix F.

Remark 4.5. One can simply observe by symmetry that one can replace L5 in Proposition 4.4(i) by

L5(ν1
· , ν2

· ) = min
i=1,2

(
L3(ν i

· , ν
3−i
· )‖ν i

· ‖ + max{L2(ν
i
· ), L4(ν i

· , ν
3−i
· )}

)
Nevertheless, we here do not aim to make an effort to optimise the constant.

5. Approximation of the mean field limit

Based on Proposition 4.4, one can simply obtain the convergence of empirical distributions to the
MFL using triangle inequalities, provided the respective SDGMs, frequency functions, as well as initial
empirical distributions converge.

In this section, we consider an inverse problem. Given the solution to the generalised Vlasov equation,
how to construct a sequence of co-evolutionary ODEs in forms of (1.1)–(1.2) so that the solution is the
MFL of the the constructed ODEs? In this way, we not only address the existence of the approximations
of particularly, the SDGM and the initial distributions of the generalised Vlasov equation, but do so by
construction. Hence, such construction can be viewed as a numerical scheme of the generalised Vlasov
equation.

To make a long story short, the Vlasov equation can be approximated by a sequence of ODEs (5.8)
indexed by m, n (Theorem 5.6), which are well posed (Proposition 5.5). The following lemmas provide
the involved functions that appear in the constructed ODEs, as approximations of the frequency function
ω, the initial distribution ν0, as well as the initial SDGM η0.

Before proceeding to the technical lemmas, we first provide an idea on how to construct these
functions (ω, ν0, η0) of x.

We first mesh the underlying space X using a partition {Am
i }1≤i≤m into grids of size m. Then by virtue

of the continuity of the above three functions, within each small set Am
i of the partition, we will use a

constant function on Am
i to approximate each of them confined to the subdomain Am

i , respectively; for
ω this is rather standard, while for the other two measure-valued functions, such ‘constant’ may be of a
measure value (with or without an absolutely continuous part w.r.t. λ) of a support containing potentially
infinitely many (or finite while unbounded number in m as m tends to infinity). To generate a measure in
terms of a finite-dimensional ODE (in most cases, e.g., [32]) or equivalently while more conveniently
in form of an integral equation (see (5.8) below) in our case, it is arguably intuitive to consider a finitely
supported measure (in [32] as well as in this paper) or a piecewise uniform measure (in [30] as well as
most relevant papers on graphon systems since graphon can be viewed as the kernel of a measure-valued
function) to do this task. In the former case as what we plan to do here, we apply results on approximation
of probability measures by atomic measures (e.g., [19, 48]) to the positive and negative part of a signed
measure (for η0) with normalisation (to make a positive finite measure a probability measure). To make
these discretisations of measures feasible, we reasonably need more points (of size n, which generically
is far larger than m) in the support of the approximations for each fixed m. With these discretisations
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of functions, we substitute into the general model (3.10) to obtain the integral equation discretisation
((5.8)) of the equation of characteristics in the light of continuous dependence of the solution map Sx

t

(Proposition 3.10). One needs to pay particular attention that replacing each φ(t, x) one needs n ‘copies’
(φ(i−1)n+j(t) for 1 ≤ j ≤ n) instead of just one for each x ∈ Am

i , which is consistent with that we need n atoms
in the approximation of ηx

t as well as that there are mn nodes in the underlying graph. The approximation
in terms of the empirical distributions of the integral equation of the solution to the generalised Vlasov
equation comes from the Dobrushin estimate we established earlier (Proposition 4.4). The discretisation
of the evolving SDGM ηt is constructed based on (3.9) by further discretising the Lebesgue measure on
X by atomic measures supported on the mesh points xm

i ∈ Am
i given in Lemma 5.1.

Lemma 5.1. Assume (A1) and ν0 ∈ C∞. Then there exists a partition {Am
i }1≤i≤m of X for m ∈N satisfying

lim
m→∞

max
1≤i≤m

Diam Am
i = 0.

Let xm
i ∈ Am

i , for i = 1, . . . , m, m ∈N. Moreover, there exists a sequence {ϕm,n
(i−1)n+j : i = 1, . . . , m, j =

1, . . . , n}n,m∈N ⊆T such that

lim
m→∞

lim
n→∞

d∞,BL(νm,n
0 , ν0) = 0,

where νm,n
0 ∈B∞ with

(νm,n
0 )x :=

m∑
i=1

1Am
i
(x)

am,i

n

n∑
j=1

δϕm,n
(i−1)n+j

, x ∈ X, (5.1)

am,i =
{∫

Am
i
νx

0(T)dx

λ(Am
i )

, if λ(Am
i )> 0,

ν
xm

i
0 (T), if λ(Am

i ) = 0.

Proof. Note that the existence of such a partition of X is ensured by [32, Lemma 4.4]. Let Y = [0, 1].
Note that

dT(x, y) = min{|x − y|, 1 − |x − y|} ≤ |x − y|, x, y ∈T≡ [0, 1[

andBL1(T) �BL1(Y) as the former only consists of the proper subset of 1-periodic functions (so that the
function value coincide at x = 0 and x = 1) defiend on Y . It follows from the supremum representation
of the bounded Lipschitz metric [2] (see also e.g., [5, 47, 49]) that

dBL(μ, ν) ≤ d̃BL(μ, ν), μ, ν ∈M(T), (5.2)

where d̃BL stands for the bounded Lipschitz metric on M(Y), and any μ ∈M(T) can be regarded as a
measure in P(Y) supported in a subset of [0, 1[. Since ν0 ∈ C∞, applying [32, Lemma 4.5], there exists
ν̃

m,n
0 ∈B(X, M+(Y)) such that

lim
m→∞

lim
n→∞

sup
x∈X

d̃BL((̃νm,n
0 )x, νx

0) = 0,

where

(̃νm,n
0 )x :=

m∑
i=1

1Am
i
(x)

am,i

n

n∑
j=1

δϕ̃m,n
(i−1)n+j

, x ∈ X,

am,i =
{∫

Am
i
νx

0(T)dx

λ(Am
i )

, if λ(Am
i )> 0,

ν
xm

i
0 (T), if λ(Am

i ) = 0,

and {ϕ̃m,n
(i−1)n+j}1≤i≤m,1≤j≤n ⊆ Y . For every x ∈ X, let (νm,n

0 )x be the discrete measure by transporting the mass
of the discrete measure (̃νm,n

0 )x at 1 to that at 0:
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(νm,n
0 )x(z) =

{
(̃νm,n

0 )x(z), if z �= 0,

(̃νm,n
0 )x(0) + (̃νm,n

0 )x(1), if z = 0.

Then νm,n
0 can be represented by (5.1), and it follows from (5.2) that

d∞,BL(νm,n
0 , ν0) = sup

x∈X
dBL((νm,n

0 )x, νx
0) ≤ sup

x∈X
d̃BL((̃νm,n

0 )x, ν̃x
0),

which immediately yields the conclusion.

Lemma 5.2. Assume (A1) and (A4)′. For every m ∈N, let Am
i and xm

i be defined in Lemma 5.1 for
i = 1, . . . , m, m ∈N. Then there exist two sequences {yk,m,n

(i−1)n+j : i = 1, . . . , m, j = 1, . . . , n}m,n∈N ⊆ X for
k = 1, 2 such that

lim
m→∞

lim
n→∞

d∞,BL(ηm,n
0 , η0) = 0,

where ηm,n
0 ∈B(X, M(X)) are given by

(ηm,n
0 )x :=

m∑
i=1

1Am
i
(x)

n∑
j=1

(b1,m,i

n
δy1,m,n

(i−1)n+j
− b2,m,i

n
δy2,m,n

(i−1)n+j

)
; (5.3)

for k = 1, 2,

bk,m,i =
{∫

Am
i
ηx

0,k(X)dx

λ(Am
i )

, if λ(Am
i )> 0,

η
xm

i
0,k(X), if λ(Am

i ) = 0,
(5.4)

and η0,1 and η0,2 are the positive and negative part of η0, respectively.

Proof. Let η0 = η0,1 − η0,2 be the Hahn decomposition of η0, where η0,1 and η0,2 are the positive
and negative part of η0, respectively. Applying [32, Lemma 4.6] (with r = 1 therein) to η0,1 and η0,2,
respectively, we obtain two sequences of points {yk,m,n

(i−1)n+j : i = 1, . . . , m, j = 1, . . . , n}m,n∈N ⊆ X for k =
1, 2 such that for k = 1, 2,

lim
m→∞

lim
n→∞

d∞,BL(ηm,n
0,k , η0,k) = 0,

where ηm,n
0,k ∈B(X, M+(X)) with

(ηm,n
0,k )x :=

m∑
i=1

1Am
i
(x)

bk,m,i

n

n∑
j=1

δyk,m,n
(i−1)n+j

, x ∈ X,

and bk,m,i are given in (5.4). By triangle inequality, we obtain

lim
m→∞

lim
n→∞

d∞,BL(ηm,n
0 , η0) = 0,

where ηm,n
0 = η

m,n
0,1 − η

m,n
0,2 is given in (5.3).

Remark 5.3.

(i) We remark that λ(Am
i ) = 0 is possible, even in the light of λ(X)> 0. Indeed, this is because it is

possible that X = X1 ∪ X2, where the two subsets X1 and X2 have a positive Hausdorff distance and
one of them, say X2, is of Lebesgue measure zero, for example, X = [0, 1] ∪ {2}. In this case, to
ensure the diameter of Am

i tends to zero as m → ∞, Am
i may only contain points in one of the two

sets X1 and X2, and hence λ(Am
i ) = 0 for those Am

i that partition X2.
(ii) One generally cannot obtain the discrete approximation directly applied to a sign measure in M(X)

as it with the metric dBL is not complete.

To associate the points in {yk,m,n
n(i−1)+j}1≤i≤m;1≤j≤n with the sets Am

i of the partition, let qk,m,n
i,j be the indices such

that yk,m,n
n(i−1)+j ∈ Am

qk,m,n
i,j

, for k = 1, 2, i = 1, . . . , m, j = 1, . . . , n.
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For more examples of discretisations of ν0 and η0 (where the SDGM is a DGM, while one can con-
struct discretisations of an SDGM by applying the discretisations of DGMs to the positive and negative
parts of the SDGM), the reader is referred to [32, Section 4]. Next, we provide discretisations of the
frequency function ω.

Lemma 5.4. Assume (A1), (A4) and (A4)′. Let T > 0 and I = [0, T]. For every m ∈N, let Am
i and xm

i be
defined in Lemma 5.1 for i = 1, . . . , m, m ∈N. For every m ∈N, let

ωm(t, z) =
m∑

i=1

1Am
i
(z)ω(t, xm

i ), t ∈ I, z ∈ X.

Then

lim
m→∞

∫ T

0

sup
x∈X

|ωm(t, x) −ω(t, x)| dt = 0.

The proof of Lemma 5.4 is analogous to [32, Lemma 4.9] and hence omitted.
Now we are ready to provide a discretisation of the integral equation of characteristics (3.10) on an

initial SDGM η0 by a sequence of ODEs characterising the dynamics of the oscillators coupled on the
underlying coevolving graphs. To make it convincing that we so far obtain all necessary discretisations
to construct the desired ODEs, we summarise the information below. There exist

• a partition {Am
i }1≤i≤m of X and points xm

i ∈ Am
i for i = 1, . . . , m, for every m ∈N;

• three sequence of non-negative numbers {am,i}1≤i≤m, {bk,m,i}1≤i≤m ⊆R+ for k = 1, 2, m ∈N;
• a sequence of double-indexed points on the circle {ϕm,n

(i−1)n+j}1≤i≤m;1≤j≤n ⊆T for n, m ∈N;
• two sequences of double-indexed points on X {yk,m,n

(i−1)n+j}1≤i≤m;1≤j≤n ⊆ X, for k = 1, 2 and n, m ∈N;
• a sequence of frequency functions {ωi}1≤i≤m ⊆ C(I) for m ∈N;
• a sequence of SDGMs ηm,n

0 ∈B(X, M(X)) for n, m ∈N, and
• a sequence of finite discrete measures νm,n

0 ∈M+(X) for n, m ∈N

such that
lim

m→∞
lim
n→∞

d∞,BL(νm,n
0 , ν0) = 0,

lim
m→∞

lim
n→∞

d∞,BL(ηm,n
0 , η0) = 0,

lim
m→∞

∫ T

0

max
1≤i≤m

sup
x∈Am

i

∣∣ωm
i (t) −ω(t, x)

∣∣ dt = 0,

where
ωm

i (t) = ω(t, xm
i ), t ∈T, i = 1, . . . , m, (5.5)

(ηm,n
0 )x =

m∑
i=1

1Am
i
(x)

n∑
j=1

( b1,m,i

n
δy1,m,n

(i−1)n+j
− b2,m,i

n
δy2,m,n

(i−1)n+j

)
, x ∈ X (5.6)

(νm,n
0 )x =

m∑
i=1

1Am
i
(x)

n∑
j=1

am,i

n
δϕm,n

(i−1)n+j
, x ∈ X. (5.7)

Consider the following coupled system of integral equations

φ(i−1)n+j(t) =ϕm,n
(i−1)n+j +

∫ t

0

wm
i (s)ds +

∫ t

0

e−εs

·
(b1,m,i

n

n∑
�=1

am,q1,m,n
i,�

n

n∑
�
′=1

g(φ(q1,m,n
i,� −1)n+�′ (s) − φ(i−1)n+j(s))
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− b2,m,i

n

n∑
�=1

am,q2,m,n
i,�

n

n∑
�
′=1

g(φ(q2,m,n
i,� −1)n+�′ (s) − φ(i−1)n+j(s))

)
ds

−
(
ε

∫ t

0

∫ s

0

e−ε(t−τ )

m∑
p=1

λ(Am
p )

a2
m,p

n2

n∑
�=1

n∑
�
′=1

g(φm,n
(p−1)n+�(s) − φm,n

(i−1)n+j(s))

·h(φm,n

(p−1)n+�′ (τ ) − φm,n
(i−1)n+j(τ ))dτds

)
mod 1, t ∈R, (5.8)

The above integral equation is well posed, as a consequence of the standard Picard–Lindelöf iteration.

Proposition 5.5. Assume (A1)-(A4) and (A4)′. Let T > 0. Then there exists a unique solution (�m,n(t) =
(φm,n

(i−1)n+j(t))1≤i≤m, 1≤j≤n to (5.8).

For t ∈ I, let �m,n(t) = (φm,n
(i−1)n+j(t))1≤i≤m;1≤j≤n be the solution to (5.8), and define a sequence of fibre

empirical distributions ((νm,n
· ))m,n∈N ⊆ C(I, B∞):

(νm,n
t )x :=

m∑
i=1

1Am
i
(x)

am,i

n

n∑
j=1

δφm,n
(i−1)n+j(t)

, x ∈ X, t ∈ I. (5.9)

Theorem 5.6. Assume (A1)–(A5) and (A4)’. Let T > 0 and I = [0, T]. Assume ν0 ∈ C∞. Let ηm,n
0 ∈

B(X, M(X)), νm,n
0 ∈B∞, and ωm

i ∈ C(I) and (νm,n
· ) be defined in (5.7)–(5.5) and (5.9), respectively. Let

ν· the solution to the generalised VE (4.1) with initial condition ν0. Then

lim
n→∞

dI
∞,BL(νm,n

· , ν·) = 0

The proof of Theorem 5.6 is provided in Section 7.3.

6. An example – A model on binary tree networks

In this section, to demonstrate the applicability of our main results obtained in Sections 4 and 5, we
provide one example where the sequence of initial graphs is not dense. It is noteworthy that despite
it is assumed in this paper that X is a compact set of a positive Lebesgue measure, almost the same
arguments yield some other interesting cases where X is a circle (and hence as a subset of R2, it is a
Lebesgue measure zero set) and the reference probability measure on X is chosen to be the Haar measure
on the circle. We refer the interested reader to other examples including the Kuramoto model on a ring
network in an earlier version of this paper [4, Section 6.1].

Consider the binary Kuramoto network

φ̇N
i = ωN

i (t) + 1

N

N∑
j=1

WN
ij g(φN

j − φN
i ), 0< t ≤ T∗,

ẆN
ij = − ε(WN

ij + h(φN
j − φN

i )), 0< t ≤ T∗

φN
i (0) = ϕN

i , WN
ij (0) = WN

i,j,0, i, j = 1, . . . , N, (6.1)

where T∗ > 0, ωN
i (t) is the natural time-dependent frequency of the i-th oscillator, h(u) = − sin2 2πu and

g(u) = sin 2πu, and the network is a sequence of binary trees of N nodes (see Figure 2(b)) with

WN
i,j,0 = N1{2i,2i+1,�i/2�}(j), i, j = 1, . . . , N,

for all N = 2m+1 − 1 where m is the number of levels of the binary tree. Let X = [0, 1], IN
i = [ i−1

N
, i

N

[
,

i = 1, . . . , N − 1 and IN
N = [ N−1

N
, 1
]

be a uniform partition of X. For every x ∈ IN
i , t ∈ [0, T∗], let
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Figure 2. Oscillators coupled on binary trees.

φN(t, x) = φN
i (t), ϕN(x) = ϕN

i , ωN(t, x) =ωN
i (t), (6.2)

ηx
N,0 = 1

N

N∑
j=1

WN
i,j,0δ 2j−1

2N
, νx

N,t = δφN
i (t). (6.3)

Define the empirical distribution of the network (6.1)∫ 1

0

νx
N,tdx := 1

N

N∑
i=1

δφN
i (t) (6.4)

Let

ηx
0 =

⎧⎪⎨⎪⎩
2δ0, if x = 0,

2δ2x + δx/2, if 0< x ≤ 1/2,

δx/2, if 1/2< x ≤ 1.

Note that x 
→ ηx
0 is continuous at all x ∈ ]0, 1/2[ ∪ ]1/2, 1].

By Theorem 3.4 and Corollary 3.9, there exists a solution map Sx
t generated by

φ(t, x) =
(
φ0(x) +

∫ t

0

(
ω(s, x) + e−εs

∫ 1

0

∫
T

sin
(
2π (ψ − φ(s, x))

)
dνy

s (ψ)dηx
0(y)

+ ε

∫ s

0

e−ε(t−τ )

∫ 1

0

∫
T

sin
(
2π (ψ − φ(s, x))

)
dνy

s (ψ)

·
∫
T

sin2
(
2π (ψ − φ(τ , x))

)
dνy

τ
(ψ))dydτ

)
ds
)

mod 1 (6.5)

Define the following generalised VE

νx
t = νx

0 ◦ (Sx
t )−1[η0, ν·,ω], x ∈ [0, 1]. (6.6)

Theorem 6.1. Assume (A4) and (A4)’. Let ν0 ∈B∞. Then there exists a unique solution νt to (6.6).
Moreover, if ν0 ∈ C∞ and limN=2m+1−1→∞ d∞,BL(νN,0, ν0) = 0, then

lim
N=2m+1−1→∞

d∞,BL(νN,t, νt) = 0, ∀t ∈ [0, T∗].

In particular,

lim
N=2m+1−1→∞

dBL

( 1

N

N∑
i=1

δφN
i (t),

∫ 1

0

νx
t ( • )dx

)
= 0.

Proof. It suffices to show that

lim
N=2m+1−1→∞

d∞,BL(ηN,0, η0) = 0.
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For any x ∈ [0, 1[, let i = i(x) = �xN� + 1. Then x ∈
[

i−1
N

, i
N

[
. For x = 0, i = 1, and WN

i,j,0 = N1{2,3}(j). For
x ∈ ]0, 1

2

[
, WN

i,j,0 = N1{2i,2i+1,�i/2�}(j). For x ∈ [ 1
2
, 1
[
, WN

i,j,0 = N1{�i/2�}(j). Hence for x = 0,

dBL(ηx
N,0, η

x
0) = sup

f ∈BL1([0,1])

∫ 1

0

f d
(
δ 3

2N
+ δ 5

2N
− 2δ0

)
≤
∣∣∣ 3

2N

∣∣∣+ ∣∣∣ 5

2N

∣∣∣= 4

N
;

for x ∈ ]0, 1/2[,

dBL(ηx
N,0, η

x
0) = sup

f ∈BL1([0,1])

∫ 1

0

f d
(
δ 4i−1

2N
+ δ 4i+1

2N
+ δ 2�i/2�−1

2N
− 2δ2x − δx/2

)
≤
∣∣∣4i − 1

2N
− 2x

∣∣∣+ ∣∣∣4i + 1

2N
− 2x

∣∣∣+ ∣∣∣2�i/2� − 1

2N
− x

2

∣∣∣
≤ 3

2N
+ 5

2N
+ 2

2N
= 5

N
;

for x ∈
]

1
2
, 1
[
,

dBL(ηx
N,0, η

x
0) = sup

f ∈BL1([0,1])

∫ 1

0

f d
(
δ 2�i/2�−1

2N
− δx/2

)
≤
∣∣∣2�i/2� − 1

2N
− x

2

∣∣∣≤ 1

N
;

for x = 1,

dBL(ηx
N,0, η

x
0) = sup

f ∈BL1([0,1])

∫ 1

0

f d
(
δ 2�N/2�−1

2N
− δ1/2

)
≤
∣∣∣ (N − 1) − 1

2N
− 1

2

∣∣∣= 1

N
.

This implies that

d∞,BL(ηN,0, η0) ≤ 5

N
→ 0, as N → ∞.

We comment that the limit of such sequence of graphs are not dense and hence cannot be represented
as a ‘graphon’ [39]; instead, it can be viewed as a symmetric digraph measure [32] (see also [34]).

7. Proofs of main results
7.1 Proof of Theorem 3.4

Proof. The proof is in similar spirit to that of [25, Theorem A]. For the reader’s convenience, we provide
a complete proof here.

Since ν· ∈ Cb(R, B∞), we have

‖ν·‖R = sup
t∈R

‖νt‖<∞.

For simplicity, let N = [0 − t∗, 0 + t∗] for any fixed 0< t∗ < ε−1, where we recall that ε is slow timescale
of the underlying SDGM in (3.2). In the following, we prove the conclusions in several steps. First, we
show the solution exists locally in a subset of C(N , C(X, T×M(X))) (Step 1 and Step 2), and then we
prove the uniqueness of solutions in C(N , C(X, T×M(X))) using Gronwall inequality (Step 3). Then
we extend the solution to an open maximal existence interval and use a priori estimates to show global
existence (Step 4).
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To show that the solution uniquely exists in the bigger space C(N , B(X, T×M(X))), all the argu-
ments still remain, by simply replacing C(N , C(X, T×M(X))) by C(N , B(X, T×M(X))). Note that
Step 1-(c) is not needed in this case.

For (φ, η·), (ϕ, ξ·) ∈ C(N , B(X, T×M(X))), t ∈N , x ∈ X, define

dT,TV

(
(φ(t, x), ηx

t ), (ϕ(t, x), ξ x
t )
)

:= dT(φ(t, x), ϕ(t, x)) + dTV(ηx
t , ξ

x
t ),

d∞,T,TV((φ(t), ηt), (ϕ(t), ξt)) := sup
x∈X

dT,TV((φ(t, x), ηx
t ), (ϕ(t, x), ξ x

t )),

dN
∞,T,TV((φ, η·), (ϕ, ξ·)) := sup

t∈N
d∞,T,TV((φ(t), ηt), (ϕ(t), ξt))

Note that C(N , B(X, T×M(X))) and C(N , C(X, T×M(X))) are both complete metric spaces under
the uniform metric dN

∞,T,TV, which can be readily proved as [32, Proposition 2.6]. To show the local
existence of solutions, we will construct a subspace � of C(N , C(X, T×M(X))) and apply the Banach
fixed point theorem on the space �.

Let σ ≥ (‖η0‖+‖ν·‖N ‖h‖∞)
(εt∗)−1−1

and

�= {(φ, η) ∈ C(N , C(X, T×M(X))) : φ(0, x) = φ0(x), ηx
t |t=0 = ηx

0, ∀x ∈ X; ‖η· − (η0)·‖N ≤ σ}
Here, we abuse η0 ∈ C(N , C(X, M(X)) for the constant function

(η0)
x
t ≡ ηx

0 for t ∈N and x ∈ X.

By the assumption (A5), η0 ∈ C(X, T×M(X)). The space � is complete since it is a closed subset
of the complete metric space C(N , C(X, T×M(X))). Define the operator A= (A1, A2) = {Ax}x∈X =
{(A1,x, A2,x)}x∈X from � to �. For every x ∈ X and (φ, η) ∈�,

A1,x(φ, η)(t) =
(
φ0(x) +

∫ t

0

(
ω(τ , x) +

∫
X

∫
T

g(ψ − φ(τ , x))dνy
τ
(ψ)dηx

τ
(y)
)
dτ
)

mod 1 (7.1)

(A2,x(φ, η)(t))( • ) = ηx
0( • ) − ε

∫ t

0

ηx
τ
( • )dτ − ε

(∫ t

0

∫
T

h(ψ − φ(τ , x))dν•
τ
(ψ)dτ

)
λ( • ), y ∈ X.

(7.2)

In Steps 1 and 2, we will show that the n-th iteration An for some large n ∈N is a contraction from
� to �.

Step 1. A is a mapping from � to �.
Step 1(a). It is obvious that A1,x(φ, η)(t) ∈T, since (7.1) is regarded as an equation modulo 1. That

A2,x(φ, η)(t) ∈M(X) for t ∈N follows from

sup
τ∈N

sup
y∈X

∣∣∣∣∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ)

∣∣∣∣≤ ‖h‖∞‖ν·‖N

as well as

sup
t∈N

|ηx
t |(X) ≤ ‖η0‖ + σ <∞.

Step 1(b). t 
→A(φ, η)(t) is continuous. Let t, t′ ∈N with t< t′. First,

dT(A1,x(φ, η)(t), A1,x(φ, η)(t′))

≤ ∣∣A1,x(φ, η)(t) −A1,x(φ, η)(t′)
∣∣
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≤
∫ t

′

t

∣∣∣∣ω(τ , x) +
∫

X

∫
T

g(ψ − φ(τ , x))dνy
τ
(ψ)dηx

τ
(y)

∣∣∣∣ dτ
≤
(

sup
τ∈[t,t

′
]

|ω(τ , x)| + ‖g‖∞‖ν·‖N sup
t∈N

|ηx
t |(X)

)
|t − t′|

≤
(

sup
τ∈[t,t

′
]

|ω(τ , x)| + ‖g‖∞‖ν·‖N (‖η0‖ + σ )

)
|t − t′|

Moreover,

dTV(A2,x(φ, η)(t), A2,x(φ, η)(t′))

= sup
f ∈B1(X)

∫
X

f d
(
A2,x(φ, η)(t) −A2,x(φ, η)(t′)

)
≤ ε

∫ t
′

t

sup
f ∈B1(X)

∫
X

f (y)d
(

−ηx
τ
(y) −

∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ)dy

)
dτ

≤ ε|t′ − t|
(

sup
τ∈N

‖ηx
0 − ηx

τ
‖N + sup

τ∈N

∥∥ηx
0( • ) +

∫
T

h(ψ − φ(τ , x))dν•
τ
(ψ)λ( • )

∥∥
N

)
≤ ε|t′ − t|(σ + ‖η0‖ + ‖ν·‖N‖h‖∞)

Together it yields

d∞,T,TV(A(φ, η)(t), A(φ, η)(t′))

≤|t′ − t|
(
ε(σ + ‖η0‖ + ‖ν·‖N‖h‖∞) + sup

τ∈[t,t
′
]

|ω(τ , x)| + ‖g‖∞‖ν·‖N (‖η0‖ + σ )
)

→0, as |t − t′| → 0.

Step 1(c). We show for each fixed t ∈N , x 
→Ax(φ, η)(t) is continuous provided x 
→ ηx
0 is so by

(A5). The continuity of A1,x(φ, η)(t) in x follows from (A2), (A4)′, the continuity of
x 
→ φ(t, x), as well as the fact that continuity of x 
→ ηx

τ
in total variation distance implies

that in bounded Lipschitz distance, which further implies their weak continuity, by applying
Proposition 2.11(iii). Next, we verify the continuity of x 
→A2,x(φ, η)(t). For x, x′ ∈ X,

dTV(A2,x(φ, η)(t), A2,x
′
(φ, η)(t))

= sup
f ∈B1(X)

∫
X

f d
(
A2,x(φ, η)(t) −A2,x

′
(φ, η)(t)

)
≤ dTV(ηx

0, η
x
′

0 ) + ε

∣∣∣∣∫ t

0

dTV(ηx
τ
, ηx

′
τ

)dτ
∣∣∣∣

+ ε

∣∣∣∣∫ t

0

∫
X

∫
T

|h(ψ − φ(τ , x)) − h(ψ − φ(τ , x′))|dνy
τ
(ψ)dydτ

∣∣∣∣
≤ dTV(ηx

0, η
x
′

0 ) + ε

∣∣∣∣∫ t

0

dTV(ηx
τ
, ηx

′
τ

)dτ
∣∣∣∣

+ εLip(h)‖ν·‖N

∣∣∣∣∫ t

0

|φ(τ , x) − φ(τ , x′)|dτ
∣∣∣∣→ 0, as |x − x′| → 0,

by the Dominated Convergence Theorem, since for every τ ∈N ,

dTV(ηx
τ
, ηx

′
τ

), |φ(τ , x) − φ(τ , x′)| → 0, as |x − x′| → 0,

due to ητ ∈ C(X, M(X)) and φ(τ , ·) ∈ C(X, T).
Step 1(d). We show

‖A2(φ, η) − η0‖N ≤ σ .
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Indeed, since A2(φ, η)(0) = η0, by Step 1(b),

‖A2(φ, η) − η0‖N = sup
t∈N

‖A2(φ, η)(t) − η0‖
≤ sup

t∈N
ε|t|(σ + ‖η0‖ + ‖ν·‖N‖h‖∞)

≤ εt∗(σ + ‖η0‖ + ‖ν·‖N‖h‖∞) ≤ σ
Step 2. The aim is to prove that An is a contraction for some n ∈N. Let (φ, η), (ϕ, ζ ) ∈�. Then

dT(A1,x(φ, η)(t), A1,x(ϕ, ζ )(t))

≤ ∣∣A1,x(φ, η)(t) −A1,x(ϕ, ζ )(t)
∣∣

≤
∣∣∣∣∫ t

0

∫
X

∫
T

(g(ψ − φ(τ , x)) − g(ψ − ϕ(τ , x)))dνy
τ
(ψ)dηx

0(y)dτ
∣∣∣∣

+
∣∣∣∣∫ t

0

∫
X

∫
T

(g(ψ − φ(τ , x)) − g(ψ − ϕ(τ , x)))dνy
τ
(ψ)d(ηx

τ
(y) − ηx

0(y))dτ
∣∣∣∣

+
∣∣∣∣∫ t

0

∫
X

∫
T

g(ψ − ϕ(τ , x))dνy
τ
(ψ)d

(
ηx
τ
(y) − ζ x

τ
(y)
)

dτ
∣∣∣∣

≤ Lip(g)‖ν·‖N‖η0‖
∣∣∣∣∫ t

0

|φ(τ , x) − ϕ(τ , x)|dτ
∣∣∣∣

+ Lip(g)‖ν·‖N sup
τ∈N

dTV(ηx
τ
, ηx

0)

∣∣∣∣∫ t

0

|φ(τ , x) − ϕ(τ , x)|dτ
∣∣∣∣

+ ‖g‖∞‖ν·‖N

∣∣∣∣∫ t

0

dTV(ηx
τ
, ζ x

τ
)dτ
∣∣∣∣

≤ |t|
(

Lip(g)‖ν·‖N
(
‖η0‖ + sup

τ∈N
dTV(ηx

τ
, ηx

0)
)

sup
τ∈N

|φ(τ , x) − ϕ(τ , x)|

+‖g‖∞‖ν·‖N sup
τ∈N

dTV(ηx
τ
, ζ x

τ
))

)
≤ |t|

(
Lip(g)‖ν·‖N (‖η0‖ + σ ) sup

τ∈N
|φ(τ , x) − ϕ(τ , x)|

+‖ν·‖N‖g‖∞ sup
τ∈N

dTV(ηx
τ
, ζ x

τ
)

)
≤ |t|M1 sup

τ∈N
d∞,T,TV((φ(τ , x), ηx

τ
), (ϕ(τ , x), ζ x

τ
)),

where M1 = ‖ν·‖N (Lip(g)(‖η0‖ + σ ) + ‖g‖∞). Similarly,

dTV(A2,x(φ, η)(t), A2,x(ϕ, ζ )(t))

= sup
f ∈B1(X)

∫
X

f d
(
A2,x(φ, η)(t) −A2,x(ϕ, ζ )(t)

)
≤ ε

(∣∣∣∣∫ t

0

dTV(ηx
τ
, ζ x

τ
)dτ
∣∣∣∣

+
∣∣∣∣∫ t

0

∫
X

∫
T

|h(ψ − φ(τ , x)) − h(ψ − ϕ(τ , x))|dνy
τ
(ψ)dydτ

∣∣∣∣)
≤ ε

(∣∣∣∣∫ t

0

dTV(ηx
τ
, ζ x

τ
)dτ
∣∣∣∣+ Lip(h)‖ν·‖N

∣∣∣∣∫ t

0

|φ(τ , x) − ϕ(τ , x)|dτ
∣∣∣∣)

≤ ε|t|
(

sup
τ∈N

dTV(ηx
τ
, ζ x

τ
) + Lip(h)‖ν·‖N sup

τ∈N
|φ(τ , x) − ϕ(τ , x)|

)
≤ |t|M2 sup

τ∈N
dT,TV((φ(τ , x), ηx

τ
), (ϕ(τ , x), ζ x

τ
)),
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where M2 = ε(1 + Lip(h)‖ν·‖N ). Hence,

dT,TV(Ax(φ, η)(t), Ax(ϕ, ζ )(t)) ≤ |t|M3 sup
τ∈N

dT,TV((φ(τ , x), ηx
τ
), (ϕ(τ , x), ζ x

τ
)),

where M3 = max{M1, M2}. This implies that

d∞,T,TV(A(φ, η)(t), A(ϕ, ζ )(t)) ≤ |t|M3 sup
τ∈N

d∞,T,TV((φ(τ , ·), ητ ), (ϕ(τ , ·), ζτ )).

Moreover, from the above estimates we can further prove that

dT,TV (Ax(φ, η)(t), Ax(ϕ, ζ )(t))≤ M3

∣∣∣∣∫ t

0

dT,TV((φ(τ , x), ηx
τ
), (ϕ(τ , x), ζ x

τ
))dτ

∣∣∣∣ . (7.3)

Repeatedly applying (7.3) yields. For n ∈N,

dT,TV ((Ax(φ, η))n(t), (Ax(ϕ, ζ ))n(t))≤ (M3|t|)n

n! sup
τ∈N

dT,TV((φ(τ , x), ηx
τ
), (ϕ(τ , x), ζ x

τ
)), (7.4)

which further implies that

dN
∞,T,TV ((A(φ, η))n, (A(ϕ, ζ ))n)≤ (M3t∗)n

n! dN
∞,T,TV((φ, η), (ϕ, ζ )).

Hence, there exists some large n ∈N such that (M3 t∗)n

n! < 1 and hence Am is a contraction for all
m ≥ n. By the Banach contraction principle, there exists a unique solution Tt(φ0, η0) for t ∈N
in �⊆ C(N , C(X, T×M(X))) to the equation (3.1)–(3.2) of characteristics.

Step 3. In Steps 1 and 2, we only obtained the uniqueness within �. Next, we show that the solution is
unique in C(N , C(X, T×M(X))). Let (φ, η), (ϕ, ζ ) ∈ C(N , C(X, T×M(X))) be two solutions
to the IVP of (3.1)–(3.2) with (φ, η) ∈�. Similar as in (7.3), one can show. For t ≥ 0,

d∞,T,TV((φ(t, ·), ηt), (ϕ(t, ·), ζt)) ≤ M3

∫ t

0

d∞,T,TV((φ(τ , ·), ητ ), (ϕ(τ , ·), ζτ ))dτ
which implies by Gronwall’s inequality that

d∞,T,TV((φ(t, ·), ηt), (ϕ(t, ·), ζt)) = 0. (7.5)

Similarly, one can show that (7.5) holds for t ≤ 0. Hence, (φ(t, ·), ηt) = (ϕ(t, ·), ζt) for all t ∈N .
This shows that the solution to the IVP of (3.1)–(3.3) is unique in the entire set C(N , C(X, T×
M(X))).

Step 4. By Zorn’s lemma, one can always extend the solution by repeating Steps 1–3 indefinitely up to
a maximal existence time T+

0 with the dichotomy:
(i) limt↑T+

0
|T 1

t (φ0, η0)| + ‖T 2
t (φ0, η0)‖ = ∞;

(ii) T+
0 = +∞.
Note that |T 1

t (φ0, η0)| ≤ 1 since T 1
t (φ0, η0) ∈T. Moreover, by (3.9) in Proposition 3.8,

‖T 2
t (φ0, η0)‖ ≤ ‖η0‖ + ‖ν·‖N‖h‖∞ε

∫ t

0

e−ε(t−τ )dτ ≤ ‖η0‖ + ‖ν·‖N‖h‖∞, t ≥ 0,

which implies that case (i) will never occur. Hence, T+
0 = +∞. Analogously, one can show the

minimal existence time T−
0 = −∞. This shows that the solution globally exists on R.

We have completed the proof.

7.2 Proof of Theorem 4.2

Proof. Note that B∞ is a closed subset of B(X, M+(T)). The unique existence of solutions to the gener-
alised VE is a result of the Banach contraction principle applied in the complete metric space C(I, B∞)
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[32, Proposition 2.11] under a dilated metric dI,α
∞,BL := supt∈I e−αtd∞,BL(ηt, ξt), with an appropriately cho-

sen α > 0, due to the mass conservation law in Proposition 4.1(i). The arguments are analogous to those
in the proof of [32, Proposition 3.5], based on Proposition 4.1.

Note that ν· ∈ C(I, C∞) follows from Proposition 4.1(i).

7.3 Proof of Theorem 5.6

Proof. The idea of the proof is analogous to that of [32, Theorem 4.11]. We will prove the approximation
of the solution to the generalised Vlasov equation in four steps.

Based on the continuous dependence of the solutions on the frequency function, the SDGM, as well
as the initial distribution (Proposition 4.4), we aim to construct three auxilliary generalised VEs, each
replacing one of the three variables by their approximation, and show convergence using the triangle
inequalities.
Step I. Show that (νm,n

· ) defined in (5.9) is the solution to the generalised VE associated with ηm,n
0

and ωm:

(νm,n
· ) =F[ηm,n

0 , (νm,n
· ),ωm](νm,n

· ). (7.6)

To prove this, we calculate F[ηm,n
0 , (νm,n

· ),ωm](νm,n
· ) explicitly and show that (νm,n

· ) satisfies (7.6). Then
by the uniqueness of solutions from Theorem 4.2, we prove that (νm,n

· ) is the unique solution to (7.6).
We first need to examine the equation of characteristics (3.10) associated with ηm,n

0 and ωm.
We first prove the equivalence of (5.8) and (3.10) associated with ηm,n

0 and ωm.
Let Wm,n

k,i,0 = bk,m,i and Wm,n
0 = (Wm,n

1,0 , Wm,n
2,0 ) with Wm,n

k,0 = (Wm,n
k,i,0)1≤i≤m for k = 1, 2. By Proposition 5.5, let

Qt[W
m,n
0 ,ωm] be the solution map generated by (5.8) such that

�m,n(t) =Qt[W
m,n
0 ,ωm]�m,n

0 , with �m,n
0 = (ϕm,n

(i−1)n+j)1≤i≤m,1≤j≤n.

In the following, we verify that this solution map coincides with Sx
t [ηm,n

0 , νm,n
· ,ωm]. More precisely, by

the uniqueness of solutions of (5.8) as well as those of (3.10), it suffices to show that solutions to the
following equation solve (5.8). For i = 1, . . . , m, for x ∈ Am

i , j = 1, . . . , n,

φ(i−1)n+j(t) = Sx
t [ηm,n

0 , νm,n
· ,ωm]ϕm,n

(i−1)n+j, (7.7)

where ηm,n
0 = η

m,n
0,1 − η

m,n
0,2 is given by. For k = 1, 2, i = 1, . . . , m, x ∈ Am

i ,

(ηm,n
0,k )x = Wm,n

k,i,0

n

n∑
j=1

δyk,m,n
(i−1)n+j

,

and

(νm,n
t )x := am,i

n

n∑
j=1

δφm,n
(i−1)n+j(t)

,

ωm(t, x) =ωm
i (t). (7.8)

Next, we explicitly calculate each term in (3.10) associated with ηm,n
0,k , νm,n

t and ωm. Note that for x ∈ Am
i ,∫

X

∫
T

g(ψ − φ(s, x))d(νm,n
s )y(ψ)

∫
T

h(ψ − φ(τ , x)))d(νm,n
τ

)y(ψ)dy

=
m∑

p=1

λ(Am
p )

am,p

n

n∑
�=1

g(φm,n
(p−1)n+�(s) − φ(s, x))·am,p

n

n∑
�
′=1

h(φm,n

(p−1)n+�′ (τ ) − φm,n
(i−1)n+j(τ ))

=
m∑

p=1

λ(Am
p )

a2
m,p

n2

n∑
�=1

n∑
�
′=1

g(φm,n
(p−1)n+�(s) − φ(s, x))h(φm,n

(p−1)n+�′ (τ ) − φ(τ , x)), (7.9)
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∫
X

∫
T

g(ψ − φ(s, x))d(νm,n
s )y(ψ)d(ηm,n

0,k )x(y)

= Wm,n
k,i,0

n

n∑
�=1

∫
T

g(ψ − φ(s, x))d(νm,n
s )yk,m,n

(i−1)n+�(ψ)

= Wm,n
k,i,0

n

n∑
�=1

n∑
p=1

1Am
p
(yk,m,n

(i−1)n+�)
am,p

n

n∑
�
′=1

g(φm,n

(p−1)n+�′ (s) − φ(s, x))

= Wm,n
k,i,0

n

n∑
�=1

am,qk,m,n
i,�

n

n∑
�
′=1

g(φm,n

(qk,m,n
i,� −1)n+�′ (s) − φ(s, x)), (7.10)

where we recall 1 ≤ qm,n
i,� ≤ m such that ym,n

(i−1)n+� ∈ Am
qm,n

i,�
.

Plugging the above four expressions (7.8), (7.9) and (7.10) into (3.10) yields that solutions to (7.7)
are �m,n = (φm,n

(i−1)n+j)1≤i≤m;1≤j≤n that solves (5.8).
Hence, we can conclude that

(νm,n
t )x = (νm,n

0 )x ◦
(
Sx

t [ηm,n
0 , νm,n

· ,ωm]
)−1

, x ∈ X, (7.11)

that is, (7.6) holds. To see this, pick an arbitrary Borel measurable set B ∈B(T), let f = 1B. Then for
x ∈ Am

i , ∫
T

f dνx
m,n,0 ◦

(
Sx

t [ηm,n
0 , (νm,n

· ),ωm]
)−1

=
∫
T

f ◦ Sx
t [ηm,n

0 , (νm,n
· ),ωm]d(νm,n

0 )x

= am,i

n

n∑
j=1

f
(
Sx

t [ηm,n
0 , (νm,n

· ),ωm]ϕm,n
(i−1)n+j

)
= am,i

n

n∑
j=1

f
(
φm,n

(i−1)n+j(t)
)= ∫

T

f d(νm,n
t )x,

which shows that (7.11) holds, since B was arbitrary and X = ∪m
i=1A

m
i .

Step II. Construct an auxiliary approximation based on continuous dependence on the graph measures.
Since ν0 ∈ C∞, by Theorem 4.2, let ν̂m,n

· be the solution to the generalised VE in C(I, C∞)

ν̂m,n
· =F[ηm,n

0 , ν̂m,n
· ,ω]̂νm,n

·

with ν̂m,n
0 = ν0. By Proposition 4.4(iii), we have

lim
m→∞

lim
n→∞

d∞,BL(νt, ν̂
m,n
t ) = 0, (7.12)

since

lim
m→∞

lim
n→∞

d∞,BL(η0, η
m,n
0 ) = 0.

Step III. Construct another auxiliary approximation based on continuous dependence on ω. Let ν̄m,n
· be

the solution to the fixed point equation

ν̄m,n
· =F[ηm,n

0 , ν̄m,n
· ,ωm]ν̄m,n

·

with ν̄m,n,0 = ν0. By Lemma 5.2 and Lemma 5.4,

sup
m,n∈N

‖ηm,n
0 ‖ + sup

m∈N
|ωm|<∞ (7.13)

are uniformly bounded, which implies that

C = sup
m,n∈N

T‖ηm,n
0 ‖eL5(ηm,n

0 )T <∞.
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By Proposition 4.4(ii),
d∞,BL(ν̄m,n

t , ν̂m,n
t ) ≤ C‖ω−ωm‖∞,I ,

which implies that
lim

m→∞
lim
n→∞

d∞,BL(ν̄m,n
t , ν̂m,n

t ) = 0. (7.14)

Step IV. Since (νm,n
· ) is the solution to the generalised VE

(νm,n
· ) =F[ηm,n

0 , (νm,n
· ),ωm](νm,n

· )

with initial condition νm,n
0 , by Lemma 5.1 and Proposition 4.4(i),

d∞,BL(νm,n
t , ν̄m,n

t ) ≤ eL5(ηm,n
0 )td∞,BL(νm,n

0 , ν0).

Similarly, supm,n∈N L5(η
m,n
0 )<∞ by (7.13), and thus

lim
m→∞

lim
n→∞

dI
∞,BL(νm,n

· , ν̄m,n
· ) = 0. (7.15)

In sum, from (7.12), (7.14) and (7.15), by triangle inequality it yields that
lim

m→∞
lim
n→∞

dI
∞,BL(ν·, ν

m,n
· ) = 0.

8. Discussions and outlook
8.1 Sign of the underlying graphs

For instance, when h is a signed function like many harmonic functions, or even the initial graph is
the empty graph where all edge weights are zero, it hardly is possible to separate the positive part and
negative part of the evolving graph in a generic way directly.

The sign change in a physical or biological sense implies the feedback the underlying graph receives
from the dynamics on the graph can be alternatively inhibitory and excitatory, which is actually a sce-
nario observed in many neural networks. Hence, it could arguably reflects the nature of many such
real-world models.

In what follows, we propose a new framework where the positive part and the negative part of the
evolving SDGM is trackable, by separating the positive adaptation rule from the negative one

φ̇i = ωi + 1

N

N∑
j=1

W1
ij(t)g1(φj − φi) − 1

N

N∑
j=1

W2
ijg2(φj − φi), (8.1)

Ẇ1
ij = − ε1(Wij − h1(φj − φi)), (8.2)

Ẇ2
ij = − ε2(Wij − h2(φj − φi)), (8.3)

where h1 and h2 are positive functions, and ε1 and ε2 are two small positive numbers accounting for
different timescales of the evolution of the graphs relative to the evolution of the oscillators. Here, one
may take h1 and h2 as the positive and negative part of h in (1.2), respectively. It is easily observed in
terms of the variation of parameters formula that W1 and W2 will remain positive for all times. While in
contrast to (1.1)–(1.2), such a model might be less realistic as the underlying graphs may have no chance
to alter the sign of their edge weights, it does become mathematically more tractable. So it would not
be surprising if the approach used in this paper may extend to the model (8.1)–(8.3).

8.2 A model with non-local adaptivity

In this paper, the edge weights of the underlying digraph depend locally on the dynamics of the oscil-
lators, that is, the adaptation of an edge is made only based on its two vertices. It will be interesting
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to study where long-range non-local adaptations are incorporated, for example, consider the following
system

φ̇i = ωi(t) + 1

N

N∑
j=1

Wij(t)g(φj − φi),

Ẇij = − ε
(

Wij +
N∑

k=1

ajkh1(φj − φk) +
N∑

k=1

bikh2(φj − φk)
)

,

where ajk and bik stand for the connectivity between oscillators j, k and that between oscillators i, k.
Similarly, the evolution of edge weights may depend on the edge weights also non-locally: the evolution
of Wij may depend on Wik and Wjk for all k = 1, . . . , N. Such more general models seem desirable for
the sake of their potential applications [14]. Nevertheless, new appropriate perspectives and methods
are called for to study the MFL.

8.3 Other co-evolutionary models

To get around the difficulty due to the infinite dimensionality caused by the generic mechanism that
the dynamics on the network cannot be decoupled from that of the network, we propose the following
co-evolutionary network:

φ̇i(t) = ωi(t) + 1

N

N∑
j=1

Wijui(t)vj(t)g(φj − φi),

u̇i(t) = − ε1(ui(t) − 1

N

N∑
j=1

aijh1(φj(t) − φi(t))),

v̇i(t) = − ε2(vi(t) − 1

N

N∑
j=1

bijh2(φj(t) − φi(t))), (8.4)

where φi is the phase of the i-th oscillator, h1 and h2 are the adaptivity functions, and W = (Wij)1≤i,j≤N is a
static matrix as a module to generate the time-dependent underlying coupling graph with the adjacency
matrix Wij(t) = W̄ijui(t)vj(t) that coevolves with the dynamics of the oscillators. For this network, one
can treat the adaptive network for φ as a coupled network for the triple (φ, u, v), and hence the problem
reduces to a finite-dimensional problem so that the classical approach in [32] for studying MFL of static
networks applies.

To incorporate certain non-linear self-adaptation (G′), we propose the following two models:

φ̇i = ωi(t) + 1

N

N∑
j=1

W (1)
ij (t)g(t, φj, φi),

Ẇ (1)
ij = − ε(G′(W (1)

ij ))−1h(t, φj, φi); (8.5)

φ̇i = ωi(t) + 1

N

N∑
j=1

W (2)
ij (t)g(t, φj, φi)

Ẇ (2)
ij = − ε

(
(G′(W (2)

ij ))−1G(W (2)
ij ) + h(t, φi, φj)

)
, (8.6)

where G in either case is assumed to be continuously differentiable with an invertible derivative so that
we can represent the edge weights by applying the chain rule and product rule to the second equations
of (8.5) and (8.6), respectively:
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W (1)
ij (t) = G−1

(−εG(W (1)
ij (0))

∫ t

0

h(s, φi(s), φj(s))ds
)

W (2)
ij (t) = G−1

(
e−εsG(W (2)

ij (0)) − ε

∫ t

0

e−ε(t−s)h(s, φi(s), φj(s))ds
)

Note that in both cases, the way that the connection (in term of Wij(0) rather than the coupling in terms
of g) among nodes on the graph become non-linear. We would like to clarify that these two models
are proposed more out of the mathematical curiosity, considering the potential new technical challenges
that might occur owing to this non-linearity. For the influence of the non-linearity of the graph limit on
the MFL of the network, we refer the interested reader to [3].

8.4 Technical extensions

The key approach of this paper may still be valid with other necessary technical ingredients added, under
the following relaxed assumptions:

• the initial time 0 changed to be an arbitrary finite time t0.
• g(ψ − φ) and h(ψ − φ) replaced by g(t,ψ , φ) and h(t,ψ , φ).
• λ changed to be an arbitrary probability measure on X.
• the linear vector field of the edge weights replaced by certain non-linear one (e.g., (8.5) and (8.6))

so that the dynamics of the oscillators can still be decoupled from that of the edge weights.
• the underlying graph changed to be random.
• one type of interaction (in terms of the underlying graph or coupling function) extended to finitely

many interactions (so long as the variation of parameters trick still applies).
• the pairwise interaction changed to higher-order interactions (with the techniques from [32] adapted

to those from [33]).
• the deterministic node dynamics (in terms of ODEs) changed to stochastic dynamics (e.g., in terms

of SDEs).

8.5. Challenge regarding absolute continuity

Generically, even if one is able to obtain absolute continuity of the solution to the generalised Vlasov
equation, the PDE for its density is reasonably expected to be one on an infinite-dimensional state space
(i.e., a functional PDE). Classical conditions for absolute continuity of the MFL based on Rademacher’s
change of variables formula [23] assume the equation of characteristics to generate a Lipschitz flow. It
would be interesting to construct simple networks that might serve as examples or counter-examples
in order to gain a better understanding of what is the essential mechanism responsible for absolute
continuity of the MFL or Lipschitz flow of the equation of characteristics and further to explore the
physical or biological explanation behind these phenomena.
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Appendix A. Gronwall inequalities

The following is a second-order Gronwall–Bellman inequality.

Proposition A.1. [45] Let T > 0 and u, f , g ∈ C(I, R+)8. If

u(t) ≤ u0 +
∫ t

0

f (s)u(s)ds +
∫ t

0

f (s)
∫ s

0

g(τ )u(τ )dτds, t ∈ I,

then

u(t) ≤ u0

(
1 +

∫ t

0

f (s) exp

(∫ s

0

(f (τ ) + g(τ ))dτ
)

ds

)
, t ∈ I.

Appendix B. Proof of Proposition 3.1

Proof. The uniqueness and existence of a global solution follows from Picard–Lindelöf theorem [46].
Indeed, it is a corollary of Theorem 3.4 below. Let X = [0, 1] and {AN

i }1≤i≤N be the uniform partition
of X:

AN
i =

[ i − 1

N
,

i

N

[
, for i = 1, . . . , N − 1, and AN

N =
[
1 − 1

N
, 1
]
.

Let
ω(t, x) =ωi, φ(t, x) = φi(t), νx

t = δφi(t), x ∈ AN
i , i = 1, . . . , N, t ≥ 0,

and
dηx

t (y) = Wij(t)dy, dηx
0(y) = Wij(0)dy, (x, y) ∈ AN

i × AN
j , i, j = 1, . . . , N.

Plugging the specific expressions above into the generalised co-evolutionary Kuramoto model (3.1)–
(3.3), we have

φ̇i(t) = ωi + 1

N

N∑
j=1

Wij(t)g(φj(t) − φi(t)),

Ẇij(t) = − ε(Wij + h(φj − φi)),

that is, (1.1)–(1.2).

8Recall that I = [0, T].
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Appendix C. Proof of Proposition 3.8

Proof. We show the conclusion in three steps.
Every solution to (3.1)–(3.3) is a solution to (3.8)–(3.9). By Theorem 3.4, let (φ, η) be the unique
solution to (3.1)–(3.3). Let

ξt = −ε
∫ t

0

eεs
∫
T

h(ψ − φ(s, x))dνy
s (ψ)dyds ∈ C(X;M(X)), ∀t ∈ I.

By Proposition 2.3, ξ is differentiable and

dξt

dt
= − eεtε

∫
T

h(ψ − φ(t, x))dνy
t (ψ)dy,

by the chain rule (using the definition of derivative). On the other hand, since (φ, η) is the solution
to (3.1)–(3.3), we have dξt

dt
= eεt dηt

dt
+ εeεtηt = d

dt
(eεtηt). This shows

d
dt

(eεtηt) = −eεtε
∫
T

h(ψ − φ(t, x))dνy
t (ψ)dy;

integrating on both sides in t yields (3.9). Then substituting (3.9) into (3.1) yields (3.8).
We use Gronwall inequality to show solutions of (3.8)–(3.9) are unique. Let (ϕ, ζ ) be another solution
to (3.8)–(3.9). It suffices to show ϕ = φ, and then ζ = η follows from (3.9). Write (3.8) in its integral
form. For 0 ≤ t,

|φ(t, x) − ϕ(t, x)|
≤
∫ t

0

e−εs
∫

X

∫
T

|g(ψ − φ(s, x)) − g(ψ − ϕ(s, x))|dνy
s (ψ)dηx

0(y)ds

+ ε

∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

∣∣∣∣∫
T

g(ψ − φ(s, x))dνy
s (ψ)

∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ)

−
∫
T

g(ψ − ϕ(s, x))dνy
s (ψ)

∫
T

h(ψ − ϕ(τ , x))dνy
τ
(ψ)

∣∣∣∣ dydτds

≤ Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|φ(s, x) − ϕ(s, x)|ds

+ ε

∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

(∣∣∣∣∫
T

g(ψ − φ(s, x))dνy
s (ψ)

∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ)

−
∫
T

g(ψ − ϕ(s, x))dνy
s (ψ)

∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ)

∣∣∣∣
+
∣∣∣∣∫

T

g(ψ − ϕ(s, x))dνy
s (ψ)

∫
T

h(ψ − φ(τ , x))dνy
τ
(ψ)

−
∫
T

g(ψ − ϕ(s, x))dνy
s (ψ)

∫
T

h(ψ − ϕ(τ , x))dνy
τ
(ψ)

∣∣∣∣) dydτds

≤ Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|φ(s, x) − ϕ(s, x)|ds
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+ ε

∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

(∫
T

|g(ψ − φ(s, x)) − g(ψ − ϕ(s, x))| dνy
s (ψ)

·
∫
T

|h(ψ − φ(τ , x))|dνy
τ
(ψ) +

∫
T

|g(ψ − ϕ(s, x))|dνy
s (ψ)

·
∫
T

|h(ψ − φ(τ , x)) − h(ψ − ϕ(τ , x))| dνy
τ
(ψ)

)
dydτds

≤ Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|φ(s, x) − ϕ(s, x)|ds

+ ε(‖ν·‖I)2

∫ t

0

∫ s

0

e−ε(t−τ )(Lip(g)‖h‖∞|φ(s, x) − ϕ(s, x)|
+ ‖g‖∞Lip(h)|φ(τ , x) − ϕ(τ , x)|)dτds

≤ Lip(g)‖ν·‖I (‖η0‖ + ‖h‖∞‖ν·‖I)

∫ t

0

|φ(s, x) − ϕ(s, x)|ds

+ ε‖g‖∞Lip(h)(‖ν·‖I)2

∫ t

0

∫ s

0

|φ(τ , x) − ϕ(τ , x)|dτds.

By Proposition A.1,

|φ(t, x) − ϕ(t, x)| ≤ 0·C1e(C1+C2)t + C2

C1 + C2

,

where

C1 = Lip(g)‖ν·‖I (‖h‖∞‖ν·‖I + ‖η0‖) and C2 = ε‖g‖∞Lip(h)(‖ν·‖I)2

C1

. (C.1)

This shows the uniqueness of solutions of (3.8)–(3.9).
By Steps 1 and 2, and in the light of the uniqueness of solutions to (3.1)–(3.3), we show the solution
to (3.1)–(3.3) and that to (3.8)–(3.9) coincide.

Appendix D. Proof of Proposition 3.10

Proof. (i) is obvious since solutions to (3.1)–(3.3) are in C(I, C(X, T×M(X))), by Theorem 3.4.
From Corollary 3.9,

Sx
t [η0, ν·,ω](φ0) =

(
φ0(x) +

∫ t

0

(
ω(s, x) + e−εs

∫
X

∫
T

g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ)dηx
0(y)

− ε

∫ s

0

e−ε(t−τ )

∫
X

(∫
T

g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ)∫
T

h(ψ − Sx
τ
[η0, ν·,ω](φ0))dνy

τ
(ψ)

)
dydτ

)
ds
)

mod 1

(ii) Lipschitz continuity in t. Let t1 < t2.

|Sx
t1

[η0, ν·,ω](φ0) − Sx
t2

[η0, ν·,ω](φ0)|
≤
∣∣∣∣∫ t2

t1

(
ω(s, x) + e−εs

∫
X

∫
T

g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ)dηx
0(y)

)
ds

∣∣∣∣
+ ε

∫ t2

0

∫ s

0

∣∣e−ε(t2−τ ) − e−ε(t1−τ )
∣∣ ∫

X

(∫
T

g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ)∫
T

h(ψ − Sx
τ
[η0, ν·,ω](φ0))dνy

τ
(ψ)

)
dydτ

)
ds
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+ ε

∫ t2

t1

∫ s

0

e−ε(t1−τ )

∫
X

(∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0))|dνy

s (ψ)∫
T

|h(ψ − Sx
τ
[η0, ν·,ω](φ0))|dνy

τ
(ψ)

)
dydτ

)
ds

≤ |t2 − t1|
(

max
t1≤s≤t2

|ω(s, x)| + ‖g‖∞‖ν·‖I‖η0‖e−εt1
)

+ ε‖g‖∞‖h‖∞(‖ν·‖I)2

(∫ t2

0

∫ s

0

|e−ε(t1−τ ) − e−ε(t2−τ )|dτds +
∫ t2

t1

∫ s

0

e−ε(t1−τ )dτds

)
≤ |t2 − t1|

(
max

t1≤s≤t2
|ω(s, x)| + ‖g‖∞‖ν·‖I‖η0‖e−εt1 + ( 1

2
t2
2ε

2 + 1)‖g‖∞‖h‖∞(‖ν·‖I)2

)
≤ L1|t2 − t1|,

where we rest on the fact that e−x + x is increasing in x ∈R+ and

L1 = L1(ν·, η0,ω) = max
s∈I

‖ω(s, ·)‖∞ + ‖g‖∞‖ν·‖I‖η0‖ + ( 1
2
T2 + ε2)‖g‖∞‖h‖∞(‖ν·‖I)2

(iii) Lipschitz continuous dependence on the initial conditions:

|Sx
t [η0, ν·,ω](φ0) − Sx

t [η0, ν·,ω](ϕ0)| ≤ |φ0(x) − ϕ0(x)|
+
∫ t

0

e−εs
∫

X

∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0)) − g(ψ − Sx

s [η0, ν·,ω](ϕ0))|dνy
s (ψ)dηx

0(y)ds

+ ε

∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

∣∣∣∣∫
T

g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ)
∫
T

h(ψ − Sx
τ
[η0, ν·,ω](φ0))dνy

τ
(ψ)

−
∫
T

g(ψ − Sx
s [η0, ν·,ω](ϕ0))dνy

s (ψ)
∫
T

h(ψ − Sx
τ
[η0, ν·,ω](ϕ0))dνy

τ
(ψ)

∣∣∣∣ dydτds

≤|φ0(x) − ϕ0(x)| + Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, ν·,ω](ϕ0))|ds

+ ε

∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

(∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0)) − g(ψ − Sx

s [η0, ν·,ω](ϕ0))|dνy
s (ψ)

·
∫
T

|h(ψ − Sx
τ
[η0, ν·,ω](ϕ0))|dνy

τ
(ψ) +

∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0))|dνy

s (ψ)

·
∫
T

|h(ψ − Sx
τ
[η0, ν·,ω](φ0)) − h(ψ − Sx

τ
[η0, ν·,ω](ϕ0))|dνy

τ
(ψ)

)
dydτds

≤ |φ0(x) − ϕ0(x)| + Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, ν·,ω](ϕ0))|ds

+ Lip(g)‖h‖∞(‖ν·‖I)2ε

∫ t

0

∫ s

0

e−ε(t−τ )|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, ν·,ω](ϕ0)|dτds

+ ‖g‖∞Lip(h)(‖ν·‖I)2ε

∫ t

0

∫ s

0

e−ε(t−τ )|Sx
τ
[η0, ν·,ω](φ0) − Sx

τ
[η0, ν·,ω](ϕ0)|dτds

≤ |φ0(x) − ϕ0(x)| + ‖g‖∞Lip(h)(‖ν·‖I)2ε

∫ t

0

∫ s

0

|Sx
τ
[η0, ν·,ω](φ0) − Sx

τ
[η0, ν·,ω](ϕ0)|dτds

+ Lip(g)‖ν·‖I(‖h‖∞‖ν·‖ + ‖η0‖)
∫ t

0

|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, ν·,ω](ϕ0))|ds

≤ |φ0(x) − ϕ0(x)|·C1e(C1+C2)t + C2

C1 + C2

≤ eL2t‖φ0 − ϕ0‖∞,

where in the last inequality we applied Proposition A.1, the Gronwall–Bellman inequality, with C1

and C2 given in (C.1) and L2 = C1 + C2.
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(iv) Lipschitz continuous dependence in ω. The proof is similar to that of (iii). For the reader’s
convenience, we provide a complete proof with detailed estimates:

|Sx
t [η0, ν·,ω](φ0) − Sx

t [η0, ν·, ω̃](φ0)|
≤
∫ t

0

|ω(s, x) − ω̃(s, x)|ds

+
∫ t

0

e−εs
∫

X

∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0)) − g(ψ − Sx

s [η0, ν·, ω̃](φ0))|dνy
s (ψ)dηx

0(y)ds

+ε
∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

∣∣∣∣∫
T

g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ)
∫
T

h(ψ − Sx
τ
[η0, ν·,ω](φ0))dνy

τ
(ψ)

−
∫
T

g(ψ − Sx
s [η0, ν·, ω̃](φ0))dνy

s (ψ)
∫
T

h(ψ − Sx
τ
[η0, ν·, ω̃](φ0))dνy

τ
(ψ)

∣∣∣∣ dydτds

≤ t max
0≤s≤t

|ω(s, x) − ω̃(s, x)| + Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, ν·, ω̃](φ0))|ds

+ ε

∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

(∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0)) − g(ψ − Sx

s [η0, ν·, ω̃](φ0))|dνy
s (ψ)

·
∫
T

|h(ψ − Sx
τ
[η0, ν·, ω̃](φ0))|dνy

τ
(ψ)| +

∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0))|dνy

s (ψ)

·
∫
T

|h(ψ − Sx
τ
[η0, ν·,ω](φ0)) − h(ψ − Sx

τ
[η0, ν·, ω̃](φ0))|dνy

τ
(ψ)

)
dydτds

≤ t max
0≤s≤t

|ω(s, x) − ω̃(s, x)| + Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, ν·, ω̃](φ0))|ds

+ Lip(g)‖h‖∞(‖ν·‖I)2ε

∫ t

0

∫ s

0

e−ε(t−τ )|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, ν·, ω̃](φ0)|dτds

+ ‖g‖∞Lip(h)(‖ν·‖I)2ε

∫ t

0

∫ s

0

e−ε(t−τ )|Sx
τ
[η0, ν·,ω](φ0) − Sx

τ
[η0, ν·, ω̃](φ0)|dτds

≤ t max
0≤s≤t

|ω(s, x) − ω̃(s, x)|

+ ‖g‖∞Lip(h)(‖ν·‖I)2ε

∫ t

0

∫ s

0

|Sx
τ
[η0, ν·,ω](φ0) − Sx

τ
[η0, ν·, ω̃](φ0)|dτds

+ Lip(g)‖ν·‖I(‖h‖∞‖ν·‖I + ‖η0‖)
∫ t

0

|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, ν·, ω̃](φ0))|ds

≤ max
0≤s≤t

|ω(s, x) − ω̃(s, x)|t C1e(C1+C2)t + C2

C1 + C2

≤ TeL2t max
s∈I

‖ω− ω̃‖∞,

where again in the inequality before last we applied Proposition A.1.
(v) Continuous dependence on the initial SDGM η0. Let

gk(t, x, y) =
∫
T

g(ψ − Sx
t [ηk, ν·,ω](φ0))dνy

t (ψ), t ∈ I, x, y ∈ X.

Then

|Sx
t [η0, ν·,ω](φ0) − Sx

t [ηk, ν·,ω](φ0)|
≤
∫ t

0

e−εs
∣∣∣∣∫

X

∫
T

g(ψ − Sx
s [ηk, ν·,ω](φ0))dνy

s (ψ)d(ηx
0(y) − ηx

k(y))

∣∣∣∣ ds

+
∫ t

0

e−εs
∫

X

∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0)) − g(ψ − Sx

s [ηk, ν·,ω](φ0))|dνy
s (ψ)dηx

0(y)ds
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+ε
∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

∣∣∣∣∫
T

g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ)
∫
T

h(ψ − Sx
τ
[η0, ν·,ω](φ0))dνy

τ
(ψ)

−
∫
T

g(ψ − Sx
s [ηk, ν·,ω](φ0))dνy

s (ψ)
∫
T

h(ψ − Sx
τ
[ηk, ν·,ω](φ0))dνy

τ
(ψ)

∣∣∣∣ dydτds

≤
∫ t

0

e−εs
∣∣∣∣∫

X

gk(s, x, y)d(ηx
0(y) − ηx

k(y))

∣∣∣∣ ds

+ Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|Sx
s [η0, ν·,ω](φ0) − Sx

s [ηk, ν·,ω](φ0))|ds

+ ε

∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

(∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0)) − g(ψ − Sx

s [ηk, ν·,ω](φ0))|dνy
s (ψ)

·
∫
T

|h(ψ − Sx
τ
[ηk, ν·,ω](φ0))|dνy

τ
(ψ)| +

∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0))|dνy

s (ψ)

·
∫
T

|h(ψ − Sx
τ
[η0, ν·,ω](φ0)) − h(ψ − Sx

τ
[ηk, ν·,ω](φ0))|dνy

τ
(ψ)

)
dydτds

≤
∫ t

0

e−εs
∣∣∣∣∫

X

gk(s, x, y)d(ηx
0(y) − ηx

k(y))

∣∣∣∣ ds

+ Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|Sx
s [η0, ν·,ω](φ0) − Sx

s [ηk, ν·,ω](φ0))|ds

+ Lip(g)‖h‖∞(‖ν‖∗)2ε

∫ t

0

∫ s

0

e−ε(t−τ )|Sx
s [η0, ν·,ω](φ0) − Sx

s [ηk, ν·,ω](φ0)|dτds

+ ‖g‖∞Lip(h)(‖ν·‖I)2ε

∫ t

0

∫ s

0

e−ε(t−τ )|Sx
τ
[η0, ν·,ω](φ0) − Sx

τ
[ηk, ν·,ω](φ0)|dτds

≤
∫ T

0

e−εs
∣∣∣∣∫

X

gk(s, x, y)d(ηx
0(y) − ηx

k(y))

∣∣∣∣ ds

+ Lip(g)‖ν·‖I(‖h‖∞‖ν·‖I + ‖η0‖)
∫ t

0

|Sx
s [η0, ν·,ω](φ0) − Sx

s [ηk, ν·,ω](φ0))|ds

+ ‖g‖∞Lip(h)(‖ν·‖I)2ε

∫ t

0

∫ s

0

|Sx
τ
[η0, ν·,ω](φ0) − Sx

τ
[ηk, ν·,ω](φ0)|dτds

≤C1e(C1+C2)t + C2

C1 + C2

∫ T

0

e−εs
∣∣∣∣∫

X

gk(s, x, y)d(ηx
0(y) − ηx

k(y))

∣∣∣∣ ds

≤ eL2t

∫ T

0

e−εs
∣∣∣∣∫

X

gk(s, x, y)d(ηx
0(y) − ηx

k(y))

∣∣∣∣ ds,

where the second last inequality follows from Proposition A.1 again. Since ν· ∈ C(I, C∞) by
(A6)’, by Proposition 2.11, (A2), and (ii), we have gk(·, x, ·) ∈ Cb(I × X) for every x ∈ X. Hence,
limk→∞ d∞,BL(η0, ηk) = 0 implies

lim
k→∞

sup
x∈X

∣∣∣∣∫
X

gk(s, x, y)d(ηx
0(y) − ηx

k(y))

∣∣∣∣= 0, for all s ∈ I,

by Proposition 2.11(i). Moreover,

sup
s∈I

sup
x∈X

∣∣∣∣∫
X

gk(s, x, y)d(ηx
0(y) − ηx

k(y))

∣∣∣∣≤ ‖g‖∞‖ν·‖I(‖η0‖ + ‖ηk‖),

by Dominated Convergence Theorem,

lim
k→∞

∫ T

0

e−εs sup
x∈X

∣∣∣∣∫
X

gk(s, x, y)d(ηx
0(y) − ηx

k(y))

∣∣∣∣ ds = 0,

and the conclusion follows from Fatou’s lemma.
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(vi) Lipschitz continuous dependence on ν·. Then

|Sx
t [η0, ν·,ω](φ0) − Sx

t [η0, υ·,ω](φ0)|
≤
∫ t

0

e−εs
∣∣∣∣∫

X

∫
T

g(ψ − Sx
s [η0, υ·,ω](φ0))d(νy

s (ψ) − υy
s (ψ))dηx

0(y)

∣∣∣∣ ds

+
∫ t

0

e−εs
∫

X

∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0)) − g(ψ − Sx

s [η0, υ·,ω](φ0))|dνy
s (ψ)dηx

0(y)ds

+ε
∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

∣∣∣∣∫
T

g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ)
∫
T

h(ψ − Sx
τ
[η0, ν·,ω](φ0))dνy

τ
(ψ)

−
∫
T

g(ψ − Sx
s [η0, υ·,ω](φ0))dυy

s (ψ)
∫
T

h(ψ − Sx
τ
[η0, υ·,ω](φ0))dυy

τ
(ψ)

∣∣∣∣ dydτds

≤ ‖η0‖BL(g)
∫ t

0

e−εsd∞,BL(νs, υs)ds

+ Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, υ·,ω](φ0))|ds

+ ε

∫ t

0

∫ s

0

e−ε(t−τ )

∫
X

[∫
T

|g(ψ − Sx
s [η0, ν·,ω](φ0))|dνy

s (ψ)

·
(∫

T

|h(ψ − Sx
τ
[η0, ν·,ω](φ0)) − h(ψ − Sx

τ
[η0, υ·,ω](φ0))|dνy

τ
(ψ)

+
∣∣∣∣∫

T

h(ψ − Sx
τ
[η0, υ·,ω](φ0))d(νy

τ
(ψ) − υy

τ
(ψ))

∣∣∣∣)
+
(∫

T

|g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ) − g(ψ − Sx
s [η0, υ·,ω](φ0))|dνy

s (ψ)

+
∣∣∣∣∫

T

g(ψ − Sx
τ
[η0, υ·,ω](φ0))d(νy

s (ψ) − υy
s (ψ))

∣∣∣∣)
·
∫
T

|h(ψ − Sx
τ
[η0, υ·,ω](φ0))|dυy

τ
(ψ)|

]
dydτds

≤ ‖η0‖BL(g)
∫ t

0

e−εsd∞,BL(νs, υs)ds

+ Lip(g)‖ν·‖I‖η0‖
∫ t

0

e−εs|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, υ·,ω](φ0))|ds

+ ‖g‖∞Lip(h)(‖ν·‖I)2ε

∫ t

0

∫ s

0

e−ε(t−τ )|Sx
τ
[η0, ν·,ω](φ0) − Sx

τ
[η0, υ·,ω](φ0)|dτds

+ ‖g‖∞BL(h)‖ν·‖Iε

∫ t

0

∫ s

0

e−ε(t−τ )d∞,BL(ντ , υτ )dτds

+ Lip(g)‖h‖∞‖ν·‖I‖υ·‖Iε

∫ t

0

∫ s

0

e−ε(t−τ )|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, υ·,ω](φ0)|dτds

+ BL(g)‖h‖∞‖υ·‖Iε

∫ t

0

∫ s

0

e−ε(t−τ )d∞,BL(νs, υs)dτds

≤ BL(g)(‖h‖∞‖υ·‖I + ‖η0‖)
∫ t

0

d∞,BL(νs, υs)ds

+ ‖g‖∞BL(h)‖ν·‖Iε

∫ t

0

∫ s

0

d∞,BL(ντ , υτ )dτds
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+ Lip(g)‖ν·‖I(‖h‖∞‖υ·‖I + ‖η0‖)
∫ t

0

|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, υ·,ω](φ0))|ds

+ ‖g‖∞Lip(h)(‖ν·‖I)2ε

∫ t

0

∫ s

0

|Sx
τ
[η0, ν·,ω](φ0) − Sx

τ
[η0, υ·,ω](φ0)|dτds

≤
(

BL(g)(‖h‖∞‖υ·‖I + ‖η0‖) + ‖g‖∞BL(h)‖ν·‖IεT
) ∫ t

0

d∞,BL(νs, υs)ds

+ ‖ν·‖I
(

Lip(g)(‖h‖∞‖υ·‖I + ‖η0‖) + ‖g‖∞Lip(h)‖ν·‖IεT
)

·
∫ t

0

|Sx
s [η0, ν·,ω](φ0) − Sx

s [η0, υ·,ω](φ0))|ds

≤ L3eL4 t

∫ t

0

d∞,BL(νs, υs)ds,

where again the last inequality is a consequence of the Gronwall inequality with
L3 = L3(ν·, υ·) = BL(g)(‖h‖∞‖υ·‖I + ‖η0‖) + ‖g‖∞BL(h)‖ν·‖IεT and L4 = L4(ν·, υ·) =
‖ν·‖I

(
Lip(g)(‖h‖∞‖υ·‖I + ‖η0‖) + ‖g‖∞Lip(h)‖ν·‖IεT

)
.

Appendix E. Proof of Proposition 4.1

Proof. We will suppress some of the variables of St[η0, ν·,ω] in the bracket whenever it is clear and
deemphasised from the context. Recall the integro-differential equation for Sx

t [η0, ν·,ω](φ):

Sx
t [η0, ν·,ω](φ0) =

(
φ(x) +

∫ t

0

(
ω(x) + e−εs

∫
X

∫
Y

g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ)dηx
0(y)

− ε

∫ s

0

e−ε(t−τ )

∫
X

(∫
Y

g(ψ − Sx
s [η0, ν·,ω](φ0))dνy

s (ψ)∫
Y

h(ψ − Sx
τ
[η0, ν·,ω](φ0))dνy

τ
(ψ)

)
dydτ

)
ds
)

mod 1

(i) Note that for every ν· ∈ C(I, B∞), we have ‖ν0‖<∞, and T⊆ (Sx
t [η0, ν·,ω])−1T, which implies the

mass conservation law:

(F[η0, h]νt)
x(T) = νx

0((Sx
t [η0, ν·,ω])−1T) = νx

0(T), t ∈ I, x ∈ X.

This further implies that F[η0,ω]νt ∈B∞. Assume ν· ∈ C(I, B∞). Next, we will show the Lipschitz
continuity of F[η0, ν·,ω]νt in t. Indeed, from Proposition 3.10(ii),

d∞,BL(F[η0, ν·,ω]νt, F[η0, ν·,ω]νt
′ )

= sup
x∈X

dBL(νx
0 ◦ (Sx

t [η0, ν·,ω])−1, νx
0 ◦ (Sx

t
′ [η0, ν·,ω])−1)

= sup
x∈X

sup
f ∈BL1(T)

∣∣∣∫
T

f (φ)d(νx
0 ◦ (Sx

t [η0, ν·,ω])−1(φ) − νx
0 ◦ (Sx

t
′[η0, ν·,ω])−1(φ))

∣∣∣
= sup

x∈X
sup

f ∈BL1(T)

∣∣∣∫
ψ∈∪φ∈TSx

t [η0,ν· ,ω]−1(φ)

f ◦ (Sx
t [η0, ν·,ω])ψdνx

0(ψ)

−
∫
ψ∈∪φ∈TSx

t
′ [η0,ν· ,ω]−1(φ)

f ◦ (Sx

t
′[η0, ν·,ω])ψdνx

0(ψ)
∣∣∣
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= sup
x∈X

sup
f ∈BL1(T)

∣∣∣∣∫
T

(
f ◦ (Sx

t [η0, ν·,ω])ψ − f ◦ (Sx

t
′[η0, ν·,ω])ψ

)
dνx

0(ψ)

∣∣∣∣
≤ sup

x∈X

∫
T

∣∣∣Sx
t [η0, ν·,ω]ψ − Sx

t
′ [η0, ν·,ω]ψ

∣∣∣ dνx
0(ψ)

≤ L1(ν·)‖ν0‖|t − t′| → 0,

as |t − t′| → 0. This shows that t 
→F[η0,ω]νt ∈ C(I, B∞) is Lipschitz continuous. Now additionally
assume ν0 ∈ C∞, which immediately implies

lim
|x−y|→0

dBL(νx
0, νy

0) = 0. (E.1)

We will showF[η0,ω]νt ∈ C∞ for all t, which immediately yields F[η0,ω]ν· ∈ C(I, C∞). Recall from
Proposition 3.10(iii) that

|Sx
t [η0, ν·,ω]φ1(x) − Sx

t [η0, ν·,ω]φ2(x)| ≤ eL2(ν·)t‖φ1 − φ2‖∞,

where the finite constant L2(ν·) is given in Proposition 3.10(iii). Hence, for every f ∈BL1(T),
Lip(f ◦ Sx

t [η0, ν·,ω]) ≤ Lip(f )Lip(Sx
t [η0, ν·,ω]) ≤ Lip(f )eL2(ν·)t, ‖f ◦ Sx

t [η0, ν·,ω]‖∞ ≤ ‖f ‖∞.

This shows BL(f ◦ Sx
t [η0, ν·,ω]) ≤ eL2(ν·)t. Similarly,

dBL((F[η0,ω]νt)
x, (F[η0,ω]νt)

y)

= dBL(νx
0 ◦ (Sx

t [η0, ν·,ω])−1, νy
0 ◦ (Sy

t [η0, ν·,ω])−1)

≤ dBL(νx
0 ◦ (Sx

t [η0, ν·,ω])−1, νy
0 ◦ (Sx

t [η0, ν·,ω])−1)

+ dBL(νy
0 ◦ (Sx

t [η0, ν·,ω])−1, νy
0 ◦ (Sy

t [η0, ν·,ω])−1)

≤ sup
f ∈BL1(T)

∫
T

f ◦ (Sx
t [η0, ν·,ω])ψd(νx

0(ψ) − ν
y
0(ψ))

+ sup
f ∈BL1(T)

∣∣∣∣∫
T

(
f ◦ (Sx

t [η0, ν·,ω])ψ − f ◦ (Sy
t [η0, ν·,ω])ψ

)
dνy

0(ψ)

∣∣∣∣
≤ eL2(ν·)tdBL(νx

0, νy
0) + ‖ν0‖ sup

ψ∈T
|Sx

t [η0, ν·,ω](ψ) − Sy
t [η0, ν·,ω](ψ)|.

Hence, it follows from (E.1), ν0 ∈ C∞, and Proposition 3.10(i) that
lim

|x−y|→0
d∞,BL((F[η0,ω]νt)

x, (F[η0,ω]νt)
y) = 0.

This shows F[η0,ω]νt ∈ C∞.
(ii) Lipschitz continuity in ω. First recall from Proposition 3.10(iv) that

|Sx
t [ω]φ(x) − Sx

t [ω̃]φ(x)| ≤ TeL2 t‖ω− ω̃‖∞,I .

Now we show Sx
t [ω] is Lipschitz continuous in ω. Note that

dBL(νx
0 ◦ (Sx

t [ω])−1, νx
0 ◦ (Sx

t [ω̃])−1)

= sup
f ∈BL1(T)

∫
T

f (φ)d((νx
0 ◦ (Sx

t [ω])−1)(ψ) − (νx
0 ◦ (Sx

t [ω̃])−1)(ψ))

= sup
f ∈BL1(T)

∫
T

((f ◦ Sx
t [ω])(ψ) − (f ◦ Sx

t [ω̃])(ψ))dνx
0(ψ)

≤
∫
T

∣∣Sx
t [ω](ψ) − Sx

t [ω̃](ψ)
∣∣ dνx

0(ψ)

≤ TeL2(ν·)t‖ν·‖I max
s∈I

‖ω− ω̃‖∞,I (E.2)

where the last inequality follows from Proposition 3.10(iv) with L2(ν·) given in Proposition 3.10(iii).
This implies

d∞,BL(F[η0,ω]νt, F[η0, ω̃]νt) ≤ T‖ν·‖IeL2(ν·)t‖ω− ω̃‖∞,I .
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(iii) Lipschitz continuity in η0. Note that

dBL(νx
0 ◦ (Sx

t [η0])
−1, νx

0 ◦ (Sx
t [ηk])

−1)

= sup
f ∈BL1(T)

∫
T

f (ψ)d((νx
0 ◦ (Sx

t [η0])
−1)(ψ) − (νx

0 ◦ (Sx
t [ηk])

−1)(ψ))

= sup
f ∈BL1(T)

∫
T

((f ◦ Sx
t [η0])(ψ) − (f ◦ Sx

t [ηk])(ψ))dνx
0(ψ)

≤
∫
T

∣∣Sx
t [η0](ψ) − Sx

t [ηk](ψ)
∣∣ dνx

0(ψ).

Define ν̂0 ∈M+(T):

ν̂0(B) := sup
x∈X

νx
0(B), ∀B ∈B(T).

Obviously, ‖̂ν0‖TV ≤ ‖ν0‖. Then

d∞,BL(F[η0,ω]νt, F[ηk,ω]νt) ≤ sup
x∈X

∫
T

∣∣Sx
t [η0](ψ) − Sx

t [ηk](ψ)
∣∣ dνx

0(ψ)

≤
∫
T

sup
x∈X

∣∣Sx
t [η0](ψ) − Sx

t [ηk](ψ)
∣∣ d̂ν0(ψ).

Note that ∣∣Sx
t [η0](ψ) − Sx

t [ηk](ψ)
∣∣≤ 1, ∀x ∈ X, ψ ∈T.

By Dominated Convergence Theorem, it follows from (A6)’ and Proposition 3.10(v) that

d∞,BL(F[η0,ω]νt, F[ηk,ω]νt) → 0, as k → ∞.

(iv) Lipschitz continuity in ν·. Next, we show Sx
t [ν·] is Lipschitz continuous in ν·. Observe that

dBL(νx
0 ◦ (Sx

t [ν·])
−1, υx

0 ◦ (Sx
t [υ·])

−1)

≤ dBL(νx
0 ◦ (Sx

t [ν·])
−1, νx

0 ◦ (Sx
t [υ·])

−1) + dBL(νx
0 ◦ (Sx

t [υ·])
−1, υx

0 ◦ (Sx
t [υ·])

−1). (E.3)

We estimate the two terms separately. Note that

dBL(νx
0 ◦ (Sx

t [ν·])
−1, νx

0 ◦ (Sx
t [υ·])

−1)

= sup
f ∈BL1(T)

∫
T

f (φ)d((νx
0 ◦ (Sx

t [ν·])
−1)(φ) − (νx

0 ◦ (Sx
t [υ·])

−1)(φ))

= sup
f ∈BL1(T)

∫
T

((f ◦ Sx
t [ν·])(φ) − (f ◦ Sx

t [υ·])(φ))dνx
0(φ)

≤
∫
T

∣∣Sx
t [ν·](φ) − Sx

t [υ·](φ)
∣∣ dνx

0(φ)

≤ L3(ν·, υ·)‖ν·‖IeL4(ν· ,υ·)t
∫ t

0

d∞,BL(νs, υs)ds, (E.4)

where the last inequality follows from Proposition 3.10(vi) with L3, L4 given in Proposition 3.10(vi).
From the proof of (i), for every f ∈BL1(T), we have BL(f ◦ Sx

t [υ·]) ≤ eL2(υ·)t. For every x ∈ X,

dBL(νx
0 ◦ (Sx

t [υ·])
−1, υx

0 ◦ (Sx
t [υ·])

−1)

= sup
f ∈BL1(T)

∫
T

(f ◦ Sx
t [υ·])(φ)d(νx

0(φ) − υx
0(φ))

≤ eL2(υ·)tdBL(νx
0, υx

0) ≤ eL2(υ·)td∞,BL(ν0, υ0). (E.5)
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Combining (E.4) and (E.5), it follows from (E.3) that

d∞,BL(F[η0,ω]νt, F[η0,ω]υt)

= sup
x∈X

dBL(νx
0 ◦ (Sx

t [ν·])
−1, υx

0 ◦ (Sx
t [υ·])

−1)

≤ eL2(υ·)td∞,BL(ν0, υ0) + L3(ν·, υ·)‖ν·‖IeL4(ν· ,υ·)t
∫ t

0

d∞,BL(νs, υs)ds.

Appendix F. Proof of Proposition 4.4

Proof.

(i) The proof is analogous to that of [32, Proposition 3.5], by applying Gronwall inequality to the
inequality in Proposition 4.1(iv).

(ii) Continuous dependence of solutions of (4.1) on ω. Let ν i
· ∈ C(I, B∞) for i = 1, 2 be the solutions to

the generalised VE (4.1) with ω replaced by ωi, with the same initial condition ν1
0 = ν2

0 . We denote
ν

i,x
0 for (ν i

0)x:

dBL(ν1,x
0 ◦ (Sx

t [ν1
· ,ω1])−1, ν1,x

0 ◦ (Sx
t [ν2

· ,ω2])
−1)

≤ dBL(ν1,x
0 ◦ (Sx

t [ν1
· ,ω1])

−1, ν1,x
0 ◦ (Sx

t [ν1
· ,ω2])−1)

+ dBL(ν1,x
0 ◦ (Sx

t [ν1
· ,ω2])−1, ν1,x

0 ◦ (Sx
t [ν2

· ,ω2])
−1).

It follows from Proposition 4.1(ii) that

dBL(ν1,x
0 ◦ (Sx

t [ν1
· ,ω1])−1, ν1,x

0 ◦ (Sx
t [ν1

· ,ω2])
−1) ≤ T‖ν1

· ‖IeL2(ν1· )t‖ω1 −ω2‖I,∞.

It suffices to estimate dBL(ν1,x
0 ◦ (Sx

t [ν1
· ,ω2])−1, ν1,x

0 ◦ (Sx
t [ν2

· ,ω2])−1), which follows from (E.2) that:

dBL(ν1,x
0 ◦ (Sx

t [ν1
· ,ω2])

−1, ν1,x
0 ◦ (Sx

t [ν2
· ,ω2])−1) ≤ L3(ν1

· , ν2
· )‖ν1‖IeL4(ν1· ,ν2· )t

∫ t

0

d∞,BL(ν1
τ
, ν2

τ
)dτ .

Hence,

d∞,BL(ν1
t , ν2

t ) = sup
x∈X

dBL(ν1,x
t , ν2,x

t )

≤ T‖ν1
· ‖IeL2(ν1· )t‖ω1 −ω2‖I,∞ + L3(ν1

· , ν2
· )‖ν1‖IeL4(ν1· ,ν2· )t

∫ t

0

d∞,BL(ν1
τ
, ν2

τ
)dτ .

By Gronwall’s inequality,

d∞,BL(ν1
t , ν2

t ) ≤ T‖ν1
· ‖IeL5t‖ω1 −ω2‖∞,I .

(iii) Continuous dependence on η0. Assume {ηk}k∈N0 ⊆B(X, M(X)) satisfy

lim
k→∞

d∞,BL(η0, ηk) = 0.

Since limk→∞ d∞(η0, ηk) = 0, it follows from the triangle inequality that a = sup
k∈N0

‖ηk‖<∞. Let ν·

be the solution to the generalised VE (4.1) with initial condition ν0 ∈ C∞. Let νk
· ∈ C(I, B∞) be the

solutions to the generalised VE (4.1) with η0 replaced by ηk with the same initial conditions ν0 = νk,0.
Note that ‖ν·‖I , ‖νk

· ‖I ≤ ‖ν0‖ by Proposition 4.1(i), the mass conservation law. It then suffices to
show

lim
k→∞

d∞,BL(F[η0]νt, F[η0]ν
k
t ) = 0, t ∈ I.
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By triangle inequality,

dBL(νx
t , νx

k,t) = dBL(νx
0 ◦ (Sx

t [η0, ν·])
−1, νx

0 ◦ (Sx
t [ηk, ν

k
· ])−1)

≤ dBL(νx
0 ◦ (Sx

t [ηk, ν·])
−1, νx

0 ◦ (Sx
t [ηk, ν

k
· ])−1) (F.1)

+ dBL(νx
0 ◦ (Sx

t [η0, ν·])
−1, νx

0 ◦ (Sx
t [ηk, ν·])

−1), x ∈ X.

From (E.4), it follows that

dBL(νx
0 ◦ (Sx

t [ηk, ν·])
−1, νx

0 ◦ (Sx
t [ηk, ν

k
· ])−1)

≤
∫
T

|Sx
t [ηk, ν·]ψ − Sx

t [ηk, ν
k
· ]ψ |dνx

0(ψ) = :βk(t, x),

≤ L3,k(ν·, ν
k
· )‖ν·‖IeL4,k(ν· ,νk· )t

∫ t

0

d∞,BL(ντ , ν
k
τ
)dτ , (F.2)

where L3,k and L4,k defined in Proposition 3.10 that depend on ‖ηk‖ linearly. For i = 3, 4, let L̄i be
Li defined in Proposition 3.10 replacing ‖η0‖ by a, and ‖ν·‖I and ‖υ·‖I both by ‖ν0‖. From (F.2) it
follows that

dBL(νx
0 ◦ (Sx

t [ηk, ν·])
−1, νx

0 ◦ (Sx
t [ηk, ν

k
· ])−1) ≤ βk(t, x) ≤ L̄3eL̄4 t

∫ t

0

d∞,BL(ντ , ν
k
τ
)dτ . (F.3)

We now estimate the second term in (F.1).

dBL(νx
0 ◦ (Sx

t [η0, ν·])
−1, νx

0 ◦ (Sx
t [ηk, ν·])

−1)

= sup
f ∈BL1(T)

∫
T

(
(f ◦ Sx

t [η0, ν·])(ψ) − (f ◦ Sx
t [ηk, ν·])(ψ)

)
dνx

0(ψ)

≤
∫
T

|Sx
t [η0, ν·]ψ − Sx

t [ηk, ν·]ψ)|dνx
0(ψ) = :γk(t, x) (F.4)

Let Ck = ‖γk‖I,∞. It follows from (F.2), (F.3) and (F.4) that, for t ∈ I,

dBL(νx
t , (νk)x

t ) ≤ Ck + L̄3eL̄4T

∫ t

0

d∞,BL(ντ , ν
k
τ
)dτ ,

which further implies by Gronwall inequality that

d∞,BL(νt, ν
k
t ) ≤ CkeL̄3eL̄4T T , t ∈ I.

Note that limk→∞ Ck = 0 by Proposition 3.10(v) and the Dominated Convergence Theorem. This
shows that

lim
k→∞

d,I,∞,BL(ν·, ν
k
· ) = 0.
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Appendix G. Notation

Table 1. Notation

R (R+) The set of real numbers (non-negative real numbers)
T := [0, 1[ via the natural projection x 
→ ei2πx.
N a compact interval.
I an interval, mainly taken as := [0, T] for a finite T > 0.
X a compact subset of Rr for some r ∈N

(Y , dY) a complete metric space
dT(x, y) := min{|x − y|, 1 − |x − y|}, x, y ∈T.
Diam A := supx,y∈A |x − y|, the diameter of a set A ⊆ X
B(Y) the Borel sigma algebra of Y
M(Y) the set of all finite Borel signed measures on Y
M+(Y) the set of all finite Borel positive measures on Y
P(Y) the space of Borel probabilities on Y
B(X, Y) the space of bounded measurable functions from X to Y
C(X, Y) the space of continuous functions from X to Y
C(X) the space of continuous functions from X to R

〈x〉 the fractional part of x ∈R

λ|T the uniform measure on T

μY :=
{
λ, if Y = X,

λ|T, if Y =T.
δy the Dirac measure at y ∈ Y
‖υ‖TV supf ∈B1(Y)

∫
f dυ = υ+(Y) + υ−(Y),

‖υ‖BL supf ∈BL1(Y)

∫
Y

f dυ
‖η‖ supx∈X ‖ηx‖TV

‖η·‖I supt∈I ‖ηt‖
dBL(υ1, υ2) supf ∈BL1(Y)

∫
fd(υ1 − υ2)

d∞,TV(η, ξ ) supx∈X dTV(ηx, ξ x)
d∞,BL(η, ξ ) supx∈X dBL(ηx, ξ x)
dN

∞,BL(η, ξ ) supt∈N dBL,∞(ηt, ζt)
‖f ‖∞ := supx∈Y f (x) for f ∈B(Y)
Lip(f ) := supx,y∈Y , x �=y

|f (x)−f (y)|
dY (x,y)

, the Lipschitz constant of f ∈ C(Y)
BL(f ) := Lip(f ) + ‖f ‖∞, the bounded Lipschitz constant of f ∈ C(Y)
L1

+(X) := {f : X →R∪ {±∞} :
∫

X
|f |dλ<∞, f (x) ≥ 0, λ-a.e. x ∈ X}

B(X) := B(X;R)
B1(X) := {f ∈B(X) : ‖f ‖∞ ≤ 1}
BL1(X) := {f ∈ C(X) : BL(f ) ≤ 1}
Cb(X, Y) := C(X, Y) ∩B(X, Y) the space of bounded continuous functions
B∞ := {ξ ∈B(X, M+(T)) :

∫
T
ξ x(T)dx = 1}

C∞ := {ξ ∈ C(X, M+(T)) :
∫
T
ξ x(T)dx = 1}
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