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Abstract
Let Δ denote a nondegenerate k-simplex in R𝑘 . The set Sim(Δ) of simplices in R𝑘 similar to Δ is diffeomorphic to
O(𝑘)× [0,∞)×R𝑘 , where the factor in O(𝑘) is a matrix called the pose. Among (𝑘−1)-spheres smoothly embedded
in R𝑘 and isotopic to the identity, there is a dense family of spheres, for which the subset of Sim(Δ) of simplices
inscribed in each embedded sphere contains a similar simplex of every pose 𝑈 ∈ O(𝑘). Further, the intersection
of Sim(Δ) with the configuration space of 𝑘 + 1 distinct points on an embedded sphere is a manifold whose top
homology class maps to the top class in O(𝑘) via the pose map. This gives a high-dimensional generalisation of
classical results on inscribing families of triangles in plane curves. We use techniques established in our previous
paper on the square-peg problem where we viewed inscribed simplices in spheres as transverse intersections of
submanifolds of compactified configuration spaces.
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1. Introduction

There is a general type of problem of finding special geometric configurations on families of manifolds.
Quite often such problems seek to find some kind of polyhedron or polytope inscribed in a circle or
sphere embedded in space. Our paper seeks to find constructible nondegenerate simplices inscribed in
spheres smoothly embedded in R𝑘 . Specifically, for a given nondegenerate k-simplex Δ , we show that
among all smoothly embedded (𝑘 − 1) spheres in R𝑘 isotopic to the identity through a differentiable
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Figure 1. On the left, we see an irregular embedding of 𝑆2 in R3 described in spherical coordinates
as a graph over the unit sphere by the function 𝑟 (𝜙, 𝜃) = 1 + sin3 𝜙 sin 3𝜃/5 − | cos7 𝜙|. The cen-
tre and right images show different views of a single regular tetrahedron inscribed in this surface
with edge lengths close to 1.15. If this embedding of 𝑆2 is transverse to the submanifold of regular
tetrahedra, this tetrahedron is a member of the family of inscribed regular tetrahedra predicted by
Theorem 5.4. This tetrahedron was found by computer search. Its vertices have spherical (𝜙, 𝜃) coordi-
nates (0.224399, 0.224399), (1.5708, 3.36599), (1.5708, 2.0196), (2.91719, 0.224399)

isotopy in R𝑘 , there is a dense family of spheres, such that each sphere has an inscribed simplex
similar to Δ corresponding to each 𝑈 ∈ O(𝑘). An example of an embedded 2-sphere in R3 with an
inscribed equilateral tetrahedra is found in Figure 1. We, in fact, prove more: If we let Sim(Δ) denote
the configuration space of simplices in R𝑘 similar to a nondegenerate k-simplex Δ , then in Sim(Δ), the
top homology class of the inscribed simplices similar to Δ on an embedded sphere maps to the top class
in O(𝑘).

In 1969, Gromov [16] showed that every 𝐶1-smooth embedding of a (𝑘 − 1)-sphere in R𝑘 contains
an inscribed simplex similar to Δ for each pose 𝑈 ∈ O(𝑘). Our results go further than Gromov. We
show that the inscribed simplices in embedded spheres form a manifold cobordant to O(𝑘) by using
configuration spaces and transversality as in [10].

Another closely related result is the 2009 work of Blagojević and Ziegler [6]. They prove that for
every injective continuous map of 𝑓 : 𝑆2 → R3, there are four distinct points in the image of f with the
property that two opposite edges have the same length and the other four edges are also of equal length.
While this result holds for injective maps, our theorem recovers an even more general result for generic
smooth embeddings. In addition, Matschke [31] proved that any smoothly embedded compact surface
S inscribes a particular type of tetrahedron.

All of these theorems generalise the classical results on inscribing families of triangles in planar and
spatial curves. In 1978, Meyerson [34] proved that for a fixed arbitrary triangle, every simple closed
curve in the plane contains the vertices of a triangle similar to the given one. He also proved that for
every simple closed curve 𝛾 in the plane, then for all, except perhaps two, points x on 𝛾, we can find
points y and z in 𝛾, such that 𝑥𝑦𝑧 is an equilateral triangle. In 1992, Nielsen [35] proved that for any
triangle T and any simple closed curve 𝛾 in the plane, there are infinitely many triangles similar to T
inscribed in 𝛾. In fact, he proves that the set of vertices corresponding to the vertex of the smallest angle
in T is dense in 𝛾. In 2011, Matschke [31] proved a more general result. He looked at n-gons whose
edge lengths are in a prescribed ratio. He showed such polygons are inscribed in generic 𝐶∞-smooth
embeddings of 𝑆1 into a (complete) Riemannian manifold, and, moreover, there is a 1-parameter family
of such polygons. He proves that there are an odd number of loops of such polygons that wind an odd
number of times around the embedded 𝑆1. Our main theorem and Matschke’s results are very similar for
triangles inscribed in embedded curves in the plane, except that we prove (Corollary 5.6) that the degree
of the map is 1. In 2021, Gupta and Rubinstein-Salzedo [18] generalised Nielsen’s result to any Jordan
curve embedded in R𝑛 for a restricted set of triangles dependent on certain geometric conditions. They
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then get a wider class of inscribed triangles by adding in regularity conditions. Namely, they show that
if the curve is differentiable at a point, then any triangle can be inscribed at that point.

We pause to note that many of the inscribed triangle results were inspired by the square-peg problem:
finding four points on any Jordan curve (a simple closed curve in the plane) which are the vertices of
a square. This question was posed by Toeplitz in 1911 [44], and progress on this problem has chiefly
been an extension of the regularity class of simple closed curves for which the square can be found. The
interested reader can find numerous articles [9, 26, 32, 36, 42] summarising the problem and describing
the classes of curves for which the square-peg problem has been proved. There have also been many
papers [1, 3, 15, 22, 23, 28, 33, 39, 45] examining quadrilaterals and polygons inscribed in curves and,
more recently, making progress towards solving the rectangular-peg problem (finding rectangles of any
aspect ratio inscribed in Jordan curves).

There are yet more results about inscribed and circumscribed polyhedra in spheres. For example,
Kakutani’s theorem [24] that a compact convex body inR3 has a circumscribed cube, that is, a cube each
of whose faces touch the convex body. As Matschke [32] notes, most smooth embeddings 𝑆𝑘−1 ↩→ R𝑘 do
not inscribe a k-cube for 𝑘 ≥ 3 (intuitively, the number of equations to fulfil is larger than the degrees of
freedom). Instead, asking whether crosspolytopes1 are inscribed in such an embedding might be a better
generalisation of inscribing a square. Makeev [30] proved the 𝑘 = 3 case, and Karasev [25] generalised
the proof to arbitrary odd prime powers. Later, Akoypan and Karasev [2] used a limit argument to show
that a simple convex polytope admits an inscribed regular octahedron. In addition, there is the work
of Kuperberg [27] and Makeev [29] on inscribed and circumscribed polyhedra in convex bodies and
spheres.

The inscribed simplex problem can be framed in terms of compactified configuration spaces. We
give a short overview of the basics about these spaces in Section 2. We consider the compactified
configuration space 𝐶𝑘+1 [R𝑘 ] of ordered (𝑘 + 1)-tuples of points in R𝑘 as a manifold-with-boundary
(and corners). The existence of inscribed simplices in embedded spheres can be viewed as finding the
intersection of two submanifolds of 𝐶𝑘+1 [R𝑘 ]. The first is the submanifold of (𝑘 +1)-tuples of points on
a 𝐶∞-smooth embedding 𝛾 : 𝑆𝑘−1 ↩→ R𝑘 of a (𝑘 − 1)-sphere in R𝑘 ; and the second is the submanifold
of simplices in R𝑘 which are similar to a given simplex Δ , denoted by Sim(Δ).

Theorems about intersections of manifolds are often proved by transversality arguments. There are
many examples in the literature [17, 37, 43]. In [10], we provide a framework for this kind of argument
adapted to configuration spaces, which we will use again in this paper. Section 3 gives a description of
this method, and we give a very quick overview here. We consider a smooth embedding 𝛾 : 𝑆𝑙 ↩→ R𝑘
of 𝑆𝑙 in R𝑘 . Then, in the compactified configuration space 𝐶𝑛 [R𝑘 ] of n points in R𝑘 , we consider
𝐶𝑛 [𝛾(𝑆𝑙)], the compactified configuration space of n points on 𝛾(𝑆𝑙); and Z, the subspace of tuples of
n points in R𝑘 that satisfy the conditions of a special configuration. Now, suppose there is a different,
well-known, smooth embedding 𝑖 : 𝑆𝑙 ↩→ R

𝑘 of 𝑆𝑙 in R𝑘 , and assume that the configuration space
𝐶𝑛 [𝑖(𝑆𝑙)] is transverse to Z in 𝐶𝑛 [R𝑘 ]. We can use Haefliger’s theorem [19] to find a differentiable
isotopy between 𝑖(𝑆𝑙) and 𝛾(𝑆𝑙) (the differentiable isotopy may need to go through R𝐾 for 𝐾 ≥ 𝑘). The
key idea is that we ought to be able to vary 𝐶𝑛 [𝑖(𝑆𝑙)] to 𝐶𝑛 [𝛾(𝑆𝑙)] while maintaining the transversality
of the intersection with Z. To do so, we need to make several assumptions about Z and 𝐶𝑛 [𝛾(𝑆𝑙)] (see
Section 3) and to use technical tools like multijet transversality. In the end, we are able to deduce that
there is, for all m, a 𝐶𝑚-dense2 set of smooth embeddings 𝛾′ : 𝑆𝑙 ↩→ R𝑘 , such that the corresponding
embeddings 𝐶𝑛 [𝛾′] on configuration spaces are 𝐶0-close to 𝐶𝑛 [𝛾], and that 𝐶𝑛 [𝛾′(𝑆𝑙)] is transverse to
Z. Moreover, 𝐶𝑛 [𝑖(𝑆𝑙)] ∩ 𝑍 and 𝐶𝑛 [𝛾′(𝑆𝑙)] ∩ 𝑍 represent the same homology class in Z. We apply this
method to the inscribed simplices problem in the final two sections of the paper.

In Section 4, we first describe a nondegenerate simplex in terms of the distances between distinct
vertices. We then use the Cayley-Menger determinant (see Theorem 4.2) to give a description of when it

1The regular k-dimensional polytope is the convex hull of {±𝑒𝑖 }, where 𝑒𝑖 are the standard basis vectors in R𝑘 .
2The density is with respect to the Whitney 𝐶∞-topology, described in Section 3.
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is possible to construct a simplex from a set of distances. Secondly, we change our perspective and view
a simplex Δ in R𝑘 as an ordered (𝑘 + 1)-tuple of distinct points in the configuration space 𝐶𝑘+1 (R𝑘 ).
We then define Sim(Δ) to be the space of simplices similar to Δ (through a translation, rotation or
nonzero scaling of R𝑘 ). In Theorems 4.8 and 4.9, we prove that Sim(Δ) is a submanifold of 𝐶𝑘+1 [R𝑘 ]
diffeomorphic to O(𝑘) × [0,∞) × R𝑘 .

In Section 5, we apply our method from Section 3. Given a 𝐶∞-smooth embedding 𝛾 : 𝑆𝑘−1 ↩→ R𝑘
of 𝑆𝑘−1 in R𝑘 , we let 𝐶𝑘+1 [𝛾(𝑆𝑘−1)] be the submanifold of 𝐶𝑘+1 [R𝑘 ] corresponding to (𝑘 +1)-tuples of
points on the embedded sphere 𝛾(𝑆𝑘−1). In Proposition 5.1, we show that Sim(Δ) and𝐶𝑘+1 [𝛾(𝑆𝑘−1] are
boundary disjoint in 𝐶𝑘+1 [R𝑘 ]. We then restrict our attention to the standard embedding of 𝑆𝑘−1 in R𝑘 ,
with corresponding configuration space 𝐶𝑘+1 [𝑆𝑘−1]. In Proposition 5.2, we show that Sim(Δ) intersects
𝐶𝑘+1 [𝑆𝑘−1] transversally and the intersection Sim(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1] is diffeomorphic to O(𝑘). Since
O(𝑘) is disconnected, we restrict our attention to Sim+(Δ), which is the submanifold diffeomorphic
to SO(𝑘) × [0,∞) × R𝑘 . We then show in Proposition 5.3 that the top class in Sim+(Δ) corresponds
to the top homology class of SO(𝑘), which also corresponds to the top class of the intersection
Sim+(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1]. Finally in Theorem 5.4, we prove there is a dense set of smooth embeddings
of 𝑆𝑘−1 in R𝑘 which are isotopic to the identity through a differentiable isotopy in R𝑘 , such that the
subset of Sim+(Δ) of simplices inscribed in each sphere contains a similar simplex corresponding
to each 𝑈 ∈ SO(𝑘). While we chose to restrict our attention to Sim+(Δ), the same results hold for
Sim−(Δ) := Sim(Δ) \ Sim+(Δ). In the special case of a smooth embedding of a circle in the plane,
our results show that there are loops of triangles inscribed on an embedded circle 𝐶0-close to the given
embedding (see Corollary 5.6 for a precise statement).

2. Configuration spaces

The compactified configuration space of 𝑘 + 1 points in R𝑘 is the natural setting for finding inscribed
simplices in embedded spheres. In this section, we give a very brief overview of compactified con-
figuration spaces. There are many versions of this classical material (see, e.g., [4, 13]), but we follow
Sinha [40], as this approach is more appropriate to our work. A discussion similar to the one found
below is found in [10].

A reader familiar with configuration spaces may skip much of this section. However, we recommend
paying attention to the notation we have used for the spaces. Definitions 2.2, 2.3, 2.9, Remark 2.5 and
Theorem 2.7 are particularly useful.

Definition 2.1 ([40]). Given an m-dimensional smooth manifold M, let 𝑀×𝑛 denote the n-fold product
M with itself, and define 𝐶𝑛 (𝑀) to be the subspace of points p = (𝑝1, . . . , 𝑝𝑛) ∈ 𝑀×𝑛, such that
𝑝 𝑗 ≠ 𝑝𝑘 if 𝑗 ≠ 𝑘 . Let 𝜄 denote the inclusion map of 𝐶𝑛 (𝑀) in 𝑀×𝑛.

The space 𝐶𝑛 (𝑀) is an open submanifold of 𝑀×𝑛. We next compactify 𝐶𝑛 (𝑀) to a closed manifold-
with-boundary and corners, which we will denote 𝐶𝑛 [𝑀], without changing its homotopy type. The
resulting manifold will be homeomorphic to 𝑀×𝑛 with an open neighborhood of the fat diagonal
removed. Recall that the fat diagonal is the subset of 𝑀×𝑛 of n-tuples for which (at least) two entries
are equal, that is, where some collection of points comes together at a single point. The construction
of 𝐶𝑛 [𝑀] preserves information about the directions and relative rates of approach of each group of
collapsing points.

Definition 2.2 ([8, 40]). Given an ordered pair (𝑖, 𝑗) of distinct elements from {1, . . . , 𝑛}, let the map
𝜋𝑖 𝑗 :𝐶𝑛 (R𝑘 ) → 𝑆𝑘−1 send p = (p1, . . . p𝑛) to

p𝑖 − p 𝑗��p𝑖 − p 𝑗
�� , the unit vector in the direction of p𝑖 − p 𝑗 . Let

[0,∞] be the one-point compactification of [0,∞). Given an ordered triple (𝑖, 𝑗 , 𝑙) of distinct elements

in {1, . . . , 𝑛}, let 𝑟𝑖 𝑗𝑙 :𝐶𝑛 (R𝑘 ) → [0,∞] be the map which sends p to
��p𝑖 − p 𝑗

��
|p𝑖 − p𝑙 |

, the ratio of distances
between p𝑖 and p 𝑗 , and p𝑖 and p𝑙 .
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We then compactify 𝐶𝑛 (R𝑘 ) as follows:

Definition 2.3 ([40]).

1. Let 𝐴𝑛 [R𝑘 ] be the product (R𝑘 )𝑛×(𝑆𝑘−1)𝑛(𝑛−1) × [0,∞]𝑛(𝑛−1) (𝑛−2) . Define𝐶𝑛 [R𝑘 ] to be the closure
of the image of 𝐶𝑛 (R𝑘 ) under the map

𝛼𝑛 = 𝜄 × (𝜋𝑖 𝑗 ) × (𝑟𝑖 𝑗𝑙) :𝐶𝑛 (R𝑘 ) → 𝐴𝑛 [R𝑘 ] .

2. We assume that all manifolds M are smoothly embedded in R𝑘 , which allows us to define the
restrictions of the maps 𝜋𝑖 𝑗 and 𝑟𝑖 𝑗𝑙 . Then 𝐶𝑛 (𝑀) is smoothly embedded in 𝐶𝑛 (R𝑘 ), and we define
𝐶𝑛 [𝑀] to be the closure of𝐶𝑛 (𝑀) in 𝑀𝑛×(𝑆𝑘−1)𝑛(𝑛−1) × [0,∞]𝑛(𝑛−1) (𝑛−2) . We denote the boundary
of 𝐶𝑛 [𝑀] by 𝜕𝐶𝑛 [𝑀] = 𝐶𝑛 [𝑀] \ 𝐶𝑛 (𝑀).

We now summarise some of the important features of this construction, including the fact that𝐶𝑛 [𝑀]
does not depend on the choice of embedding of M in R𝑘 .

Theorem 2.4 ([8, 40]).

1. 𝐶𝑛 [𝑀] is a manifold-with-boundary and corners with interior 𝐶𝑛 (𝑀) having the same homotopy
type as 𝐶𝑛 [𝑀]. The topological type of 𝐶𝑛 [𝑀] is independent of the embedding of M in R𝑘 , and
𝐶𝑛 [𝑀] is compact when M is.

2. The inclusion of 𝐶𝑛 (𝑀) in 𝑀×𝑛 extends to a surjective map from 𝐶𝑛 [𝑀] to 𝑀×𝑛, which is a
homeomorphism over points in 𝐶𝑛 (𝑀).

Remark 2.5. When discussing points in 𝐶𝑛 [R𝑘 ] or 𝐶𝑛 [𝑀], it is easy to become confused. We pause to
clarify notation.

◦ A point in R𝑘 is denoted by x = (𝑥1, . . . , 𝑥𝑘 ), where each 𝑥𝑖 ∈ R.
◦ Points in (R𝑘 )×𝑛 are also denoted by x, where x = (x1, . . . , x𝑛) and each x𝑖 ∈ R𝑘 (it will be clear

from context which is meant).
◦ A point in 𝐶𝑛 [R𝑘 ] or 𝐶𝑛 [𝑀], is denoted −→x .

The space 𝐶𝑛 [𝑀] may be viewed as a polytope with a combinatorial structure based on the different
ways groups of points in M can come together. This structure defines a stratification of 𝐶𝑛 [𝑀] into a
collection of closed faces of various dimensions whose intersections are members of the collection. Full
details can be found in [8, 40]. The main structure we will consider is the (0, 1, . . . , 𝑘)-face of 𝜕𝐶𝑛 [𝑀].
This is the boundary component where all the points come together at the same time.

Any pair p, q of disjoint points in R𝑘 has a direction (p − q)/|p − q| associated to it, while every
triple of disjoint points p, q, r has a corresponding distance ratio |p − q|/|p − r|. One way to think of the
coordinates of 𝐶𝑛 [𝑀] is that they extend the definition of these directions and ratios to the boundary.

Theorem 2.6 ([8, 40]). Given a manifold 𝑀 ⊂ R𝑘 , then in any configuration of points −→p ∈ 𝐶𝑛 [𝑀], the
following holds.

1. Each pair of points p𝑖 , p 𝑗 has associated to it a well-defined unit vector in R𝑘 giving the direction
from p𝑖 to p 𝑗 . If the pair of points project to the same point p of M, this vector lies in 𝑇p𝑀 .

2. Each triple of points p𝑖 , p 𝑗 , p𝑘 has associated to it a well-defined scalar in [0,∞] corresponding
to the ratio of the distances

��p𝑖 − p 𝑗
�� and |p𝑖 − p𝑘 |. If any pair of {p𝑖 , p 𝑗 , p𝑘 } projects to the same

point in M (or all three do), this ratio is a limiting ratio of distances.
3. The functions 𝜋𝑖 𝑗 and 𝑟𝑖 𝑗𝑙 are continuous on all of 𝐶𝑛 [𝑀] and smooth on each face of 𝜕𝐶𝑛 [𝑀].

It turns out that for connected manifolds of dimension at least 2, the combinatorial structure of the
strata of 𝐶𝑛 [𝑀] depends only on the number of points. Regardless of dimension, this construction and
division of 𝜕𝐶𝑛 [𝑀] into strata is functorial in the following sense.

Theorem 2.7 ([40]). Suppose M and N are embedded submanifolds of R𝑘 and 𝑓 : 𝑀 ↩→ 𝑁 is
an embedding. This induces an embedding of manifolds-with-corners called the evaluation map
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𝐶𝑛 [ 𝑓 ] :𝐶𝑛 [𝑀] ↩→ 𝐶𝑛 [𝑁] that respects the stratifications. This map is defined by choosing the ambient
embedding of M in R𝑘 to be the composition of f with the ambient embedding of N.

For an embedding 𝑓 : 𝑀 ↩→ 𝑁 , the image of the induced embedding 𝐶𝑛 [ 𝑓 ] : 𝐶𝑛 [𝑀] ↩→ 𝐶𝑛 [𝑁] will
be denoted by 𝐶𝑛 [ 𝑓 (𝑀)].

Corollary 2.8. Let 𝑓 :R𝑘 → R𝑘 be a smooth diffeomorphism. Then the induced map of configuration
spaces 𝐶𝑛 [ 𝑓 ] :𝐶𝑛 [R𝑘 ] → 𝐶𝑛 [R𝑘 ] is also a smooth diffeomorphism (on each face of 𝐶𝑛 [R𝑘 ]).

Proof. This is an immediate corollary of the previous theorem. �

Finally, we will need a metric on the set of evaluation maps𝐶𝑛 [ 𝑓 ] :𝐶𝑛 [𝑀] ↩→ 𝐶𝑛 [𝑁]. The definition
of compactified configuration spaces allows us to view𝐶𝑛 [𝑁] ⊂ (R𝑘 )𝑛×(𝑆𝑘−1)𝑛(𝑛−1)×[0,∞]𝑛(𝑛−1) (𝑛−2)

as a metric space with the sup norm. If we define the mapping pr𝑖 to be the projection onto the ith space of
the product, then this naturally leads to a metric on the set of continuous functions 𝐶0(𝐶𝑛 [𝑀], 𝐶𝑛 [𝑁]).

Definition 2.9. With the above assumptions, the metric on the set 𝐶0(𝐶𝑛 [𝑀], 𝐶𝑛 [𝑁]) is given by

‖𝐹 − 𝐺‖0 = sup
−→p ∈𝐶𝑛 [𝑀 ]

{‖pr𝑖 (𝐹 (
−→p )) − pr𝑖 (𝐺 ( −→p ))‖ | for all 𝑖}.

Thus, given the embeddings 𝑓 , 𝑔 : 𝑀 ↩→ 𝑁 , we say that the corresponding maps on configuration spaces
𝐶𝑛 [ 𝑓 ], 𝐶𝑛 [𝑔] :𝐶𝑛 [𝑀] ↩→ 𝐶𝑛 [𝑁] are 𝐶0-close if for all 𝜖 > 0, we have ‖𝐶𝑛 [ 𝑓 ] − 𝐶𝑛 [𝑔]‖0 < 𝜖 .

3. Finding special configurations with multijet transversality

In this section, we set up a general method for tackling problems where we seek a special configuration
of n points on a compact manifold M that is smoothly embedded in R𝑘 (cf. [10]). In both the square-peg
problem and the inscribed simplex problem, M is a sphere (either 𝑆1 or 𝑆𝑘−1). We thus denote the 𝐶∞

smooth embedding by 𝛾 : 𝑆𝑙 ↩→ R𝑘 , and the corresponding compactified configuration space of n points
on 𝛾(𝑆𝑙) is𝐶𝑛 [𝛾(𝑆𝑙)]. We let Z denote the subspace of tuples of n points inR𝑘 that satisfy the conditions
of a special configuration. For example, in [10], Z is the set of all square-like quadrilaterals in R𝑘 . In
this paper, we are interested in 𝑍 = Sim(Δ) (see Section 4), which is the set of all (𝑘 + 1)-simplices in
R
𝑘 which are similar to a given nondegenerate simplex Δ .

The central idea is as follows: suppose there is a different, well-understood, smooth embedding
of 𝑆𝑙 in R𝑘 (via 𝑖 : 𝑆𝑙 ↩→ R

𝑘 ), and assume that the corresponding configuration space 𝐶𝑛 [𝑖(𝑆𝑙)] is
transverse to Z in 𝐶𝑛 [R𝑘 ]. Also assume that 𝑖(𝑆𝑙) is smoothly homotopy equivalent to 𝛾(𝑆𝑙) in R𝑘 .
Standard transversality arguments should allow us to vary 𝐶𝑛 [𝑖(𝑆𝑙)] to 𝐶𝑛 [𝛾(𝑆𝑙)] while maintaining
the transversality of the intersection with Z. There are various technical obstacles to overcome, all of
which are handled in detail in [10]. Here are the key steps.

Step 1: It is possible that special configurations on 𝛾(𝑆𝑙) shrink away to the boundary of 𝐶𝑛 [R𝑘 ]
during the isotopy. To prevent this, we first prove

(a) that n-tuples of points in R𝑘 satisfying the geometric condition, Z, are a submanifold in 𝐶𝑛 (R𝑘 ),
and that 𝜕𝑍 ⊂ 𝜕𝐶𝑛 [R𝑘 ];

(b) that 𝐶𝑛 [𝛾(𝑆𝑙)] and Z are boundary-disjoint.

For 𝑍 = Sim(Δ), we prove 1(a) in Theorems 4.8 and 4.9. We prove 1(b) in Proposition 5.1.
Step 2: For a standard embedding 𝑖 : 𝑆𝑙 ↩→ R𝑘 , we need to do two things

(a) prove that the intersection between 𝐶𝑛 [𝑖(𝑆𝑙)] and Z is nonempty and transverse (in other words,
𝐶𝑛 [𝑖] � 𝑍).

(b) compute the homology class of the intersection 𝐶𝑛 [𝑖(𝑆𝑙)] ∩ 𝑍 in Z.

For our inscribed simplex problem, we use the standard embedding id : 𝑆𝑘−1 ↩→ R𝑘 of 𝑆𝑘−1 in R𝑘 .
We prove 2(a) in Proposition 5.2 and 2(b) in Proposition 5.3.
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Step 3: Note that in order to apply our transversality arguments, we need to be able to perturb
𝐶𝑛 [𝛾(𝑆𝑙)] so the intersection of Z remains transverse. However, there is no guarantee that the perturbed
submanifold consists of configurations on a perturbed smooth embedding of 𝑆𝑙 in R𝑘 . We deal with this
issue by applying the multijet transversality theorem [14, Theorem II.4.13]. This allows us to conclude
(see [10] Theorem 17) that for any 𝜖 > 0, there is a 𝐶∞-open neighborhood of 𝛾 in which there is,
for all m, a 𝐶𝑚-dense set of smooth embeddings 𝛾′ : 𝑆𝑙 ↩→ R𝑘 , such that ‖𝐶𝑛 [𝛾′] − 𝐶𝑛 [𝛾]‖0 < 𝜖 , and
𝐶𝑛 [𝛾′] � 𝑍 , and for which 𝜕𝑍 and 𝜕𝐶𝑛 [𝛾′(𝑆𝑙)] are disjoint in 𝜕𝐶𝑛 [R𝑘 ].

In order to fully appreciate Step 3, first recall that the metric on the set 𝐶0 (𝐶𝑛 [𝑆𝑙], 𝐶𝑛 [R𝑘 ]) was
given in Definition 2.9. Second, to understand the statement about density, we need to give the topology
of the spaces we are working in. In general, for manifolds 𝑀 (= 𝑆𝑙) and 𝑁 (= R𝑘 ), the space 𝐶∞(𝑀, 𝑁)
has the Whitney 𝐶∞-topology (see, e.g., [20]). The sets of the form

N 𝑡 ( 𝑓 ; (𝑈, 𝜙), (𝑉, 𝜓), 𝛿)

give a subbasis for the Whitney 𝐶𝑡 -topology on 𝐶𝑡 (𝑀, 𝑁) (where t is finite). This subbasis consists of
subsets of functions 𝑔 : 𝑀 → 𝑁 that are smooth, and for coordinate charts 𝜙 : (𝑈 ′ ⊂ 𝑀) → (𝑈 ⊂ R𝑚)
and 𝜓 : (𝑉 ′ ⊂ 𝑁) → (𝑉 ⊂ R𝑘 ) and 𝐾 ⊂ 𝑈 compact with 𝑔(𝜙(𝐾)) ⊂ 𝑉 ′, then we have, for all 𝑠 ≤ 𝑟 ,
and all 𝑥 ∈ 𝜙(𝐾),

‖𝐷𝑠 (𝜓𝑔𝜙−1) (𝑥) − 𝐷𝑠 (𝜓 𝑓 𝜙−1) (𝑥)‖ < 𝛿.

Here, 𝐷𝑠𝐹 for a function 𝐹 : (𝑈 ⊂ R𝑚) → (𝑉 ⊂ R𝑘 ) is the k-tuple of the sth homogeneous parts of the
Taylor series representations of the projections of F. Finally, the subspace 𝐶∞(𝑀, 𝑁) has the Whitney
𝐶∞-topology generated by taking the union of all subbases for all 𝑡 ≥ 0.

Note that Step 3 can be applied immediately to the inscribed simplex problem.
Step 4: We need to deform standard spheres into spheres of interest and then consider what happens

on the level of configuration spaces. We know precisely when such a deformation of spheres exists due
to the following result of Haefliger (which we have stated in a form useful to us).

Theorem 3.1 ([19]). Any two differentiable embeddings of 𝑆𝑙 in R𝑘 are homotopic through a differen-
tiable isotopy in R𝐾 ⊃ R𝑘 when 𝐾 > 3(𝑙 + 1)/2.

We use Theorem 3.1 to find a smooth map 𝐸 : 𝑆𝑙 × 𝐼 → R
𝐾 with 𝐸 (−, 0) = 𝑖 our standard

embedding and 𝐸 (−, 1) = 𝛾′ (where K may be greater than our original k). Recalling that both 𝐶𝑛 [𝑖]
and 𝐶𝑛 [𝛾′] are transverse to Z allows us to conclude that using functorality, we get a homotopy
𝐻 :𝐶𝑛 (𝑆𝑙) × 𝐼 → 𝐶𝑛 (R𝐾 ) with 𝐻 (−, 0) = 𝐶𝑛 [𝑖] and 𝐻 (−, 1) = 𝐶𝑛 [𝛾′]. In [10], we then use the
Transversality Homotopy Extension Theorem (see [17]), to find a map 𝐻 ′ homotopic to H and with
𝐻 ′(−, 0) = 𝐻 (−, 0), 𝐻 ′(−, 1) = 𝐻 (−, 1) and 𝐻 ′ is transverse to Z. This then implies that in Z, the
intersections 𝐶𝑛 [𝑖(𝑆𝑙)] ∩ 𝑍 and 𝐶𝑛 [𝛾′(𝑆𝑙)] ∩ 𝑍 represent the same homology class. In other words, we
have sketched a proof of the following:

Theorem 3.2 ([10] Theorem 20). Suppose there are two embeddings 𝜂, 𝑖 : 𝑆𝑙 ↩→ R
𝑘 of an l-sphere

in R𝑘 . Assume that Z is a closed topological space contained in 𝐶𝑛 [R𝑘 ], such that 𝑍 ∩ 𝐶𝑛 (R𝑘 ) is a
submanifold of 𝐶𝑛 (R𝑘 ), 𝜕𝑍 ⊂ 𝜕𝐶𝑛 [R𝑘 ], and 𝜕𝑍 is disjoint from 𝜕𝐶𝑛 [𝑖(𝑆𝑙)]. Also assume that both
𝐶𝑛 [𝑖] and 𝐶𝑛 [𝜂] are transverse to Z. Then in Z, the homology class of 𝐶𝑛 [𝑖(𝑆𝑙)] ∩ 𝑍 and 𝐶𝑛 [𝜂(𝑆𝑙)] ∩ 𝑍
are equal.

In this paper, we will not be making full use of Haefliger’s Theorem in Step 4. Instead, we will restrict
our attention to smooth embeddings of 𝑆𝑘−1 in R𝑘 which are differentiably isotopic to the identity
through a differentiable isotopy in R𝑘 . The conclusion of Theorem 3.2 still holds for such embeddings.
Putting all of our steps together allows us to conclude the following theorem.

Theorem 3.3 ([10] Theorem 21). Suppose 𝛾 : 𝑆𝑙 ↩→ R
𝑘 is a smooth embedding of 𝑆𝑙 in R𝑘 , with a

corresponding embedding of compactified configuration spaces 𝐶𝑛 [𝛾] :𝐶𝑛 [𝑆𝑙] ↩→ 𝐶𝑛 [R𝑘 ]. Assume
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that Z is a closed topological space contained in 𝐶𝑛 [R𝑘 ], such that 𝑍 ∩ 𝐶𝑛 (R𝑘 ) is a submanifold of
𝐶𝑛 (R𝑘 ), and 𝜕𝑍 ⊂ 𝜕𝐶𝑛 [R𝑘 ]. Also assume that 𝐶𝑛 [𝛾(𝑆𝑙)] and Z are boundary-disjoint. Suppose there
is a standard embedding 𝑖 : 𝑆𝑙 ↩→ R𝑘 , such that 𝐶𝑛 [𝑖] � 𝑍 in 𝐶𝑛 [R𝑘 ].

Then for all 𝜖 > 0, there is a 𝐶∞-open neighborhood of 𝛾, in which there is, for all m, a 𝐶𝑚-dense
set of smooth embeddings 𝛾′ : 𝑆𝑙 ↩→ R𝑘 , such that ‖𝐶𝑛 [𝛾′] −𝐶𝑛 [𝛾]‖0 < 𝜖 , and 𝐶𝑛 [𝛾′] � 𝑍 . Moreover,
𝐶𝑛 [𝑖(𝑆𝑙)] ∩ 𝑍 and 𝐶𝑛 [𝛾′(𝑆𝑙)] ∩ 𝑍 represent the same homology class in Z.

Intuitively, this theorem shows that any smooth embedding 𝛾 of 𝑆𝑙 in R𝑘 has a neighborhood in
which there is a dense set of smooth embeddings 𝛾′ for which 𝐶𝑛 [𝛾′(𝑆𝑙)] is guaranteed to have
certain intersections with various submanifolds of 𝐶𝑛 [R𝑘 ] defined by geometric conditions. Stated in
a different way, we have the idea that a dense set of embeddings of 𝑆𝑙 always contain certain inscribed
configurations of points.

4. Simplices

4.1. Nondegenerate simplices

Definition 4.1. By a simplex Δ in R𝑘 , we mean a set of 𝑘 + 1 distinct points {p0, . . . , p𝑘 } in R𝑘 in
general position.

By general position, we mean that no hyperplane in R𝑘 contains more than k points of Δ . As a first
consequence of this definition, we note that the volume of the simplex Δ is nonzero. This means that
for us, a simplex is nondegenerate. In addition, to each simplex Δ , we can associate several sets:

◦ the nonzero distances {𝑑𝑖 𝑗 (Δ)} = {‖p𝑖 − p 𝑗 ‖}, and observe that 𝑑𝑖 𝑗 = 𝑑 𝑗𝑖;
◦ the unit vectors {𝜋𝑖 𝑗 (Δ)} = { p𝑖−p 𝑗

‖p𝑖−p 𝑗 ‖ };

◦ the ratios {𝑟𝑖 𝑗𝑙 (Δ)} = { ‖p𝑖−p 𝑗 ‖
‖p𝑖−p𝑙 ‖ } = { 𝑑𝑖 𝑗𝑑𝑖𝑙 }.

Here, we assume that 𝑖 ≠ 𝑗 (and 𝑗 ≠ 𝑙, 𝑖 ≠ 𝑙), so the set of 𝑘 (𝑘 + 1)/2 distances consists of nonzero
values, and the set of ratios has values in (0,∞).

A natural question to ask is, given a set of nonzero distances D = {𝑑𝑖 𝑗 }, is there a simplex that can
be constructed with those distances? The theory of distance geometry allows us to decide which sets of
distances D are constructible. We start be defining the Cayley-Menger determinant for {p0, p1, . . . , p𝑘 },
or equivalently for D = {𝑑𝑖 𝑗 } = {‖p𝑖 − p 𝑗 ‖} (see, e.g., [7, 41]):

CM({p0, p1, . . . , p𝑘 }) = CM(D) =

�����������

0 1 1 . . . 1
1 0 𝑑2

01 . . . 𝑑2
0𝑘

1 𝑑2
10 0 . . . 𝑑2

1𝑘
...

...
...

...
1 𝑑2

𝑘0 𝑑2
𝑘1 . . . 0

�����������
.

Theorem 4.2 ([5] Theorems 9.7.3.4 and 9.14.23). Given a set of nonzero distances D = {𝑑𝑖 𝑗 } for
𝑖, 𝑗 = 0, 1, . . . , 𝑘 , a necessary and sufficient condition for the existence of a simplex {p0, . . . , p𝑘 }
with 𝑑𝑖 𝑗 = ‖p𝑖 − p 𝑗 ‖ is that for every ℎ = 2, . . . , 𝑘 , and every h-element subset of {0, 1, . . . , 𝑘}, the
corresponding Cayley-Menger determinant be nonzero and its sign be (−1)ℎ .

Moreover, when D = {𝑑𝑖 𝑗 } = {‖p𝑖 − p 𝑗 ‖} for p0, . . . , p𝑘 ∈ R𝑘 , the volume V of the simplex with
vertices p0, . . . , p𝑘 obeys

V2 =
(−1)𝑘+1

2𝑘 (𝑘!)2 CM(D).

Recall that by definition, a simplex is nondegenerate. This means that both the volume of the simplex
and Cayley-Menger determinant are nonzero.
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The Cayley-Menger determinant generalises standard facts in triangle geometry: for instance, for a
triangle with side lengths a, b and c, we can write this determinant explicitly as

CM({𝑎, 𝑏, 𝑐}) = 𝑎4 − 2𝑎2𝑏2 − 2𝑎2𝑐2 + 𝑏4 − 2𝑏2𝑐2 + 𝑐4 = −(𝑎 + 𝑏 + 𝑐)(𝑎 + 𝑏 − 𝑐)(𝑎 − 𝑏 + 𝑐)(−𝑎 + 𝑏 + 𝑐),

and conclude that

Area({𝑎, 𝑏, 𝑐})2 =
1

16
(𝑎 + 𝑏 + 𝑐) (𝑎 + 𝑏 − 𝑐) (𝑎 − 𝑏 + 𝑐) (−𝑎 + 𝑏 + 𝑐).

This is Heron’s formula for the area of the triangle. We can see the triangle inequality (a criteria for
constructability of a triangle), in these formulas: Theorem 4.2 holds if and only if one of the side lengths
is greater than the sum of the other two.

4.2. Simplices and configuration spaces

We will now shift our viewpoint and, with an abuse of notation, view the simplex Δ in R𝑘 as an ordered
(𝑘 + 1)-tuple of points Δ = (p0, . . . , p𝑘 ). Thus, the simplex is a point in the open configuration space
𝐶𝑘+1 (R𝑘 ). We now wish to understand the set of points {(q0, . . . , q𝑘 )} in 𝐶𝑘+1(R𝑘 ) that correspond
to simplices similar to our given simplex Δ . By similar, we mean there is a translation, rotation and
nonzero scaling of R𝑘 which maps (q0, . . . , q𝑘 ) to Δ .

Definition 4.3. For a given nondegenerate simplex Δ = (p0, . . . , p𝑘 ), we let Sim(Δ) ⊂ 𝐶𝑘+1(R𝑘 )
denote the space of simplices similar to Δ . Then Sim(Δ) is the set of all −→q ∈ 𝐶𝑘+1 (R𝑘 ), such that

𝑟𝑖 𝑗𝑙 ( −→q ) = 𝑟𝑖 𝑗𝑙 (Δ) for all 𝑖 ≠ 𝑗 ≠ 𝑙 ≠ 𝑖.

That is, when −→q = (q0, . . . , q𝑘 ) is extrinsically similar to Δ , then we have

𝑟𝑖 𝑗𝑙 ( −→q ) =
‖q𝑖 − q 𝑗 ‖
‖q𝑖 − q𝑙 ‖

=
‖p𝑖 − p 𝑗 ‖
‖p𝑖 − p𝑙 ‖

= 𝑟𝑖 𝑗𝑙 (Δ).

Our next aim is to show that Sim(Δ) is a submanifold of 𝐶𝑘+1(R𝑘 ), by proving that Sim(Δ) is
diffeomorphic to O(𝑘) × (0,∞) × R𝑘 . We also aim to understand how the boundary of Sim(Δ) sits
inside of 𝐶𝑘+1 [R𝑘 ]. In order to do this, we will associate a matrix to Sim(Δ) and look at the polar
decomposition of that matrix. So we will need to use some results from linear algebra along the way.
These are all found in Appendix A.

Definition 4.4. Given a configuration −→q = (q0, . . . , q𝑘 ) in Sim(Δ), we define the 𝑘× 𝑘 matrix Π( −→q ) by

Π( −→q ) =
[
𝜋10 ( −→q ) . . . 𝜋𝑘0( −→q )

]
.

Proposition 4.5. Given a configuration −→q = {q0, . . . , q𝑘 } in Sim(Δ), the matrix Π( −→q ) has rank k, and
the 𝑘 × 𝑘 matrix Π( −→q )𝑇Π( −→q ) is given by

Π( −→q )𝑇Π( −→q ) =
[
cos(𝜃𝑖 𝑗 )

]
=
[ 1

2 (𝑟0𝑖 𝑗 ( −→q ) + 𝑟0 𝑗𝑖 ( −→q ) − 𝑟𝑖 𝑗0( −→q )𝑟 𝑗𝑖0) ( −→q )
]
= 𝑃2 (Δ),

where 𝑃(Δ) is a uniquely determined symmetric positive-definite matrix.

The matrix Π( −→q )𝑇Π( −→q ) is called the Gram matrix, and it consists of the dot products of the
𝜋𝑖 𝑗 ( −→q ), which are the cosines of the angles between the unit vectors 𝜋𝑖 𝑗 ( −→q ).

Proof. Recall the law of cosines: 𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos𝐶, where c is the length of the side of a
triangle �𝐴𝐵𝐶 opposite angle C and a and b are the lengths of the sides subtending angle C. In the case
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𝑎 = ‖q𝑖 − q0‖, 𝑏 = ‖q 𝑗 − q0‖ and 𝑐 = ‖q𝑖 − q 𝑗 ‖, angle C is 𝜃𝑖 𝑗 , and we have

cos 𝜃𝑖 𝑗 =
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
=

1
2

(
𝑎

𝑏
+ 𝑏

𝑎
− 𝑐2

𝑎𝑏

)
=

1
2
(𝑟0𝑖 𝑗 ( −→q ) + 𝑟0 𝑗𝑖 ( −→q ) − 𝑟𝑖 𝑗0( −→q )𝑟 𝑗𝑖0( −→q )).

Because the 𝑟𝑖 𝑗𝑙 are the same for all configurations in Sim(Δ), this matrix is the same as for Π(Δ)
associated with Δ = (p0, . . . , p𝑘 ) ∈ 𝐶𝑘+1 (R𝑘 ). The following shows Π(Δ) has rank k:

0 < Vol𝑘 (Δ) =
1
𝑘!

det
[
p1 − p0 . . . p𝑘 − p0

]
=

‖p1 − p0‖ × · · · × ‖p𝑘 − p0‖
𝑘!

det
[
𝜋10 ( −→p ) . . . 𝜋𝑘0 ( −→p )

]
=

‖p1 − p0‖ × · · · × ‖p𝑘 − p0‖
𝑘!

detΠ(Δ).

By construction, Π(Δ)𝑇Π(Δ) is a symmetric matrix. We have just shown that Π(Δ) has full
column rank. Thus, by Theorem A.3, we know Π(Δ)𝑇Π(Δ) is positive-definite. Since Π(Δ)𝑇Π(Δ) =
Π( −→q )𝑇Π( −→q ), we again use Theorem A.3 to deduce Π( −→q ) also has rank k. Now, using other standard
results from linear algebra (Theorem A.1 and Remark A.2), we can deduce there is a unique symmetric
positive-definite matrix 𝑃(Δ), such that 𝑃(Δ) = (Π(Δ)𝑇Π(Δ))1/2. �

We now use the polar decomposition theorem for a matrix to get a better understanding of Sim(Δ).
Recall, from Theorem A.4, that the polar decomposition of a 𝑘 × 𝑘 real matrix A is a factorisation
of the form 𝐴 = 𝑈𝑃, where U is orthogonal and P is a positive semidefinite symmetric matrix. This
decomposition is unique when A is nonsingular (intuitively, if A is interpreted as a linear transformation
of R𝑘 , then the polar decomposition separates it into a rotation or reflection U of R𝑘 , and a scaling of
the space along a set of k orthogonal axes).
Proposition 4.6. If −→q ∈ Sim(Δ), then Π( −→q ) = 𝑈 ( −→q )𝑃(Δ), where 𝑈 ( −→q ) is a uniquely determined
𝑘 × 𝑘 orthogonal matrix which is a smooth function of −→q . The 𝑘 × 𝑘 matrix 𝑃(Δ) depends only on Δ ,
and is a symmetric positive-definite matrix.

Proof. In our case, since rankΠ( −→q ) = 𝑘 , the polar decomposition theorem (Theorem A.4) tells us that
for the 𝑘 × 𝑘 matrix Π( −→q ), there is a unique decomposition into 𝑘 × 𝑘 matrices: Π( −→q ) = 𝑈 ( −→q )𝑃.
Here, matrix 𝑈 ( −→q ) is orthogonal, and 𝑃 = (Π( −→q )𝑇Π( −→q ))1/2. From Proposition 4.5, we know

𝑃 = (Π( −→q )𝑇Π( −→q ))1/2 = (Π(Δ)𝑇Π(Δ))1/2 = 𝑃(Δ).

Thus, for each−→q ∈ Sim(Δ), we have the same symmetric positive-definite 𝑃(Δ) matrix. The dependence
of Π( −→q ) on −→q is clearly smooth; that𝑈 ( −→q ) depends smoothly on Π( −→q ), and, hence, on −→q , and𝑈 ( −→q )
is smooth, were shown in [12] (see Remark A.5). �

Let O(𝑘) be the set of all orthogonal 𝑘 × 𝑘 matrices. Roughly speaking, Proposition 4.6 says that for
a (nondegenerate) simplex Δ , we can obtain a different configuration in Sim(Δ) by multiplying 𝑃(Δ)
on the left by a matrix in O(𝑘). This leads us to define the following map.
Definition 4.7. The pose map 𝑝𝑠 : Sim(Δ) → O(𝑘) is defined by 𝑝𝑠( −→q ) = 𝑈 ( −→q ), where 𝑈 ( −→q ) is the
unique orthogonal matrix 𝑈 ( −→q ), such that Π( −→q ) = 𝑈 ( −→q )𝑃(Δ) (as found in Proposition 4.6). For a
simplex −→q ∈ Sim(Δ), we call the corresponding element 𝑈 ( −→q ) ∈ O(𝑘) the pose of −→q .

We can now deduce the structure of Sim(Δ) as a submanifold of 𝐶𝑘+1 [R𝑘 ].
Theorem 4.8. If Δ is a nondegenerate k-simplex in R𝑘 , then Sim(Δ) ⊂ 𝐶𝑘+1(R𝑘 ) is a submanifold
diffeomorphic to O(𝑘) × (0,∞) × R𝑘 .
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Proof. We will define the following pair of maps:

O(𝑘) × (0,∞) × R𝑘 𝑖Δ−→Sim(Δ) ⊂ 𝐶𝑘+1(R𝑘 )
𝑝𝑠Δ−→O(𝑘) × (0,∞) × R𝑘 .

We will then prove that both maps are smooth, that the first map 𝑖Δ is onto Sim(Δ) and the composition
is the identity. This will prove that 𝑖Δ is a diffeomorphism onto Sim(Δ).

We have been given Δ = (p0, . . . , p𝑘 ) ∈ 𝐶𝑘+1 (R𝑘 ). We can then define the set of ratios {𝑟𝑖 𝑗𝑙 (Δ)},
the set of unit vectors {𝜋𝑖 𝑗 (Δ)} and the matrix Π(Δ). We know that Π(Δ) = 𝑈 (Δ)𝑃(Δ), from
Proposition 4.6. Moreover, without loss of generality, we can assume that Δ is chosen such that
𝑈 (Δ) = 𝐼𝑘 (the identity matrix), and so Π(Δ) = 𝑃(Δ).

Let 𝐴 =
[
v1 . . . v𝑘

]
∈ O(𝑘), and define a new set of unit vectors by 𝜋𝑖 𝑗 =

[
v1 . . . v𝑘

]
𝜋𝑖 𝑗 (Δ)

(intuitively, the new 𝜋𝑖 𝑗 are 𝜋𝑖 𝑗 (Δ) rotated/reflected by A). If we also let 𝑟𝑖 𝑗𝑙 = 𝑟𝑖 𝑗𝑙 (Δ), then we define
the map 𝑖Δ by

𝑖Δ (𝐴, 𝜆, q0) = (q0, q0 + 𝜆𝜋10, q0 + 𝜆𝑟021𝜋20, . . . , q0 + 𝜆𝑟0𝑘1𝜋𝑘0) = −→q .

This map 𝑖Δ is clearly smooth in A, 𝜆 and q0. Furthermore, 𝑖Δ (𝐴, 𝜆, q0) has 𝑟𝑖 𝑗𝑙 ( −→q ) = 𝑟𝑖 𝑗𝑙 (Δ) by
construction, and so lies in Sim(Δ).

We prove that 𝑖Δ is onto Sim(Δ). Given −→q ∈ Sim(Δ), we use Proposition 4.6, and our assumption
that 𝑈 (Δ) = 𝐼𝑘 , to write

Π( −→q ) =
[
𝜋10 ( −→q ) . . . 𝜋𝑘0 ( −→q )

]
= 𝑈 ( −→q )𝑃(Δ) = 𝑈 ( −→q )Π(Δ).

This means that 𝜋 𝑗0 ( −→q ) = 𝑈 ( −→q )𝜋 𝑗0(Δ) for 𝑗 = 1, . . . , 𝑘 . Remembering that 𝜋 𝑗0 = −𝜋0 𝑗 , we then
deduce the other values of 𝜋 𝑗 ( −→q ) satisfy the same relationship:

𝜋𝑖 𝑗 ( −→q ) =
q 𝑗 − q𝑖
‖q 𝑗 − q𝑖 ‖

=
q 𝑗 − q0

‖q 𝑗 − q𝑖 ‖
+ q0 − q𝑖
‖q 𝑗 − q𝑖 ‖

=
‖q 𝑗 − q0‖
‖q 𝑗 − q𝑖 ‖

q 𝑗 − q0

‖q 𝑗 − q0‖
+ ‖q0 − q𝑖 ‖
‖q 𝑗 − q𝑖 ‖

q0 − q𝑖
‖q0 − q𝑖 ‖

= 𝑟 𝑗0𝑖 ( −→q )𝜋 𝑗0 ( −→q ) + 𝑟𝑖0 𝑗 ( −→q )𝜋0𝑖 ( −→q )

= 𝑟 𝑗0𝑖 ( −→q )𝑈 ( −→q )𝜋 𝑗0(Δ) + 𝑟𝑖0 𝑗 ( −→q )𝑈 ( −→q )𝜋0𝑖 (Δ) = 𝑈 ( −→q )𝜋𝑖 𝑗 (Δ).

Thus, for −→q ∈ Sim(Δ), we have 𝜋𝑖 𝑗 ( −→q ) = 𝑈 ( −→q )𝜋𝑖 𝑗 (Δ). For the map 𝑖Δ , we let 𝜆 = ‖q1 − q0‖, then
𝑖Δ (𝑈 ( −→q ), ‖q1 − q0‖, q0) = (q0, q1, . . . , q𝑘 ) = −→q . To see this last equation, note that

q1 = q0 + 𝜆
q1 − q0
‖q1 − q0‖

and q2 = q0 + 𝜆𝑟021( −→q )𝜋20 ( −→q ) = q0 + 𝜆
‖q2 − q0‖
‖q1 − q0‖

q2 − q0
‖q2 − q0‖

.

We can now define the map 𝑝𝑠Δ : Sim(Δ) → O(𝑘) × (0,∞) × R𝑘 using the pose map from
Definition 4.7. We define 𝑝𝑠Δ ( −→q ) := (𝑝𝑠( −→q ), ‖q1 − q0‖, q0) = (𝑈 ( −→q ), ‖q1 − q0‖, q0). From
Proposition 4.6, we know 𝑈 ( −→q ) depends smoothly on −→q , and, hence, 𝑝𝑠Δ depends smoothly on −→q . A
moment’s thought shows that, by construction, we have 𝑝𝑠Δ ◦ 𝑖Δ = id.

This means that 𝑖Δ (and, hence, 𝑝𝑠Δ ) is a diffeomorphism, and Sim(Δ) is a submanifold of
𝐶𝑘+1 (R𝑘 ). �

We note that this theorem shows that the polar decomposition is a diffeomorphism for matrices
of full rank. This is analogous to the smoothness result for the polar decomposition of Dieci and
Eirola [12]. This theorem is not true for rank-deficient matrices, which explains why we have restricted
our attention to spheres 𝑆𝑘−1 isotopic to each other in R𝑘 ; Haefliger’s theorem might guarantee the
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existence of an isotopy of the spheres in a higher-dimensional R𝐾 , but Sim(Δ) would still consist of
rank 𝑘 < 𝐾 matrices and, hence, be harder to control.

The next theorem shows Sim(Δ) has a well-understood structure in the boundary 𝜕𝐶𝑘+1 [R𝑘 ].

Theorem 4.9. If Δ is a nondegenerate k-simplex in R𝑘 , then the boundary of Sim(Δ) corresponds to
configurations in the interior of the (0, . . . , 𝑘) face of 𝜕𝐶𝑘+1 [R𝑘 ], and is diffeomorphic to O(𝑘)×{0}×R𝑘 .

Proof. By assumption, the given simplex Δ = (p0, . . . , p𝑘 ) is nondegenerate, so none of the vertices
of Δ coincide, and the ratios 𝑟𝑖 𝑗𝑙 (Δ) are never 0 nor ∞. If we take (𝐴, 𝜆, p) ∈ O(𝑘) × [0,∞) × R𝑘 and
consider the points in 𝑖Δ (𝐴, 𝜆, p0), we see these points coincide if and only if 𝜆 = 0, in which case, they
all coincide. This means 𝑖Δ (𝐴, 0, p0) ⊂ 𝜕𝐶𝑘+[R𝑘 ] and is in the (0, 1, . . . , 𝑘) face. Since the boundary of
the (0, 1, . . . , 𝑘) face consists of configurations with 𝑟𝑖 𝑗𝑙 (Δ) = 0, or 𝑟𝑖 𝑗𝑙 (Δ) = ∞, it follows immediately
that 𝑖Δ (𝐴, 0, p0) is in the interior of this face. �

Corollary 4.10. If Δ is a nondegenerate k-simplex in R𝑘 , then Sim(Δ) is a submanifold of 𝐶𝑘+1 [R𝑘 ]
that is diffeomorphic to O(𝑘) × [0,∞) × R𝑘 .

5. Simplices inscribed in spheres

We next move to Step 1 of the method described in Section 3. We will be looking at 𝐶∞-smooth embed-
dings of 𝑆𝑘−1 in R𝑘 . We will always assume that these embeddings are regular, that is, the embedding
induces an injection of tangent spaces everywhere. This is particularly relevant for embeddings of 𝑆1

in R2, where we assume the tangent vector is nowhere zero (otherwise, it is possible to smoothly de-
scribe an embedded curve with corners, by allowing the tangent vector to smoothly change to zero at
each corner). Now, given any such regular 𝐶∞-smooth embedding 𝛾 : 𝑆𝑘−1 ↩→ R

𝑘 , we can view the
corresponding configuration space 𝐶𝑘+1 [𝛾(𝑆𝑘−1)] as a submanifold of 𝐶𝑘+1 [R𝑘 ].

Proposition 5.1. Given a nondegenerate simplex Δ ∈ 𝐶𝑘+1(R𝑘 ), and a regular 𝐶∞-smooth embed-
ding 𝛾 : 𝑆𝑘−1 ↩→ R

𝑘 with corresponding configuration space 𝐶𝑘+1 [𝛾(𝑆𝑘−1)], then 𝜕 Sim(Δ) and
𝜕𝐶𝑘+1 [𝛾(𝑆𝑘−1)] are disjoint in 𝜕𝐶𝑘+1 [R𝑘 ].

Proof. From Theorem 4.9, we know that 𝜕 Sim(Δ) is in the (0, 1, . . . , 𝑘) face of 𝜕𝐶𝑘+1 [R𝑘 ], so we
restrict our attention to that boundary face. Since Δ is nondegenerate, no hyperplane in R𝑘 contains
more than k points of Δ , and so not all of the 𝜋𝑖 𝑗 (Δ) vectors are coplanar. However, for a point
in 𝜕𝐶𝑘+1 [𝛾(𝑆𝑘−1)], all of the 𝜋𝑖 𝑗 vectors must be coplanar. Hence, Sim(Δ) and 𝐶𝑘+1 [𝛾(𝑆𝑘−1)] are
boundary disjoint. �

We next move to Step 2. We take the standard embedding of the (𝑘 − 1) sphere in R𝑘 , that is,
id : 𝑆𝑘−1 ↩→ R𝑘 , and consider the corresponding configuration spaces. In this special case, we use the
notation 𝐶𝑘+1 [𝑆𝑘−1] = 𝐶𝑘+1 [id(𝑆𝑘−1)].

We need to show that there is a transverse intersection between𝐶𝑘+1 [𝑆𝑘−1] and Sim(Δ) in𝐶𝑘+1 [R𝑘 ],
in other words, 𝐶𝑘+1(id) � Sim(Δ). We also need to compute the homology class of the intersection of
𝐶𝑘+1 [𝑆𝑘−1] ∩ Sim(Δ) in Sim(Δ).

Proposition 5.2. Given the configuration space 𝐶𝑘+1 [𝑆𝑘−1] corresponding to the standard embedding
of 𝑆𝑘−1 in R𝑘 , and given a nondegenerate simplex Δ ∈ 𝐶𝑘+1(R𝑘 ), then Sim(Δ) intersects 𝐶𝑘+1 [𝑆𝑘−1]
transversally, and the intersection Sim(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1] is diffeomorphic to O(𝑘).

Proof. Since Sim(Δ) and 𝐶𝑘+1 [𝑆𝑘−1] are boundary disjoint (Proposition 5.1), we just need to consider
Sim(Δ) ∩ 𝐶𝑘+1 (𝑆𝑘−1). Now, every simplex Δ has a unique circumsphere; a (𝑘 − 1)-sphere passing
through all of the 𝑘 + 1 vertices. The radius of the circumsphere and coordinates of the circumcentre
are well known (see, for instance, Proposition 9.7.3.7 [5] or [11, 38]). Indeed, the circumradius R of the
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simplex Δ is given by

𝑅2 = −

���������
0 𝑑2

01 · · · 𝑑2
0𝑘

𝑑2
10 0 · · · 𝑑2

1𝑘
...

...
...

𝑑2
𝑘0 𝑑2

𝑘2 · · · 0

���������
2 CM({p0, . . . , p𝑘 })

.

Given Δ , we can scale and translate it to give a new −→q ∈ Sim(Δ) with circumradius 𝑅 = 1, and
circumcentre 0. Thus, −→q ∈ Sim(Δ)∩𝐶𝑘+1(𝑆𝑘−1) and the intersection is nonempty. Intuitively, we obtain
all other points of Sim(Δ) ∩𝐶𝑘+1(𝑆𝑘−1) by rotating/reflecting −→q via 𝐴−→q for 𝐴 ∈ O(𝑘). More formally,
we define the diffeomorphism 𝑟 : O(𝑘) → Sim(Δ) ∩ 𝐶𝑘+1(𝑆𝑘−1) by 𝑟 (𝐴) = 𝐴−→q = (𝐴q0, . . . , 𝐴q𝑘 ).

We now want to show that Sim(Δ) intersects 𝐶𝑘+1 [𝑆𝑘−1] transversally. Specifically, we take any
inscribed simplex −→q ∈ Sim(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1], and we want to show that

𝑇−→q (Sim(Δ)) ⊕ 𝑇−→q (𝐶𝑘+1 [𝑆𝑘−1]) = 𝑇−→q (𝐶𝑘+1 [R𝑘 ]).

We first note that the orthogonal complement of 𝑇−→q (𝐶𝑘+1 [𝑆𝑘−1]) in 𝑇−→q (𝐶𝑘+1 [R𝑘 ]) is the (𝑘 + 1)-
dimensional space with orthonormal basis B = {(q0, 0, . . . , 0), . . . , (0, . . . , q𝑘 )}. Next, observe that
𝑇−→q (Sim(Δ)) � 𝑇−→q (O(𝑘)) ⊕ 𝑇−→q [0,∞) ⊕ 𝑇−→q (R𝑘 ). The tangent space 𝑇−→q (Sim(Δ)) thus contains the
vectors (e1, . . . , e1), . . . , (e𝑘 , . . . , e𝑘 ) from the translational component of Sim(Δ), as well as the vector
(q0, . . . , q𝑘 ) from scaling the configuration −→q . Writing these vectors in the basis B, we get the matrix:

𝑀 =

�������	

𝑞0,0 𝑞1,0 · · · 𝑞𝑘,0
𝑞0,1 𝑞1,1 · · · 𝑞𝑘,1
...

...
...

𝑞0,𝑘 𝑞1,𝑘 · · · 𝑞𝑘,𝑘
1 1 · · · 1


�������
.

Subtracting the last column from the rest, we get

𝑀 ′ =

(
q0 − q𝑘 q1 − q𝑘 · · · q𝑘−1 − q𝑘 q𝑘

0 0 · · · 0 1

)
.

The determinant of this matrix is ±1 multiplied by the determinant of the upper-left 𝑘 × 𝑘 principal
minor. But that determinant is positive because −→q ∈ Sim(Δ) and is nondegenerate. Thus, the 𝑘 + 1
tangent vectors are linearly independent, and we have proven transversality. �

Before we move on to determine the homology class corresponding to inscribed simplices, we pause
to remember that O(𝑘) has two connected components. One component, SO(𝑘), is a subgroup of
O(𝑘), and consists of all orthogonal matrices with determinant +1. The other component contains all
orthogonal matrices with determinant −1.

In order to sensibly discuss homology classes, we restrict our attention to the submanifold of simplices
diffeomorphic to SO(𝑘)× [0,∞)×R𝑘 , which we denote Sim+(Δ). We could equally restrict our attention
to Sim−(Δ) := Sim(Δ) \ Sim+(Δ).

Proposition 5.3. Given a nondegenerate simplex Δ = (p0, . . . , p𝑘 ) ∈ 𝐶𝑘+1 (R𝑘 ), and given the configu-
ration space 𝐶𝑘+1 [𝑆𝑘−1] corresponding to the standard embedding of 𝑆𝑘−1 in R𝑘 , then in Sim(Δ)

𝐻∗(O(𝑘);Z) � 𝐻∗(Sim(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1];Z).
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Moreover, the pose map is a diffeomorphism 𝑝𝑠 : Sim+(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1] → SO(𝑘) which induces
an isomorphism on integral homology taking the top class of Sim+(Δ) ∩𝐶𝑘+1 [𝑆𝑘−1] in Sim(Δ+) to the
top class of SO(𝑘). A similar result holds for Sim−(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1].

Proof. Without loss of generality, we can normalise Δ = (p1, . . . , p𝑘 ) so that it lies on 𝑆𝑘−1; that is Δ
has circumcentre 0 and circumradius 𝑅 = 1. We then have the following maps

O(𝑘) 𝑟−→ Sim(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1]
𝑝𝑠
−−→ O(𝑘).

Here, the map r is the rotation/reflections diffeomorphism previously defined in Proposition 5.2. That
is, for 𝐴 ∈ O(𝑘), we define 𝑟 (𝐴) = 𝐴Δ = (𝐴p0, . . . , 𝐴p𝑘 ). The map 𝑝𝑠 is the pose map from
Definition 4.7: for −→q ∈ Sim(Δ), we define 𝑝𝑠( −→q ) = 𝑈 ( −→q ) (where 𝑈 ( −→q ) is the unique orthogonal
matrix, such that Π( −→q ) = 𝑈 ( −→q )Π(Δ)). From Proposition 5.2, we know that r is a diffeomorphism,
and by construction, 𝑝𝑠 ◦ 𝑟 = id. Hence, the pose map is also a diffeomorphism.

From Proposition 5.2, we recall that Sim(Δ) intersects 𝐶𝑘+1 [𝑆𝑘−1] transversally, and, moreover,
that the intersection is diffeomorphic to O(𝑘). Now, since Sim(Δ) � O(𝑘) × [0,∞) × R𝑘 , we have
Sim(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1] is a deformation retract of Sim(Δ).

When we put this together and take the homology of the spaces, we see

𝐻∗(O(𝑘)) 𝑟∗−→ 𝐻∗(Sim(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1]) � 𝐻∗(Sim(Δ))
𝑝𝑠∗−−−→ 𝐻∗(O(𝑘)).

Since 𝑝𝑠∗ ◦ 𝑟∗ = id, we know 𝑝𝑠∗ is an isomorphism. Hence,

𝐻∗(O(𝑘)) � 𝐻∗(Sim(Δ) ∩ 𝐶𝑘+1 [𝑆𝑘−1]).

We could also choose to restrict r and 𝑝𝑠 as follows:

SO(𝑘) 𝑟−→ Sim+(Δ) ∩ 𝐶𝑘+1(𝑆𝑘−1)
𝑝𝑠
−−→ SO(𝑘).

Then, repeating the previous argument gives

𝑝𝑠∗([Sim+(Δ) ∩ 𝐶𝑘+1(𝑆𝑘−1)]) = [𝑟 (SO(𝑘))] = [Sim+(Δ)] ∈ 𝐻 𝑘 (𝑘−1)
2

(Sim+(Δ)). �

We now have all the pieces needed for our main theorem.

Theorem 5.4. Suppose 𝛾 : 𝑆𝑘−1 ↩→ R𝑘 is a 𝐶∞-smooth embedding of 𝑆𝑘−1 in R𝑘 isotopic to the identity
through a differentiable isotopy in R𝑘 , with a corresponding embedding of compactified configuration
spaces 𝐶𝑘+1 [𝛾] :𝐶𝑘+1 [𝑆𝑘−1] ↩→ 𝐶𝑘+1 [R𝑘 ]. Assume that Δ ∈ 𝐶𝑘+1 (R𝑘 ) is a nondegenerate simplex.

Then for all 𝜖 > 0, there is a 𝐶∞-open neighborhood of 𝛾, in which there is, for all m, a 𝐶𝑚-dense
set of smooth embeddings 𝛾′ : 𝑆𝑘−1 ↩→ R

𝑘 isotopic to the identity through a differentiable isotopy
in R𝑘 , such that ‖𝐶𝑘+1 [𝛾′] − 𝐶𝑘+1 [𝛾]‖0 < 𝜖 , and 𝐶𝑘+1 [𝛾′] � Sim(Δ). Moreover, in Sim(Δ+), both
𝐶𝑘+1 [𝑆𝑘−1] ∩ Sim+(Δ) and 𝐶𝑘+1 [𝛾′(𝑆𝑘−1)] ∩ Sim+(Δ) represent the top homology class of SO(𝑘). A
similar result holds for Sim−(Δ).

Proof. This is Corollary 4.10 and Propositions 5.2 and 5.3 applied to Theorem 3.3. �

We immediately recover Gromov’s result [16] (but for 𝐶∞-smooth embeddings) as a corollary.

Corollary 5.5. For any nondegenerate k-simplex Δ in R𝑘 , there is a dense family of smoothly embedded
(𝑘 − 1)-spheres in R𝑘 isotopic to the identity through a differentiable isotopy in R𝑘 , such that the subset
of Sim(Δ) of simplices inscribed in each embedded sphere contains a similar simplex corresponding to
each 𝑈 ∈ O(𝑘).

In fact, we have proved more than Gromov.
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Figure 2. In this irregular embedding of a circle in the plane, we see a series of inscribed equilateral
triangles. By following the highlighted vertex around the curve, we see there is a loop of such inscribed
triangles.

Corollary 5.6. For any nondegenerate k-simplex Δ in R𝑘 , there is a dense family of smoothly embedded
(𝑘 − 1)-spheres in R𝑘 isotopic to the identity through a differentiable isotopy in R𝑘 , such that the subset
Sim+(Δ) ∩ 𝐶𝑘+1 [𝛾(𝑆𝑘−1)] of simplices inscribed in each embedded sphere is a smooth orientable
submanifold of Sim+(Δ). Furthermore, the pose map 𝑝𝑠 : Sim+(Δ) ∩𝐶𝑘+1 [𝛾(𝑆𝑘−1)] → SO(𝑘) is onto
and is a degree 1 map.

In particular, the set of triangles similar to a given triangle �𝐴𝐵𝐶 inscribed in a generic smooth
plane curve is a collection of loops 𝐿1, . . . , 𝐿𝑛. Furthermore, the sum of the degrees of the pose maps
𝑝𝑠1, . . . , 𝑝𝑠𝑛 is one.

Proof. The first statement follows from Theorem 3.2. That the pose map is onto follows from
Corollary 5.5. For the standard embedding of 𝑆𝑘−1 in R𝑘 , the pose map is a diffeomorphism, and,
hence, of degree 1. Proposition 5.3 and homotopy invariance show the pose map is always of degree 1
for our embeddings.

When 𝑘 = 2, we know SO(2) � 𝑆1. Hence, the set of inscribed triangles similar to Δ is a collection
of loops. �

In [31], Matschke proves that for generic 𝐶∞-smooth embeddings of the circle in the plane, there are
an odd number of loops of inscribed triangles similar to Δ that wind an odd number of times around the
embedded circle. Figure 2 shows such a loop of inscribed equilateral triangles in an irregular embedding
of a circle in the plane. We recover Matschke’s result in Corollary 5.6, and strengthen it with the fact
that the degree of the map is 1.

We end by, again, noting that Meyerson [34] and Nielsen [35] have results about inscribed triangles
that are for Jordan curves ( just assuming continuity of the embedding). By adding both a generic and
smoothness assumption on our embeddings, we are able to provide more information about the structure
of the set of inscribed triangles.

Appendix A. Results from linear algebra

We will let 𝑀𝑛 denote the set of all 𝑛 × 𝑛 matrices, and let 𝑀𝑛,𝑚 denote the set of all 𝑛 × 𝑚 matrices.
Recall that a symmetric matrix is a square matrix that is equal to its transpose: 𝐴 = 𝐴𝑇 . That is,
𝐴 = [𝑎𝑖 𝑗 ] is symmetric if and only if 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖 . Also recall that

◦ an 𝑛 × 𝑛 symmetric real matrix M is positive-definite if x∗𝑀x > 0 for all x ∈ R𝑛 \ {0}.
◦ an 𝑛 × 𝑛 symmetric real matrix M is positive semidefinite or nonnegative-definite if x∗𝑀x ≥ 0 for all

x ∈ R𝑛.
◦ similar definitions hold for negative-definite and negative-semidefinite.

https://doi.org/10.1017/fms.2022.88 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.88


16 J. Cantarella, E. Denne and J. McCleary

We now review some theorems about symmetric matrices.

Theorem A.1 (see [21] Theorem 7.2.6). Let A be an 𝑛 × 𝑛 symmetric and positive semidefinite matrix,
let 𝑟 = rank(𝐴) and let 𝑘 = {2, 3, . . . }. Then there is a unique symmetric positive semidefinite matrix B,
such that 𝐵𝑘 = 𝐴.

Remark A.2. While this theorem only guarantees a unique positive semidefinite square root for a
semidefinite matrix A, an examination of the proof in [21] shows that more has been proven. The proof
shows there is a unique positive definite square root for a positive definite matrix A.

Theorem A.3 (see [21] Theorem 7.2.7). Let A be an 𝑛 × 𝑛 symmetric matrix. If 𝐴 = 𝐵𝑇 𝐵, with B an
𝑚 × 𝑛 matrix, then A is positive definite if and only if B has full column rank.

The polar decomposition of a matrix is incredibly useful. Below, we give the version that best applies
to our work.

Theorem A.4 (see [21] Theorem 7.3.1 Polar decomposition). Let A be an 𝑛 × 𝑛 real matrix. Then
𝐴 = 𝑃𝑈 = 𝑈𝑄, in which 𝑃,𝑄 ∈ 𝑀𝑛 are positive semidefinite and 𝑈 ∈ 𝑀𝑛 is orthogonal. The factors
𝑃 = (𝐴𝐴𝑇 )1/2 and 𝑄 = (𝐴𝑇 𝐴)1/2 are uniquely determined; P is a polynomial in 𝐴𝐴𝑇 , and Q is a
polynomial in 𝐴𝑇 𝐴. The factor U is uniquely determined if A is nonsingular.

Remark A.5 (see [12] Section 2.3 (c)). Suppose A is an 𝑚 × 𝑛 matrix with full rank and 𝐴(𝑡) depends
𝐶𝑘 -smoothly on t. Then we can write 𝐴(𝑡) = 𝑂 (𝑡)𝑃(𝑡), where O is orthonormal, P is symmetric positive
definite and O and P are as smooth as A.
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